JP2011056498A - Apparatus and system for generating high-concentration dissolved water - Google Patents

Apparatus and system for generating high-concentration dissolved water Download PDF

Info

Publication number
JP2011056498A
JP2011056498A JP2010171016A JP2010171016A JP2011056498A JP 2011056498 A JP2011056498 A JP 2011056498A JP 2010171016 A JP2010171016 A JP 2010171016A JP 2010171016 A JP2010171016 A JP 2010171016A JP 2011056498 A JP2011056498 A JP 2011056498A
Authority
JP
Japan
Prior art keywords
dissolved water
gas
liquid contact
water
contact tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010171016A
Other languages
Japanese (ja)
Other versions
JP5682904B2 (en
Inventor
Hiroyuki Kage
浩之 鹿毛
Yoshihide Mawatari
佳秀 馬渡
Akio Yamamoto
晶生 山本
Takahisa Ida
能久 伊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ITAKEN KK
Kyushu Institute of Technology NUC
Original Assignee
ITAKEN KK
Kyushu Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ITAKEN KK, Kyushu Institute of Technology NUC filed Critical ITAKEN KK
Priority to JP2010171016A priority Critical patent/JP5682904B2/en
Publication of JP2011056498A publication Critical patent/JP2011056498A/en
Application granted granted Critical
Publication of JP5682904B2 publication Critical patent/JP5682904B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for generating high-concentration dissolved water capable of obtaining the high-concentration dissolved water by securing sufficient contact for dissolving gas in raw water and also suppressing enlargement of the apparatus, and a system for generating the high-concentration dissolved water. <P>SOLUTION: The apparatus for generating the high-concentration dissolved water 60 includes: a cylindrical gas-liquid contact tank 63 from which dissolved water generated by bringing fine air bubbles into contact with the raw water introduced from an inlet 631a is removed from an outlet 634a; an air bubble generator 64 for generating the fine air bubbles into the gas-liquid contact tank 63; a dissolved water pipe 651 to be a circulation passage one end of which is connected to the top of the gas-liquid contact tank 63, another end of which is connected to the bottom and to which the dissolved water in the gas-liquid contact tank 63 flows; and a circulating pump 652 provided on the dissolved water pipe 651 and circulating the dissolved water in the gas-liquid contact tank. The raw water brought into contact with the fine air bubbles from the air bubble generator 64 in the gas-liquid contact tank 63 is made into the high-concentration dissolved water by orbiting around the dissolved water pipe 651 with the circulating pump 652 to repeat circulation. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、原水に気体を効率よく溶解させて高濃度の溶解水を生成することができる高濃度溶解水生成装置および高濃度溶解水生成システムに関するものである。   The present invention relates to a high-concentration dissolved water generation apparatus and a high-concentration dissolved water generation system that can efficiently dissolve gas in raw water to generate high-concentration dissolved water.

液体に気体を溶解させる装置では、効率よく溶解させることが要求される。特に、上水の浄化や下水の浄化を目的とした浄水処理システムでは、原水に気体としてオゾンガスを接触させて溶解させ、殺菌、脱色、脱臭を実現している。このような浄水処理システムとして、例えば特許文献1,2に記載されたものが知られている。   An apparatus for dissolving a gas in a liquid is required to dissolve efficiently. In particular, in a water purification system aimed at purification of clean water and sewage, ozone gas is brought into contact with raw water and dissolved to achieve sterilization, decolorization, and deodorization. As such a water purification system, for example, those described in Patent Documents 1 and 2 are known.

特許文献1の浄化供給方法と浄化供給システムには、溶解タンクの天井付近に水面に対して直角方向に設けられたノズルから、オゾンガスを混合させた原水を、ノズルの真下に略水平に設けた邪魔板に噴射して叩き付けることで、飛沫を多く発生させてオゾンガスを原水に溶解させるオゾン処理装置が記載されている。   In the purification supply method and the purification supply system of Patent Document 1, raw water mixed with ozone gas is provided substantially horizontally just below the nozzle from a nozzle provided in the direction perpendicular to the water surface near the ceiling of the dissolution tank. An ozone treatment device is described in which spraying and hitting a baffle plate generates a lot of splashes and dissolves ozone gas in raw water.

また、特許文献2の分離注入式オゾン接触方法には、反応槽上部の導入口から、送水ポンプにより原水を導入し、同時にオゾン発生装置で発生させたオゾンガスを、散気装置を通し微細な気泡として反応槽内に注入することで原水に気泡(オゾンガス)を混合させて混合水とし、混合水が反応槽の下降溶解部を流下し、反応槽の底部を通り、上昇部を経て、排出口から浄化するための処理水として配水される下降溶解型オゾン処理装置が記載されている。   In addition, in the separate injection type ozone contact method of Patent Document 2, raw water is introduced from the inlet at the top of the reaction tank by a water pump, and ozone gas generated by the ozone generator is simultaneously passed through a diffuser to make fine bubbles. Injecting into the reaction tank, bubbles (ozone gas) are mixed with the raw water to form mixed water. The mixed water flows down the dissolution zone of the reaction tank, passes through the bottom of the reaction tank, passes through the ascending section, and is discharged into the outlet. A descending dissolution type ozone treatment device distributed as treated water for purifying from is described.

特開2007−181801号公報JP 2007-181801 A 特開平8−192176号公報JP-A-8-192176

目的とする溶解水を得るためには、溶解させたい気体を原水にできるだけ長時間接触させるのが望ましい。特に、オゾンガスは難溶解性を有しているので、高濃度のものを得るにはできるだけ原水に接触させて溶解させる必要がある。   In order to obtain the desired dissolved water, it is desirable to bring the gas to be dissolved into contact with the raw water for as long as possible. In particular, since ozone gas has poor solubility, it is necessary to dissolve it in contact with raw water as much as possible in order to obtain a high concentration.

しかし、特許文献1に記載のオゾン処理装置では、単にノズルからのオゾンガスを混合させた原水を、邪魔板に叩き付けて飛沫を発生させることで、オゾンガスを原水に溶解させているため、オゾンガスと原水との接触頻度が少なく、高濃度の溶解水は得られ難いものと推定される。   However, in the ozone treatment apparatus described in Patent Document 1, since the ozone water is dissolved in the raw water simply by striking the raw water mixed with the ozone gas from the nozzle against the baffle plate and generating splashes, the ozone gas and the raw water It is estimated that high-concentration dissolved water is difficult to obtain.

また、特許文献2に記載の下降溶解型オゾン処理装置においては、原水にオゾンガスを混合させた混合水が、反応槽の下降溶解部へ流下し、反応槽の底部を通り上昇部を上昇する間が、原水とオゾンガスとの接触期間となるため、やはり充分とは言えず、高濃度な溶解水が得られ難いものと思われる。
例えば、反応槽の深さを深くすることで、混合水が下降溶解部と上昇部とを通過する時間を長くなるようにすることも考えられる。しかし、反応槽が大きくなることで装置規模が大型化するおそれがある。
Further, in the descending dissolution type ozone treatment apparatus described in Patent Document 2, the mixed water in which ozone gas is mixed with raw water flows down to the descending dissolution part of the reaction tank and rises through the bottom part of the reaction tank and rises the ascending part. However, since it is a contact period between raw water and ozone gas, it cannot be said that it is sufficient, and it seems difficult to obtain high-concentration dissolved water.
For example, it is conceivable to increase the time for the mixed water to pass through the descending dissolution part and the ascending part by increasing the depth of the reaction tank. However, there is a possibility that the scale of the apparatus increases due to the increase in the reaction tank.

そこで本発明は、気体が原水に溶解するのに十分な接触を確保することで高濃度の溶解水を得ることができると共に、装置の大型化を抑制することができる高濃度溶解水生成装置および高濃度溶解水生成システムを提供することを目的とする。   Accordingly, the present invention provides a high-concentration dissolved water generator capable of obtaining a high-concentration dissolved water by ensuring sufficient contact for the gas to dissolve in raw water, and capable of suppressing an increase in the size of the device. An object is to provide a high-concentration dissolved water generation system.

本発明の高濃度溶解水生成装置は、導入口から取り入れられた原水に微細気泡を接触させることで生成された溶解水が、排出口から取り出される筒状の気液接触槽と、前記気液接触槽への微細気泡を発生する気泡発生装置と、前記気液接触槽の上部に一端が接続され、下部に他端が接続され、前記気液接触槽の溶解水が通水する循環路と、前記循環路に設けられ、前記気液接触槽の溶解水を循環させる循環ポンプとを備えたことを特徴とする。
本発明の高濃度溶解水生成装置は、気泡発生装置により発生させた微細気泡が気液接触槽の導入口から取り入れられた原水に接触することで溶解水を生成し、排出口から取り出すことができるものである。この溶解水は、循環ポンプにより循環路を介して気液接触槽を循環する。従って、原水は循環する度に気泡発生装置からの微細気泡と接触するので、十分な接触時間を確保することができる。従って、循環する度に原水に微細気泡が溶解して徐々に濃度を上昇させることができるので、高濃度の溶解水を得ることができる。
The high-concentration dissolved water generating apparatus of the present invention includes a cylindrical gas-liquid contact tank in which dissolved water generated by bringing fine bubbles into contact with raw water taken from an inlet is taken out from an outlet, and the gas-liquid A bubble generating device for generating fine bubbles to the contact tank, a one end connected to the upper part of the gas-liquid contact tank, the other end connected to the lower part, and a circulation path through which dissolved water in the gas-liquid contact tank flows. And a circulation pump provided in the circulation path for circulating the dissolved water in the gas-liquid contact tank.
The high-concentration dissolved water generating apparatus of the present invention generates dissolved water by allowing fine bubbles generated by the bubble generating apparatus to come into contact with raw water taken from the inlet of the gas-liquid contact tank, and removes it from the outlet. It can be done. This dissolved water is circulated through the gas-liquid contact tank through a circulation path by a circulation pump. Therefore, every time the raw water circulates, it comes into contact with the fine bubbles from the bubble generating device, so that a sufficient contact time can be ensured. Therefore, every time it circulates, fine bubbles dissolve in the raw water and the concentration can be gradually increased, so that a high concentration of dissolved water can be obtained.

前記循環ポンプは、前記気液接触槽の上部から下部へ向かって溶解水を送水する、または前記気液接触槽の下部から上部へ向かって溶解水を送水するものであるのが望ましい。循環ポンプが気液接触槽の上部から下部へ向かって溶解水を送水する向流の場合には、微細気泡の浮上速度を低下させることができるので、微細気泡と原水との接触期間を長くすることができる。また、循環ポンプが気液接触槽の下部から上部へ向かって溶解水を送水する並流の場合には、微細気泡の直径がミリオーダ程度の大きさのときに、微細気泡同士の間隔を広げ、微細気泡同士の結合を抑止することができる。   The circulation pump preferably feeds dissolved water from the upper part to the lower part of the gas-liquid contact tank, or feeds dissolved water from the lower part to the upper part of the gas-liquid contact tank. In the case of counter flow in which the circulating pump feeds dissolved water from the upper part to the lower part of the gas-liquid contact tank, the rising speed of the fine bubbles can be reduced, so the contact period between the fine bubbles and the raw water is lengthened. be able to. In addition, in the case of cocurrent flow in which the circulating pump sends dissolved water from the lower part to the upper part of the gas-liquid contact tank, when the diameter of the fine bubbles is on the order of millimeters, the interval between the fine bubbles is increased, Bonding between fine bubbles can be suppressed.

前記循環路の他端が接続された溶解水流入口は、前記気液接触槽の内周面の円周方向に沿って水流が流れるように配置されているのが望ましい。
溶解水流入口からの微細気泡を含む水流が、気液接触槽の下部にて、気液接触槽の内周面の円周方向に沿って水流が同方向に流れることで、気液接触槽の下部で軸心を中心とした旋回流が発生する。旋回流は時間の経過と共に、上部まで拡がり気液接触槽内部で全体的な大きな旋回流となる。微細気泡は、旋回流と共に気液接触槽の内周面に沿って旋回をしているが、次第に軸心付近に密集した状態となることで、浮上速度が低下する。従って、微細気泡の接触時間を増大することができるので、更に高濃度の溶解水を効率よく得ることができる。
The dissolved water inlet connected to the other end of the circulation path is preferably arranged so that the water flow flows along the circumferential direction of the inner peripheral surface of the gas-liquid contact tank.
The water flow containing fine bubbles from the dissolved water inlet flows in the same direction along the circumferential direction of the inner peripheral surface of the gas-liquid contact tank at the lower part of the gas-liquid contact tank. A swirling flow around the shaft center is generated at the bottom. The swirling flow spreads to the upper part with time and becomes a large swirling flow as a whole inside the gas-liquid contact tank. The microbubbles swirl along with the swirling flow along the inner peripheral surface of the gas-liquid contact tank. However, the fine bubbles gradually become dense in the vicinity of the axial center, so that the levitation speed decreases. Accordingly, the contact time of the fine bubbles can be increased, so that a higher concentration of dissolved water can be obtained efficiently.

前記導入口は、前記溶解水流入口からの水流と同方向に、前記気液接触槽の内周面の円周方向に沿って流れるように配置されているのが望ましい。導入口からの原水が気液接触槽の内周面の円周方向に沿って、溶解水流入口からの水流と同方向に流れることで、旋回流となっている溶解水流入口からの水流と合わさって、より強い回転力を発生させることができる。従って、より微細気泡を軸心付近に密集した状態とすることができるので、更に、微細気泡の接触時間を増大させることができる。   The introduction port is preferably arranged to flow along the circumferential direction of the inner peripheral surface of the gas-liquid contact tank in the same direction as the water flow from the dissolved water inlet. The raw water from the inlet flows along the circumferential direction of the inner peripheral surface of the gas-liquid contact tank in the same direction as the water flow from the dissolved water inlet, so that it matches the water flow from the dissolved water inlet that is a swirling flow. Thus, a stronger rotational force can be generated. Accordingly, since fine bubbles can be more closely packed in the vicinity of the axial center, the contact time of the fine bubbles can be further increased.

前記気泡発生装置からの微細気泡を導入する吐出口が前記気液接触槽の下部の軸心位置に配置されていると、気液接触槽の下部から導入され微細気泡が、上昇すると共に発生した旋回流により軸心中心に軸周りに回転させ密集させることができるので、微細気泡を集約させやすい状態とすることができる。   When the discharge port for introducing the fine bubbles from the bubble generating device is disposed at the axial center position of the lower part of the gas-liquid contact tank, the fine bubbles introduced from the lower part of the gas-liquid contact tank are generated as they rise. Since it can be rotated around the axis by the swirling flow and concentrated around the axis, it is possible to make it easy to aggregate the fine bubbles.

微細気泡を放出する前記吐出口の位置が前記導入口および溶解水流入口より低ければ、微細気泡は旋回流と共に、気液接触槽の内周面に沿って流され、軸心を中心として集約しにくくなるが、前記吐出口の微細気泡を放出する位置が、前記導入口および溶解水流入口より高い位置に配置されていれば、旋回流が直接的に微細気泡を押し流さないので、集約させやすくすることができる。   If the position of the discharge port that discharges the fine bubbles is lower than the introduction port and the dissolved water inlet, the fine bubbles are swung along the inner peripheral surface of the gas-liquid contact tank together with the swirling flow and concentrated around the axis. Although it becomes difficult, if the position where the fine bubbles are discharged from the discharge port is higher than the introduction port and the dissolved water inlet, the swirling flow does not directly push the fine bubbles, so that it is easy to aggregate. be able to.

前記気液接触槽が、導入側と排出側との間で並列に複数設けられ、前記複数の気液接触槽の溶解水の通水量を制御する制御装置を備えていると、大量の高濃度の溶解水を生成することができる。   When a plurality of the gas-liquid contact tanks are provided in parallel between the introduction side and the discharge side, and a control device that controls the amount of dissolved water in the plurality of gas-liquid contact tanks is provided, a large amount of high concentration Can be produced.

前記制御装置が、前記並列に設けられた気液接触槽内の溶解水を同時排出すると、大量の高濃度の溶解水を一度に送出することができる。
また、前記制御装置が前記並列に設けられた気液接触槽内の溶解水を切り替えながら排出すると、高濃度化した溶解水を排出する気液接触槽と、排出を停止して循環させて高濃度化する気液接触槽とに分けることができるので、より高濃度とした溶解水を連続的に生成することができる。
When the control device simultaneously discharges the dissolved water in the gas-liquid contact tanks provided in parallel, a large amount of high-concentration dissolved water can be delivered at a time.
Further, when the control device discharges the dissolved water in the gas-liquid contact tanks provided in parallel, the gas-liquid contact tank that discharges the concentrated water having a high concentration, and the discharge is stopped and circulated. Since it can be divided into a gas-liquid contact tank to be concentrated, dissolved water having a higher concentration can be continuously generated.

前記気液接触槽が、導入側と排出側との間で直列に複数設けられていると、気液接触槽を通過する度に溶解水を高濃度化することができる。
前記気液接触槽には、排出される溶解水を貯留する貯留部が設けられているのが望ましい。気液接触槽から排出される溶解水は貯留部に一旦貯留されることで、送水速度が低下する。従って、貯留部にて残留している微細気泡を溶解水に溶け込ませることができる。
When a plurality of gas-liquid contact tanks are provided in series between the introduction side and the discharge side, the concentration of dissolved water can be increased every time the gas-liquid contact tank passes.
It is desirable that the gas-liquid contact tank is provided with a storage part for storing the discharged dissolved water. The dissolved water discharged from the gas-liquid contact tank is temporarily stored in the storage unit, so that the water supply speed decreases. Therefore, the fine bubbles remaining in the reservoir can be dissolved in the dissolved water.

本発明の高濃度溶解水生成システムは、本発明の高濃度溶解水生成装置と、前記高濃度溶解水生成装置からの溶解水と前記高濃度溶解水生成装置を迂回させた原水とを混合する混合槽とを備えたことを特徴とする。
本発明の高濃度溶解水生成装置は高濃度の溶解水が得られるので、本発明の高濃度溶解水生成装置を迂回させた原水に高濃度の溶解水を混合槽にて混合しても、原水浄化に必要な濃度を確保した混合水とすることができる。また、高濃度とする原水は必要量の一部なので、本発明の高濃度溶解水生成システムは小型化を図ることができる。
The high concentration dissolved water generating system of the present invention mixes the high concentration dissolved water generating device of the present invention, the dissolved water from the high concentration dissolved water generating device, and the raw water bypassing the high concentration dissolved water generating device. And a mixing tank.
Since the high-concentration dissolved water generator of the present invention can obtain a high-concentration dissolved water, even if the high-concentration dissolved water is mixed in the mixing tank with the raw water bypassing the high-concentration dissolved water generator of the present invention, It can be set as the mixed water which ensured the density | concentration required for raw water purification. In addition, since the raw water having a high concentration is a part of the required amount, the high-concentration dissolved water generating system of the present invention can be downsized.

本発明は、原水が循環する度に微細気泡が溶解して徐々に濃度を上昇させることができるので、高濃度の溶解水を得ることができ、接触時間を長くするために気液接触槽の大きさを大きくする必要がないので装置の大型化を抑制することができる。   In the present invention, fine bubbles are dissolved every time raw water circulates, and the concentration can be gradually increased. Therefore, a high concentration of dissolved water can be obtained. Since it is not necessary to increase the size, the increase in size of the apparatus can be suppressed.

本発明の実施の形態1に係る浄水処理システム全体の構成を示す図である。It is a figure which shows the structure of the whole water purification system which concerns on Embodiment 1 of this invention. 図1に示す浄水処理システムの高濃度溶解水生成装置の構成を示す図である。It is a figure which shows the structure of the high concentration dissolved water production | generation apparatus of the water purification system shown in FIG. 本発明の実施の形態1に係る高濃度溶解水生成装置の第1変形例を示す図である。It is a figure which shows the 1st modification of the high concentration dissolved water production | generation apparatus which concerns on Embodiment 1 of this invention. 図3に示す高濃度溶解水生成装置の導水ユニットを示す図であり、(A)は平面図、(B)は正面図である。It is a figure which shows the water guide unit of the high concentration dissolved water production | generation apparatus shown in FIG. 3, (A) is a top view, (B) is a front view. (A)〜(C)は図3に示す高濃度溶解水生成装置の動作を説明するための図である。(A)-(C) are the figures for demonstrating operation | movement of the high concentration dissolved water production | generation apparatus shown in FIG. 図4に示す導水ユニットの変形例を示す図であり、(A)は三方から水流が導入される導入ユニットを示す平面図、(B)は(A)の正面図、(C)は四方から水流が導入される導入ユニットを示す平面図、(D)は(C)の正面図である。It is a figure which shows the modification of the water conveyance unit shown in FIG. 4, (A) is a top view which shows the introduction unit in which a water flow is introduce | transduced from three directions, (B) is a front view of (A), (C) is from four directions The top view which shows the introduction unit in which a water flow is introduce | transduced, (D) is a front view of (C). 本発明の実施の形態1に係る高濃度溶解水生成装置の第2変形例を示す図である。It is a figure which shows the 2nd modification of the high concentration dissolved water production | generation apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る高濃度溶解水生成装置を示す図である。It is a figure which shows the high concentration dissolved water production | generation apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る高濃度溶解水生成装置を示す図である。It is a figure which shows the high concentration dissolved water production | generation apparatus which concerns on Embodiment 3 of this invention.

(実施の形態1)
本発明の実施の形態1に係る高濃度溶解水生成システムを、浄化処理システムを例に、図面に基づいて説明する。
図1に示す浄化処理システム1は、取水された原水が一旦貯留される着水井10と、凝集剤を投入して、ミキサにより撹拌して均一に分散させフロックを形成する混和池20と、混和池20で形成された小さなフロックをフロキュレータにより緩やかに撹拌して各フロックを更に大きなフロックの塊とするフロック形成池30と、フロックを沈殿させる沈殿池40と、フロックとなった固分と液分とを分離する濾過池50とを備えている。
(Embodiment 1)
A high-concentration dissolved water generation system according to Embodiment 1 of the present invention will be described with reference to the drawings, taking a purification treatment system as an example.
A purification treatment system 1 shown in FIG. 1 includes a landing well 10 in which raw water that has been taken in is temporarily stored, a mixing basin 20 in which a flocculant is introduced, and agitated by a mixer to uniformly disperse and form a flock, A small floc formed in the pond 20 is gently agitated by a flocculator to make each floc a larger floc lump, a floc formation basin 30 for precipitating the floc, a solid and liquid that has become a floc And a filtration pond 50 for separating the minute.

また、浄化処理システム1は、濾過池50からの原水の一部を原水としてオゾンガスを溶解させ、溶解水として排出する高濃度溶解水生成装置60と、高濃度溶解水生成装置60を迂回させた原水と高濃度溶解水生成装置60からの溶解水とを混合する混合槽として機能するオゾン接触池70と、活性炭により脱臭を行う活性炭吸着塔80と、塩素を混合させて減菌する塩素減菌池90とを備えている。   In addition, the purification treatment system 1 bypasses the high-concentration dissolved water generation device 60 and the high-concentration dissolved water generation device 60 that dissolve ozone gas using a part of the raw water from the filtration pond 50 as raw water and discharge it as dissolved water. Ozone contact pond 70 that functions as a mixing tank that mixes raw water and dissolved water from the high-concentration dissolved water generator 60, an activated carbon adsorption tower 80 that deodorizes with activated carbon, and a chlorine sterilizer that sterilizes by mixing chlorine. And a pond 90.

ここで、高濃度溶解水生成装置60について、図2に基づいて詳細に説明する。
高濃度溶解水生成装置60は、導水部61と、オゾン生成部62と、気液接触槽63と、気泡発生装置64と、循環部65とを備えている。
Here, the high concentration dissolved water production | generation apparatus 60 is demonstrated in detail based on FIG.
The high-concentration dissolved water generating device 60 includes a water guiding unit 61, an ozone generating unit 62, a gas-liquid contact tank 63, a bubble generating device 64, and a circulating unit 65.

導水部61は、原水を一旦貯留するバッファタンク611と、バッファタンク611内の原水を送水する原水ポンプ612と、送水量を調整するコック613と、原水の送水量を測定する流量計614とを備えている。   The water guide unit 61 includes a buffer tank 611 that temporarily stores the raw water, a raw water pump 612 that supplies the raw water in the buffer tank 611, a cock 613 that adjusts the water supply amount, and a flowmeter 614 that measures the water supply amount. I have.

オゾン生成部62は、高純度の酸素を濃縮して送気する酸素濃縮装置621と、圧力制御バルブ622と、送気される圧縮酸素の流量を測定する流量計623と、圧縮酸素からオゾンガスを発生するオゾン発生装置624とを備えている。   The ozone generator 62 includes an oxygen concentrator 621 that concentrates and sends high-purity oxygen, a pressure control valve 622, a flow meter 623 that measures the flow rate of the compressed oxygen that is sent, and ozone gas from the compressed oxygen. And an ozone generator 624 for generating the ozone.

気液接触槽63は、円筒形状に形成されたタンクユニットを連結したものである。気液接触槽63は、最下端に位置する導水ユニット631と、第1接触ユニット632と、第2接触ユニット633と、最上端に位置する貯留部ユニット634とを連結したものである。
導水ユニット631には、一方に導入口631aが設けられ、導水部61からの原水送水管615が接続されている。また、導水ユニット631には、他方に溶解水流入口631bが設けられ、循環部65の循環路の一部となる溶解水送水管651が接続されている。
第1接触ユニット632には、気泡発生装置64が配置されている。第2接触ユニット633には、上端に溶解水流出口633aが設けられている。また、第2接触ユニット633には、溶解水のオゾン濃度を測定するオゾンメーター66が配置されている。
貯留部ユニット634は、気液接触槽63の第2接触ユニット633から排出される溶解水を貯留する貯留部である。貯留部ユニット634は、第2接触ユニット633より大きい管径により形成されていると共に、第2接触ユニット633の上部に設けられている。貯留部ユニット634内には、第2接触ユニット633の端部が突出している。貯留部ユニット634の排出口634aには、オゾン接触池70へ通じる送水管635が接続されている。
The gas-liquid contact tank 63 is obtained by connecting tank units formed in a cylindrical shape. The gas-liquid contact tank 63 is obtained by connecting a water guide unit 631 located at the lowermost end, a first contact unit 632, a second contact unit 633, and a storage unit 634 located at the uppermost end.
The water introduction unit 631 is provided with an introduction port 631a on one side, and is connected to a raw water supply pipe 615 from the water introduction unit 61. In addition, a dissolved water inflow port 631b is provided on the other side of the water guide unit 631, and a dissolved water supply pipe 651 serving as a part of the circulation path of the circulation unit 65 is connected thereto.
A bubble generating device 64 is disposed in the first contact unit 632. The second contact unit 633 is provided with a dissolved water outlet 633a at the upper end. The second contact unit 633 is provided with an ozone meter 66 that measures the ozone concentration of the dissolved water.
The storage unit 634 is a storage unit that stores dissolved water discharged from the second contact unit 633 of the gas-liquid contact tank 63. The storage unit 634 is formed with a tube diameter larger than that of the second contact unit 633, and is provided on the upper portion of the second contact unit 633. An end of the second contact unit 633 protrudes inside the storage unit 634. A water supply pipe 635 leading to the ozone contact pond 70 is connected to the discharge port 634 a of the storage unit 634.

気泡発生装置64は、オゾン生成部62からのオゾンガスを微細気泡として気液接触槽63に放出するものである。この気泡発生装置64としては、ディフューザと称される散気管が使用できる。気泡発生装置64は、直径0.1μm〜2mm程度の微細気泡を放出する機能を備えている。   The bubble generator 64 discharges ozone gas from the ozone generator 62 to the gas-liquid contact tank 63 as fine bubbles. As the bubble generating device 64, an air diffuser called a diffuser can be used. The bubble generating device 64 has a function of releasing fine bubbles having a diameter of about 0.1 μm to 2 mm.

循環部65は、循環路を形成する溶解水送水管651と、溶解水送水管651に設けられた溶解水を循環させる循環ポンプ652と、溶解水の流量を測定する流量計653と、コック654とを備えている。
溶解水送水管651は、一端が気液接触槽63の上部に位置する第2接触ユニット633の上端に接続され、他端が下部に位置する導水ユニット631に接続されている。
The circulation unit 65 includes a dissolved water supply pipe 651 that forms a circulation path, a circulation pump 652 that circulates the dissolved water provided in the dissolved water supply pipe 651, a flow meter 653 that measures the flow rate of the dissolved water, and a cock 654. And.
One end of the dissolved water supply pipe 651 is connected to the upper end of the second contact unit 633 located above the gas-liquid contact tank 63 and the other end is connected to the water guide unit 631 located below.

以上のように構成された本発明の実施の形態1に係る浄水処理システム1の動作を図面に基づいて説明する。
図1に示すように、集水された汚濁水は、着水井10、混和池20、フロック形成池30、沈殿池40を経て濾過池50を通過することで固分と液分とが分離される。濾過池50から取水した原水の一部が高濃度溶解水生成装置60へ送水される。
Operation | movement of the water purification system 1 which concerns on Embodiment 1 of this invention comprised as mentioned above is demonstrated based on drawing.
As shown in FIG. 1, the collected polluted water is separated into a solid and a liquid by passing through a landing well 10, a mixing basin 20, a flock formation basin 30 and a sedimentation basin 40 and a filtration basin 50. The Part of the raw water taken from the filtration basin 50 is sent to the high-concentration dissolved water generator 60.

図2に示すように、原水は導水部61のバッファタンク611へ一旦貯留される。バッファタンク611の原水は、原水ポンプ612によりコック613を経由して導入口631aから気液接触槽63へ流れ込む。気液接触槽63内では、導入口631aからの原水に気泡発生装置64からの微細気泡が吹き出されているので、微細気泡が第1接触ユニット632から第2接触ユニット633へ上昇する間に、微細気泡が原水に溶解して溶解水となる。   As shown in FIG. 2, the raw water is temporarily stored in the buffer tank 611 of the water guide section 61. The raw water in the buffer tank 611 flows into the gas-liquid contact tank 63 from the inlet 631a via the cock 613 by the raw water pump 612. In the gas-liquid contact tank 63, since the fine bubbles from the bubble generating device 64 are blown out to the raw water from the inlet 631a, while the fine bubbles rise from the first contact unit 632 to the second contact unit 633, Fine bubbles dissolve in the raw water and become dissolved water.

循環部65では、溶解水送水管651に、微細気泡が原水に溶解した溶解水が、溶解せずに残留した微細気泡と共に、循環ポンプ652の送水により第2接触ユニット633の溶解水流出口633aから流れ込む。溶解水は、溶解水送水管651を流れ、溶解水流入口631bから再び気液接触槽63へ流れて、気泡発生装置64からの微細気泡と接触する。   In the circulation section 65, the dissolved water in which the fine bubbles are dissolved in the raw water is dissolved in the dissolved water supply pipe 651 from the dissolved water outlet 633a of the second contact unit 633 by the water supply of the circulation pump 652 together with the fine bubbles remaining without being dissolved. Flows in. The dissolved water flows through the dissolved water supply pipe 651, flows again from the dissolved water inlet 631b to the gas-liquid contact tank 63, and comes into contact with the fine bubbles from the bubble generating device 64.

このように溶解水は、循環ポンプ652により、気液接触槽63内から溶解水流出口633aを介して溶解水送水管651へ、そして溶解水流入口631bを通過して再び気液接触槽63内へとなる流れを繰り返すことで、十分な接触を確保することができる。従って、循環する度に原水に微細気泡が溶解して徐々に濃度を上昇させることができるので、高濃度の溶解水を得ることができる。   In this way, the dissolved water is circulated from the gas-liquid contact tank 63 through the dissolved water outlet 633a to the dissolved water feed pipe 651 by the circulation pump 652, and then passes again through the dissolved water inlet 631b into the gas-liquid contact tank 63. Sufficient contact can be ensured by repeating the flow. Therefore, every time it circulates, fine bubbles dissolve in the raw water and the concentration can be gradually increased, so that a high concentration of dissolved water can be obtained.

また、気液接触槽63に対して循環路を形成する溶解水送水管651が、気液接触槽63の上部に一端が接続され、下部に他端が接続されており、循環ポンプ652が気液接触槽63の下から上へと上昇する水流(並流)を作り出しているので、気泡発生装置64から放出された微細気泡は、水流により間隔が広がり結合が抑止される。従って、微細気泡同士が結合することで気泡の直径が肥大し、気泡全体として表面積が減少することで原水との接触面積が低下してしまうことを低減することができるので、接触効率を向上させることができる。   In addition, a dissolved water feed pipe 651 that forms a circulation path with respect to the gas-liquid contact tank 63 has one end connected to the upper part of the gas-liquid contact tank 63 and the other end connected to the lower part. Since a water flow (cocurrent flow) that rises from the bottom to the top of the liquid contact tank 63 is created, the fine bubbles released from the bubble generating device 64 are widened by the water flow and the coupling is suppressed. Therefore, it is possible to reduce the contact area with the raw water by reducing the contact area with the raw water by reducing the surface area of the bubbles as a whole by combining the fine bubbles, and improving the contact efficiency. be able to.

このようにして高濃度の溶解水となると、溶解水は気液接触槽63の貯留部ユニット634から送水管635を介してオゾン接触池70へ送水される。
第2接触ユニット633から貯留部ユニット634へ流れ込む際には、貯留部ユニット634にて一旦溶解水が貯留されることで、送水速度が低下する。従って、貯留部ユニット634にて、残留している微細気泡を溶解水に溶け込ませることができる。また、貯留部ユニット634内には、第2接触ユニット633の端部が突出していることにより、第2接触ユニット633からの溶解水は越流となって貯留部ユニット634内へ進入することになる。従って、残留した微細気泡を溶解水に更に溶け込ませることができる。
Thus, when it becomes high concentration dissolved water, the dissolved water is sent from the storage unit 634 of the gas-liquid contact tank 63 to the ozone contact pond 70 through the water supply pipe 635.
When flowing from the second contact unit 633 to the storage unit 634, the water supply speed is reduced by temporarily storing the dissolved water in the storage unit 634. Therefore, the remaining fine bubbles can be dissolved in the dissolved water in the storage unit 634. Further, since the end of the second contact unit 633 protrudes into the storage unit 634, the dissolved water from the second contact unit 633 overflows and enters the storage unit 634. Become. Therefore, the remaining fine bubbles can be further dissolved in the dissolved water.

オゾン接触池70では、濾過池50から高濃度溶解水生成装置60を迂回した原水と、高濃度溶解水生成装置60からの高濃度の溶解水とが混合されることで、浄化に十分な濃度の溶解水に希釈される。
浄化処理システム1は、濾過池50からの一部の原水をオゾンガスが溶解した溶解水とするだけでよく、濾過池50からの全部の原水を溶解水としていないので、高濃度溶解水生成装置60を大容量のものとしなくてもよい。従って、浄化処理システム1は小型化を図ることができると共に、省電力化を図ることができる。
In the ozone contact pond 70, the raw water that has bypassed the high-concentration dissolved water generation device 60 from the filtration basin 50 and the high-concentration dissolved water from the high-concentration dissolved water generation device 60 are mixed, so that the concentration sufficient for purification Dilute in dissolved water.
The purification treatment system 1 only needs to use part of the raw water from the filter basin 50 as dissolved water in which ozone gas is dissolved, and does not use all of the raw water from the filter basin 50 as dissolved water. Need not have a large capacity. Therefore, the purification processing system 1 can be miniaturized and can save power.

また、循環部65がなく、オゾンガスが気液接触槽を一回通過するだけでのワンパス接触方式の従来の溶解水生成装置と比較して、高濃度溶解水生成装置60は原水に溶け込まずに廃オゾンガスとなってしまう量が少ないので、従来の溶解水生成装置より少ない量のオゾンガスで同程度の濃度の溶解水を生成することができる。従って、オゾン発生装置624において、オゾンガスを生成するのに必要な電力量を節約することができるので、高濃度溶解水生成装置60は、省電力化を図ることができる。   In addition, the high-concentration dissolved water generator 60 does not dissolve in the raw water as compared to the conventional dissolved water generator of the one-pass contact method in which the ozone gas passes through the gas-liquid contact tank only once without the circulation unit 65. Since the amount of waste ozone gas is small, dissolved water having the same concentration can be generated with a smaller amount of ozone gas than the conventional dissolved water generator. Therefore, since the amount of electric power necessary for generating ozone gas can be saved in the ozone generator 624, the high-concentration dissolved water generator 60 can save power.

実施の形態1に係る高濃度溶解水生成装置60では、気液接触槽63への流入量をコック613の調整や原水ポンプ612の送水量により気液接触槽63におけるオゾン濃度と気液接触槽63からオゾン接触池70への流出量とを調整したりすることができる。また、循環ポンプ652の送水量やオゾン発生装置624のオゾンガスの発生量によりオゾン濃度を調整することができる。
更に、コック613を閉塞することで気液接触槽63の流入を止め、所定の濃度の溶解水が得られるまで気液接触槽63を循環させた後に溶解水を、気液接触槽63から流出させるためのコックを、送水管635に設けるようにしてもよい。
In the high-concentration dissolved water generating apparatus 60 according to the first embodiment, the ozone concentration in the gas-liquid contact tank 63 and the gas-liquid contact tank are adjusted by adjusting the cock 613 and the amount of water supplied from the raw water pump 612. The outflow amount from 63 to the ozone contact pond 70 can be adjusted. Further, the ozone concentration can be adjusted by the amount of water supplied by the circulation pump 652 and the amount of ozone gas generated by the ozone generator 624.
Further, by closing the cock 613, the inflow of the gas-liquid contact tank 63 is stopped, and the dissolved liquid is discharged from the gas-liquid contact tank 63 after circulating the gas-liquid contact tank 63 until a predetermined concentration of dissolved water is obtained. You may make it provide the cock for making it the water supply pipe 635. FIG.

なお、本実施の形態1では、循環ポンプ652は、気液接触槽63の下部から上部へ向かって溶解水を送水しているが、上部から下部へ向かって溶解水を送水する向流としてもよい。その場合には、微細気泡の浮上と反対方向へ溶解水が流れるので、微細気泡の浮上速度を低下させることができる。従って、オゾンガスにより形成された微細気泡と原水との接触期間を長くすることができる。   In the first embodiment, the circulation pump 652 feeds the dissolved water from the lower part to the upper part of the gas-liquid contact tank 63. However, the circulation pump 652 may be configured as a countercurrent that feeds the dissolved water from the upper part to the lower part. Good. In that case, since the dissolved water flows in the direction opposite to the rising of the fine bubbles, the rising speed of the fine bubbles can be reduced. Therefore, the contact period between the fine bubbles formed by ozone gas and the raw water can be extended.

また、本実施の形態1では、貯留部である貯留部ユニット634を第2接触ユニット633に連結することで、貯留部ユニット634を気液接触槽63の一部としているが、貯留部を気液接触槽と別体としてもよい。その場合には、送水速度が貯留部内で減速するように、貯留部と気液接触槽と接続する管径より貯留部内を広く形成するのが望ましい。
更に、本実施の形態1では、気液接触槽63に1本の循環路が形成されているが、気液接触槽63の大きさに応じて複数の循環路を設けてもよい。また、気液接触槽63は円筒形状の各ユニットを連結した塔状としているが、高さに対して直径が太い円柱状、直方体状、立方体状としてもよい。気液接触槽をこれらの形状とする場合には、前述したように周壁面に循環部65を並べて設けるようにしてもよい。
In Embodiment 1, the storage unit 634 that is a storage unit is connected to the second contact unit 633 so that the storage unit 634 is part of the gas-liquid contact tank 63. It is good also as a separate body from a liquid contact tank. In that case, it is desirable to form the interior of the reservoir wider than the pipe diameter connecting the reservoir and the gas-liquid contact tank so that the water supply speed is reduced in the reservoir.
Furthermore, in the first embodiment, one circulation path is formed in the gas-liquid contact tank 63, but a plurality of circulation paths may be provided according to the size of the gas-liquid contact tank 63. In addition, the gas-liquid contact tank 63 has a tower shape in which cylindrical units are connected. However, the gas-liquid contact tank 63 may have a columnar shape, a rectangular parallelepiped shape, or a cube shape having a large diameter with respect to the height. When the gas-liquid contact tank has these shapes, the circulation portion 65 may be provided side by side on the peripheral wall surface as described above.

(実施の形態1の第1変形例)
本発明の実施の形態1に係る高濃度溶解水生成装置の第1変形例について、図面に基づいて説明する。なお、図3においては、図2と同じ構成のものは同符号を付して説明を省略する。
図3に示すように、この第1変形例に係る高濃度溶解水生成装置60aでは、気液接触槽63xの最下端に位置する導水ユニット631xで、旋回流を発生させることを特徴とするものである。
(First Modification of Embodiment 1)
A first modified example of the high-concentration dissolved water generating apparatus according to Embodiment 1 of the present invention will be described based on the drawings. In FIG. 3, the same components as those in FIG.
As shown in FIG. 3, the high-concentration dissolved water generating device 60a according to the first modification is characterized in that a swirling flow is generated by a water guide unit 631x located at the lowermost end of the gas-liquid contact tank 63x. It is.

導水ユニット631xには、導水部61からの原水送水管615が接続された導入口631aが一方に設けられ、循環部65の循環路の一部となる溶解水送水管651が接続された溶解水流入口631bが他方に設けられている。
この導入口631aと、溶解水流入口631bとは、図4(A)および同図(B)に示すように、軸心に対して直角に交わる同一平面上に設置され、互いに反対方向に位置して、気液接触槽63xの内周面の円周方向に沿って水流が同方向に流れるように配置されている。
The water introduction unit 631x is provided with an inlet 631a connected to the raw water supply pipe 615 from the water supply section 61 on one side, and a dissolved water flow connected to a dissolved water supply pipe 651 that is a part of the circulation path of the circulation section 65. An inlet 631b is provided on the other side.
As shown in FIG. 4A and FIG. 4B, the inlet 631a and the dissolved water inlet 631b are installed on the same plane that intersects at right angles to the axis and are positioned in opposite directions. Thus, the water flow is arranged in the same direction along the circumferential direction of the inner peripheral surface of the gas-liquid contact tank 63x.

また、導水ユニット631xには、微細気泡を気液接触槽63xに導入する気泡発生ノズル64bが気液接触槽63xの下部の軸心位置に配置されている。気泡発生ノズル64bは、オゾン発生装置624からのオゾンガスを0.01mm以下からマイクロオーダーの微細気泡に、更にはナノバブルと呼ばれる微細気泡にして原水中に放出するものである。オゾン発生装置624と気泡発生ノズル64bとの間には、オゾン発生装置624からのオゾンガスの圧力を所定圧とする圧力レギュレータ64aが設けられている。第1変形例では、この気泡発生ノズル64bを気泡発生装置64(図2参照)の代わりに設置している。
気泡発生ノズル64bは、微細気泡を吐出する位置が、導入口631aと、溶解水流入口631bとより高い位置としている。
Further, in the water guiding unit 631x, a bubble generating nozzle 64b for introducing fine bubbles into the gas-liquid contact tank 63x is disposed at the axial center position below the gas-liquid contact tank 63x. The bubble generating nozzle 64b discharges ozone gas from the ozone generator 624 from 0.01 mm or less to micro-order fine bubbles, and further into fine bubbles called nanobubbles into the raw water. Between the ozone generator 624 and the bubble generating nozzle 64b, a pressure regulator 64a is provided that makes the pressure of the ozone gas from the ozone generator 624 a predetermined pressure. In the first modification, the bubble generation nozzle 64b is installed instead of the bubble generation device 64 (see FIG. 2).
The bubble generating nozzle 64b has a position where fine bubbles are discharged higher than the inlet 631a and the dissolved water inlet 631b.

次に、第1変形例に係るに係る高濃度溶解水生成装置60aの動作を図面に基づいて説明する。
図3に示すオゾン発生装置624からのオゾンガスが気泡発生ノズル64bの吐出口より微細気泡となって、図5(A)に示すように、気液接触槽63xの下部の軸心位置から気液接触槽63x内に放出される。
Next, operation | movement of the high concentration dissolved water production | generation apparatus 60a which concerns on a 1st modification is demonstrated based on drawing.
The ozone gas from the ozone generator 624 shown in FIG. 3 becomes fine bubbles from the discharge port of the bubble generating nozzle 64b, and as shown in FIG. 5 (A), the gas-liquid is discharged from the axial center position below the gas-liquid contact tank 63x. It is discharged into the contact tank 63x.

導入口631aからの微細気泡を含む水流と溶解水流入口631bからの溶解水とが、気液接触槽63xの下部にて、気液接触槽63xの内周面の円周方向に沿って同方向に流れる。そうすることで、図5(B)に示すように気液接触槽63xの下部で軸心を中心とした旋回流が発生する。旋回流は時間の経過と共に上部まで拡がり気液接触槽内部で全体的な大きな旋回流となる。
図5(C)に示すように、気泡発生ノズル64bからの微細気泡は、旋回流と共に気液接触槽の内周面に沿って旋回をしているが、次第に軸心付近に密集した状態となることで、浮上速度が低下する。従って、微細気泡の接触時間を増大することができるので、更に高濃度の溶解水を効率よく得ることができる。
The water flow containing fine bubbles from the inlet 631a and the dissolved water from the dissolved water inlet 631b are in the same direction along the circumferential direction of the inner peripheral surface of the gas-liquid contact tank 63x at the lower part of the gas-liquid contact tank 63x. Flowing into. By doing so, as shown in FIG. 5 (B), a swirling flow around the axis is generated in the lower part of the gas-liquid contact tank 63x. The swirling flow spreads to the upper part with time and becomes a large swirling flow as a whole inside the gas-liquid contact tank.
As shown in FIG. 5C, the fine bubbles from the bubble generating nozzle 64b are swirling along the inner peripheral surface of the gas-liquid contact tank together with the swirling flow. As a result, the ascent rate decreases. Accordingly, the contact time of the fine bubbles can be increased, so that a higher concentration of dissolved water can be obtained efficiently.

また、気泡発生ノズル64bにおいては、吐出口の微細気泡を放出する位置が、原水を導入する導入口631aおよび循環水である溶解水を導入する溶解水流入口631bより高い位置に配置されているので、旋回流が直接的に微細気泡を押し流さないので、集約させやすくすることができる。   Further, in the bubble generation nozzle 64b, the position where the fine bubbles are discharged from the discharge port is disposed at a position higher than the introduction port 631a for introducing the raw water and the dissolved water inlet 631b for introducing the dissolved water which is the circulating water. Since the swirl flow does not directly push the fine bubbles, it can be easily collected.

第1変形例では、気液接触槽63は水平断面がほぼ円形であるため、導入口631aおよび溶解水流入口631bを気液接触槽63の接線方向に沿って配置することにより強い旋回流を発生させている。つまり、導入口631aおよび溶解水流入口631bは気液接触槽63は半径方向に直交する方向に向いて配置されている。そして、導入口631aと溶解水流入口631bとの位置関係は、軸心を中心として点対称となる位置に設けられている。   In the first modification, since the gas-liquid contact tank 63 has a substantially circular horizontal cross section, a strong swirling flow is generated by arranging the inlet 631a and the dissolved water inlet 631b along the tangential direction of the gas-liquid contact tank 63. I am letting. That is, the inlet 631a and the dissolved water inlet 631b are arranged so that the gas-liquid contact tank 63 faces in the direction orthogonal to the radial direction. The positional relationship between the inlet 631a and the dissolved water inlet 631b is provided at a position that is point-symmetric about the axis.

しかし、導入口631aおよび溶解水流入口631bは、旋回流が発生できれば、半径方向に対して鈍角または鋭角となるような傾斜角度を有していてもよい。また、気液接触槽63の円周方向に沿って水流が同方向に流れるように配置されていれば、導入口631aおよび溶解水流入口631bは点対称となる位置でなくてもよい。   However, the inlet 631a and the dissolved water inlet 631b may have an inclination angle that is an obtuse angle or an acute angle with respect to the radial direction as long as a swirl flow can be generated. Moreover, as long as it arrange | positions so that a water flow may flow in the same direction along the circumferential direction of the gas-liquid contact tank 63, the inlet 631a and the dissolved water inflow port 631b do not need to be a point-symmetrical position.

更に、図6(A)および同図(B)に示すように、導水ユニット631y,631zは、軸心に位置する気泡発生ノズル64bを中心として水流を導入するための配管が所定角度ごとに接続されている。
例えば、図6(A)に示す導入ユニット631yでは、溶解水を導入する溶解水流入口631bが2つと、原水を導入する導入口631aが1つが、120°ごとに設けられている。
また、図6(B)に示す導入ユニット631zでは、溶解水流入口631bが2つと、導入口631aが2つが、90°ごとに交互に設けられている。
Further, as shown in FIGS. 6A and 6B, the water guide units 631y and 631z are connected to a pipe for introducing a water flow around the bubble generating nozzle 64b located at the axial center at every predetermined angle. Has been.
For example, in the introduction unit 631y shown in FIG. 6A, two dissolved water inlets 631b for introducing dissolved water and one inlet 631a for introducing raw water are provided every 120 °.
In addition, in the introduction unit 631z shown in FIG. 6B, two dissolved water inlets 631b and two inlets 631a are alternately provided every 90 °.

このように、1つ以上の導入口631aや1つ以上の溶解水流入口631bを組み合わせて、旋回流を発生させるように接続してもよい。2つ以上の導入口631aや2つ以上の溶解水流入口631bに接続する場合には、溶解水送水管651や原水送水管615を2以上に分岐する分岐管を介在させることで接続することができる。   In this way, one or more inlets 631a and one or more dissolved water inlets 631b may be combined and connected to generate a swirling flow. When connecting to two or more inlets 631a or two or more dissolved water inlets 631b, the dissolved water water supply pipe 651 and the raw water water supply pipe 615 may be connected by interposing a branch pipe that branches into two or more. it can.

(実施の形態1の第2変形例)
本発明の実施の形態1に係る高濃度溶解水生成装置の第2変形例について、図面に基づいて説明する。なお、図7においては、図2と同じ構成のものは同符号を付して説明を省略する。
この第2変形例に係る高濃度溶解水生成装置60bでは、第1変形例と同様に、オゾン発生装置624からのオゾンガスの圧力を所定圧とする圧力レギュレータ64aと、オゾン発生装置624からのオゾンガスを微細気泡にして原水中に放出する気泡発生ノズル64bとを、気泡発生装置64(図2参照)の代わりに設置したものである。オゾンガスによる気泡がより微細となることで、接触総面積を増大させることができ、微細気泡の浮上速度も低減するので、より高濃度の溶解水を得ることができる。
(Second Modification of Embodiment 1)
The 2nd modification of the high concentration dissolved water production | generation apparatus which concerns on Embodiment 1 of this invention is demonstrated based on drawing. In FIG. 7, the same components as those in FIG.
In the high-concentration dissolved water generating device 60b according to the second modified example, as in the first modified example, the pressure regulator 64a that makes the pressure of the ozone gas from the ozone generating device 624 a predetermined pressure, and the ozone gas from the ozone generating device 624 A bubble generating nozzle 64b that discharges into the raw water in the form of fine bubbles is installed in place of the bubble generating device 64 (see FIG. 2). Since the bubbles by ozone gas become finer, the total contact area can be increased, and the rising speed of the fine bubbles can be reduced, so that a higher concentration of dissolved water can be obtained.

また、高濃度溶解水生成装置60bでは、循環ポンプ652は、気液接触槽63の上部から下部へ向かって溶解水を送水しているので、更に微細気泡の浮上速度を低下させることができる。従って、オゾンガスにより形成された微細気泡と原水との接触期間を長くすることができる。   Moreover, in the high concentration dissolved water production | generation apparatus 60b, since the circulation pump 652 is sending dissolved water from the upper part of the gas-liquid contact tank 63 to the lower part, it can further reduce the floating speed of a fine bubble. Therefore, the contact period between the fine bubbles formed by ozone gas and the raw water can be extended.

オゾンガスによる気泡が微細過ぎて浮上速度が遅く、微細気泡が溶解水の流れと共に、気液接触槽63の上部から下部へ、そして溶解水送水管651へ流れ込み、循環するようであれば、循環ポンプ652は気液接触槽63の下部から上部へ向かって溶解水を送水するようにしてもよい。   If the bubbles due to ozone gas are too fine and the ascending speed is slow, and the fine bubbles flow from the upper part to the lower part of the gas-liquid contact tank 63 and into the dissolved water feed pipe 651 together with the flow of dissolved water, the circulation pump 652 may send dissolved water from the lower part to the upper part of the gas-liquid contact tank 63.

(実施の形態2)
本発明の実施の形態2に係る高濃度溶解水生成装置を図面に基づいて説明する。なお、図8においては、図2と同じ構成のものは同符号を付して説明を省略する。
本実施の形態2に係る高濃度溶解水生成装置では、気液接触槽が、導入側と排出側との間で並列に複数設けられ、制御装置が設置されて溶解水の生成を制御していることを特徴としている。
(Embodiment 2)
A high-concentration dissolved water generator according to Embodiment 2 of the present invention will be described with reference to the drawings. In FIG. 8, the same components as those in FIG.
In the high-concentration dissolved water generating apparatus according to the second embodiment, a plurality of gas-liquid contact tanks are provided in parallel between the introduction side and the discharge side, and a control device is installed to control the generation of dissolved water. It is characterized by being.

図8に示すように、高濃度溶解水生成装置60cには、導水部61と、気液接触槽63と循環部65と気泡発生装置64とを一組として3組が設けられている。それぞれのバッファタンク611には、濾過池50(図1参照)から汲み上げられた原水をそれぞれに分配するために1本の配管が3本に分岐する分配管616が接続されている。また、3基の気液接触槽63のそれぞれには、3本の配管を1本に集合する集約管636が接続されている。   As shown in FIG. 8, the high-concentration dissolved water generating device 60 c is provided with three sets of a water guiding portion 61, a gas-liquid contact tank 63, a circulating portion 65, and a bubble generating device 64. Each buffer tank 611 is connected to a distribution pipe 616 in which one pipe is divided into three pipes in order to distribute the raw water pumped from the filtration basin 50 (see FIG. 1). In addition, each of the three gas-liquid contact tanks 63 is connected to an aggregation pipe 636 that collects three pipes into one.

このように、高濃度溶解水生成装置60cは、3基の気液接触槽63が導水部61を介して分配管616により濾過池50に接続され、集約管636によりオゾン接触池70に接続されていることで、気液接触槽63が導入側と排出側との間で並列に接続されている。また、それぞれの気泡発生装置64は、オゾンガスを供給するオゾン生成部62を共通させている。
高濃度溶解水生成装置60cに設けられた制御装置67は、3組分の原水送水管615に設けられた電磁弁613aと、送水管635に設けられた電磁弁635aとの流量を制御する。
As described above, in the high-concentration dissolved water generating device 60 c, the three gas-liquid contact tanks 63 are connected to the filtration basin 50 by the distribution pipe 616 through the water conduit 61 and are connected to the ozone contact basin 70 by the aggregation pipe 636. Therefore, the gas-liquid contact tank 63 is connected in parallel between the introduction side and the discharge side. In addition, each of the bubble generating devices 64 has an ozone generation unit 62 that supplies ozone gas in common.
The control device 67 provided in the high-concentration dissolved water generating device 60c controls the flow rates of the electromagnetic valve 613a provided in the three sets of raw water supply pipes 615 and the electromagnetic valve 635a provided in the water supply pipe 635.

制御装置67は、例えば、3組全部の電磁弁613a,635aを通水状態とすることで、並列に設けられた気液接触槽63内の溶解水を同時排出するように制御してもよい。そうすることで、大量の溶解水を生成することができる。   For example, the control device 67 may perform control so that the dissolved water in the gas-liquid contact tanks 63 provided in parallel is discharged simultaneously by setting all three sets of electromagnetic valves 613a and 635a to a water-permeable state. . By doing so, a large amount of dissolved water can be generated.

また、制御装置67は、3組の電磁弁613a,635aのうち一つずつ切り替えながら気液接触槽63から溶解水を排出するようにしてもよい。そうすることで、高濃度化した溶解水を排出する気液接触槽63と、排出を停止して循環させて高濃度化する気液接触槽63とに分けることができるので、より高濃度とした溶解水を連続的に生成することができる。   The control device 67 may discharge the dissolved water from the gas-liquid contact tank 63 while switching one by one among the three sets of electromagnetic valves 613a and 635a. By doing so, it can be divided into a gas-liquid contact tank 63 that discharges highly concentrated dissolved water and a gas-liquid contact tank 63 that stops discharge and circulates to increase the concentration. The dissolved water thus produced can be continuously produced.

なお、制御装置67が切り替える溶解水の排出をする気液接触槽63は、所定時間ごとに切り替えるようにしてもよいし、オゾンメーター66からの濃度情報により切り替えるようにしてもよい。また、気液接触槽63にて、所定時間が経過しても所望とするオゾン濃度の溶解水が得られないときには、溶解水送水管651に設けられた流量計653からの流量情報や、原水送水管615に設けられた流量計614からの流量情報に基づいて、制御装置67が循環ポンプ652や原水ポンプ612の送水量を調整することで、高濃度の溶解水とすることが可能である。   The gas-liquid contact tank 63 that discharges the dissolved water that is switched by the control device 67 may be switched every predetermined time, or may be switched based on concentration information from the ozone meter 66. Further, when dissolved water having a desired ozone concentration cannot be obtained in the gas-liquid contact tank 63 even after a predetermined time has elapsed, flow rate information from a flow meter 653 provided in the dissolved water supply pipe 651, or raw water Based on the flow rate information from the flow meter 614 provided in the water supply pipe 615, the control device 67 adjusts the water supply amount of the circulation pump 652 and the raw water pump 612, so that it is possible to obtain high-concentration dissolved water. .

本実施の形態2では、3基の気液接触槽63を並列に接続しているが、2基でも4基以上でも、溶解水の供給量に応じて気液接触槽63の数を減少させたり、増加させたりすることができる。また、制御装置67は、3基の気液接触槽63を1基ずつ切り替えることの他に、4基の気液接触槽63が並列接続されていたり、6基の気液接触槽63が並列接続されていたりした場合には、2基ずつ切り替えたり、3基ずつ切り替えたりすることができる。従って、本実施の形態2に係る高濃度溶解水生成装置60cは、拡張性に優れている。   In the second embodiment, three gas-liquid contact tanks 63 are connected in parallel, but the number of gas-liquid contact tanks 63 is reduced depending on the amount of dissolved water supplied, whether two or four or more. Or increase it. In addition to switching the three gas-liquid contact tanks 63 one by one, the control device 67 has four gas-liquid contact tanks 63 connected in parallel or six gas-liquid contact tanks 63 connected in parallel. If they are connected, they can be switched two by two or three. Therefore, the high concentration dissolved water production | generation apparatus 60c which concerns on this Embodiment 2 is excellent in the expandability.

(実施の形態3)
次に、本発明の実施の形態3に係る高濃度溶解水生成装置を図面に基づいて説明する。なお、図9においては、図2と同じ構成のものは同符号を付して説明を省略する。
本実施の形態3に係る高濃度溶解水生成装置では、気液接触槽が、導入側と排出側との間で直列に複数設けられていることを特徴としている。
(Embodiment 3)
Next, a high-concentration dissolved water generator according to Embodiment 3 of the present invention will be described with reference to the drawings. In FIG. 9, the same components as those in FIG.
The high-concentration dissolved water generating apparatus according to Embodiment 3 is characterized in that a plurality of gas-liquid contact tanks are provided in series between the introduction side and the discharge side.

図9に示すように、高濃度溶解水生成装置60dには、気液接触槽63と循環部65と気泡発生装置64とを一組として2組が設けられ、貯留部ユニット634からの送水管635を、次の気液接触槽63の導入口631aに接続することで、直列接続されている。気液接触槽63が直列接続されていることで、それぞれの気液接触槽63内を循環して高濃度となった溶解水が、次段の気液接触槽63で更にオゾンガスの微細気泡が投入されるので、溶解水が気液接触槽63を通過する度に溶解水を高濃度化することができる。   As shown in FIG. 9, the high-concentration dissolved water generation device 60 d is provided with two sets of a gas-liquid contact tank 63, a circulation unit 65, and a bubble generation device 64, and a water supply pipe from the storage unit 634. By connecting 635 to the inlet 631a of the next gas-liquid contact tank 63, they are connected in series. Since the gas-liquid contact tanks 63 are connected in series, the dissolved water that has been circulated through the respective gas-liquid contact tanks 63 to have a high concentration is further generated in the gas-liquid contact tank 63 of the next stage, and fine ozone gas bubbles are generated. Since it is charged, the dissolved water can be highly concentrated every time the dissolved water passes through the gas-liquid contact tank 63.

本実施の形態3では、2基の気液接触槽63が直列接続されているが、所望とする濃度に応じて3基以上を直列接続することが可能である。   In the third embodiment, two gas-liquid contact tanks 63 are connected in series. However, three or more gas-liquid contact tanks 63 can be connected in series according to a desired concentration.

以上、本発明の実施の形態について説明してきたが、本発明は前記実施の形態に限定されるものではない。例えば、実施の形態1の第2変形例では、実施の形態1に係る高濃度溶解水生成装置60と気液接触槽63内を流れる溶解水の水流方向が反対となっているように、実施の形態2,3に係る高濃度溶解水生成装置60c,60dにおいても、循環ポンプ652による送水を反対方向とすることが可能である。また、実施の形態2,3に係る高濃度溶解水生成装置60c,60dに第1変形例で説明した旋回流を発生する送水ユニット631xを適用してもよい。   As mentioned above, although embodiment of this invention has been described, this invention is not limited to the said embodiment. For example, in the second modification of the first embodiment, the flow direction of the dissolved water flowing in the high-concentration dissolved water generating device 60 and the gas-liquid contact tank 63 according to the first embodiment is reversed. Also in the high concentration dissolved water production | generation apparatuses 60c and 60d which concern on the form 2 and 3, it is possible to make the water supply by the circulation pump 652 into a reverse direction. In addition, the water supply unit 631x that generates the swirl flow described in the first modification may be applied to the high-concentration dissolved water generation devices 60c and 60d according to the second and third embodiments.

本発明の高濃度溶解水生成装置および高濃度溶解水生成システムは、微細気泡をオゾンガスとすることで浄水場の浄化装置として好適であるが、オゾンガスによる高濃度の溶解水が得られるので、河川湖浄化やヘドロの対策、水族館、プール、上水処理、食品業界や農林水産業、医療分野、精密電子機器分野等にも利用することができる。   The high-concentration dissolved water generation apparatus and the high-concentration dissolved water generation system of the present invention are suitable as a purification device for a water purification plant by using fine bubbles as ozone gas, but since high-concentration dissolved water by ozone gas can be obtained, It can also be used in lake purification, sludge countermeasures, aquariums, pools, water treatment, food industry, agriculture, forestry and fisheries, medical field, precision electronics field, etc.

また、微細気泡を他の気体とし、様々な高濃度の溶解水を生成することも可能である。例えば、二酸化炭素とメタンガスとの混合ガスを本発明の高濃度溶解水生成装置に導入して、原水に二酸化炭素ガスを溶解させて混合ガスから除去することでメタンガスを選択的に抽出してハイカロリーなガスとすることも可能である。そうすることで、本発明の高濃度溶解水生成装置をバイオ天然ガス生成装置として機能させることができる。また、二酸化炭素ガスを溶解除去することにより、下水廃水処理や化石燃料使用産業、美容健康業界などでも利用可能である。   It is also possible to produce various high-concentration dissolved water by using fine bubbles as another gas. For example, a mixed gas of carbon dioxide and methane gas is introduced into the high-concentration dissolved water generator of the present invention, and carbon dioxide gas is dissolved in raw water and removed from the mixed gas to selectively extract methane gas and It is also possible to use a calorie gas. By doing so, the high concentration dissolved water production | generation apparatus of this invention can be functioned as a bionatural gas production | generation apparatus. In addition, by dissolving and removing carbon dioxide gas, it can be used in sewage wastewater treatment, fossil fuel industry, beauty health industry, and the like.

更に、本発明の高濃度溶解水生成装置により、酸素ガスを原水に溶解させることで、食品業界や農林水産業、医療分野、美容健康業界でも利用することができる。   Furthermore, by dissolving oxygen gas in raw water with the high-concentration dissolved water generating apparatus of the present invention, it can be used in the food industry, the agriculture, forestry and fisheries industry, the medical field, and the beauty and health industry.

1 浄化処理システム
10 着水井
20 混和池
30 フロック形成池
40 沈殿池
50 濾過池
60,60a〜60d 高濃度溶解水生成装置
61 導水部
611 バッファタンク
612 原水ポンプ
613 コック
613a 電磁弁
614 流量計
615 原水送水管
616 分配管
62 オゾン生成部
621 酸素濃縮装置
622 圧力制御バルブ
623 流量計
624 オゾン発生装置
63、63x 気液接触槽
631,631x,631y 導水ユニット
631a 導入口
631b 溶解水流入口
632 第1接触ユニット
633 第2接触ユニット
633a 溶解水流出口
634 貯留部ユニット
634a 排出口
635 送水管
635a 電磁弁
636 集約管
64 気泡発生装置
64a 圧力レギュレータ
64b 気泡発生ノズル
65 循環部
651 溶解水送水管
652 循環ポンプ
653 流量計
654 コック
66 オゾンメーター
67 制御装置
70 オゾン接触池
80 活性炭吸着塔
90 塩素減菌池
DESCRIPTION OF SYMBOLS 1 Purification processing system 10 Landing well 20 Mixing basin 30 Frock formation basin 40 Sedimentation basin 50 Filtration basin 60, 60a-60d High concentration dissolved water production | generation apparatus 61 Water conveyance part 611 Buffer tank 612 Raw water pump 613 Cock 613a Electromagnetic valve 614 Flowmeter 615 Raw water Water supply pipe 616 Distribution pipe 62 Ozone generator 621 Oxygen concentrator 622 Pressure control valve 623 Flow meter 624 Ozone generator 63, 63x Gas-liquid contact tank 631, 631x, 631y Water guide unit 631a Inlet 631b Dissolved water inlet 632 First contact unit 633 Second contact unit 633a Dissolved water outlet 634 Storage unit 634a Discharge port 635 Water supply pipe 635a Solenoid valve 636 Aggregation pipe 64 Bubble generation device 64a Pressure regulator 64b Bubble generation nozzle 65 Circulation section 651 Dissolved water supply pipe 652 Circulation pump 653 Flow meter 654 Cock 66 Ozone meter 67 Controller 70 Ozone contact pond 80 Activated carbon adsorption tower 90 Chlorine sterilization pond

Claims (12)

導入口から取り入れられた原水に微細気泡を接触させることで生成された溶解水が、排出口から取り出される筒状の気液接触槽と、
前記気液接触槽への微細気泡を発生する気泡発生装置と、
前記気液接触槽の上部に一端が接続され、下部に他端が接続され、前記気液接触槽の溶解水が通水する循環路と、
前記循環路に設けられ、前記気液接触槽の溶解水を循環させる循環ポンプとを備えたことを特徴とする高濃度溶解水生成装置。
A cylindrical gas-liquid contact tank in which the dissolved water generated by bringing fine bubbles into contact with the raw water taken in from the inlet is taken out from the outlet,
A bubble generator for generating fine bubbles to the gas-liquid contact tank;
One end is connected to the upper part of the gas-liquid contact tank, the other end is connected to the lower part, a circulation path through which the dissolved water of the gas-liquid contact tank flows,
A high-concentration dissolved water generator comprising a circulation pump provided in the circulation path and circulating the dissolved water in the gas-liquid contact tank.
前記循環ポンプは、前記気液接触槽の上部から下部へ向かって溶解水を送水する、または前記気液接触槽の下部から上部へ向かって溶解水を送水するものである請求項1記載の高濃度溶解水生成装置。   2. The high pump according to claim 1, wherein the circulation pump feeds dissolved water from the upper part to the lower part of the gas-liquid contact tank, or sends dissolved water from the lower part to the upper part of the gas-liquid contact tank. Concentrated dissolved water generator. 前記循環路の他端が接続された溶解水流入口は、前記気液接触槽の内周面の円周方向に沿って水流が流れるように配置されている請求項1記載の高濃度溶解水生成装置。   The high concentration dissolved water production | generation of Claim 1 arrange | positioned so that a water flow may flow along the circumferential direction of the internal peripheral surface of the said gas-liquid contact tank at the dissolved water inflow port where the other end of the said circulation path was connected. apparatus. 前記導入口は、前記溶解水流入口からの水流と同方向に、前記気液接触槽の内周面の円周方向に沿って流れるように配置されている請求項3記載の高濃度溶解水生成装置。   The high concentration dissolved water production | generation of Claim 3 arrange | positioned so that the said inlet may flow along the circumferential direction of the internal peripheral surface of the said gas-liquid contact tank in the same direction as the water flow from the said dissolved water inflow port. apparatus. 前記気泡発生装置からの微細気泡を導入する吐出口が前記気液接触槽の下部の軸心位置に配置されている請求項3または4記載の高濃度溶解水生成装置。   The high-concentration dissolved water generating apparatus according to claim 3 or 4, wherein a discharge port for introducing fine bubbles from the bubble generating apparatus is disposed at a lower axial position of the gas-liquid contact tank. 前記吐出口は、微細気泡を放出する位置が、前記導入口および溶解水流入口より高い位置に配置されている請求項3から5のいずれかの項に記載の高濃度溶解水生成装置。   6. The high-concentration dissolved water generating apparatus according to claim 3, wherein the discharge port is disposed at a position where a fine bubble is discharged at a position higher than the introduction port and the dissolved water inflow port. 前記気液接触槽が、導入側と排出側との間で並列に複数設けられ、
前記複数の気液接触槽の溶解水の通水量を制御する制御装置を備えた請求項1から6のいずれかの項に記載の高濃度溶解水生成装置。
A plurality of the gas-liquid contact tanks are provided in parallel between the introduction side and the discharge side,
The high concentration dissolved water production | generation apparatus of any one of Claim 1 to 6 provided with the control apparatus which controls the flow volume of the dissolved water of these gas-liquid contact tanks.
前記制御装置は、前記並列に設けられた気液接触槽内の溶解水を同時排出する請求項7記載の高濃度溶解水生成装置。   The said control apparatus is a high concentration dissolved water production | generation apparatus of Claim 7 which discharges simultaneously the dissolved water in the gas-liquid contact tank provided in parallel. 前記制御装置は、前記並列に設けられた気液接触槽内の溶解水を切り替えながら排出する請求項7記載の高濃度溶解水生成装置。   The said control apparatus is a high concentration melt | dissolution water production | generation apparatus of Claim 7 which discharges | emits while switching the melt water in the gas-liquid contact tank provided in parallel. 前記気液接触槽が、導入側と排出側との間で直列に複数設けられている請求項1から6のいずれかの項に記載の高濃度溶解水生成装置。   The high-concentration dissolved water generating apparatus according to any one of claims 1 to 6, wherein a plurality of the gas-liquid contact tanks are provided in series between the introduction side and the discharge side. 前記気液接触槽には、排出される溶解水を貯留する貯留部が設けられている請求項1から10のいずれかの項に記載の高濃度溶解水生成装置。   The high-concentration dissolved water generating apparatus according to any one of claims 1 to 10, wherein the gas-liquid contact tank is provided with a storage unit that stores the discharged dissolved water. 前記請求項1から11のいずれかの項に記載の高濃度溶解水生成装置と、
前記高濃度溶解水生成装置からの溶解水と前記高濃度溶解水生成装置を迂回させた原水とを混合する混合槽とを備えたことを特徴とする高濃度溶解水生成システム。
The high-concentration dissolved water generating apparatus according to any one of claims 1 to 11,
A high-concentration dissolved water generation system comprising: a mixing tank that mixes dissolved water from the high-concentration dissolved water generation device and raw water bypassing the high-concentration dissolution water generation device.
JP2010171016A 2009-08-12 2010-07-29 High concentration dissolved water generating apparatus and high concentration dissolved water generating system Active JP5682904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010171016A JP5682904B2 (en) 2009-08-12 2010-07-29 High concentration dissolved water generating apparatus and high concentration dissolved water generating system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009187468 2009-08-12
JP2009187468 2009-08-12
JP2010171016A JP5682904B2 (en) 2009-08-12 2010-07-29 High concentration dissolved water generating apparatus and high concentration dissolved water generating system

Publications (2)

Publication Number Publication Date
JP2011056498A true JP2011056498A (en) 2011-03-24
JP5682904B2 JP5682904B2 (en) 2015-03-11

Family

ID=43944770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010171016A Active JP5682904B2 (en) 2009-08-12 2010-07-29 High concentration dissolved water generating apparatus and high concentration dissolved water generating system

Country Status (1)

Country Link
JP (1) JP5682904B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014042886A (en) * 2012-08-28 2014-03-13 Tsukishima Kikai Co Ltd Inorganic particle continuous reactor
JP2014091094A (en) * 2012-11-05 2014-05-19 Panasonic Corp Ozone water generator
KR101402369B1 (en) 2012-12-27 2014-06-03 변진섭 Gas-liquid mixing device of high concentrations using a rotating spray nozzle
WO2015134061A1 (en) * 2014-03-04 2015-09-11 Westinghouse Electric Company Llc Loop dissolution system
WO2015141459A1 (en) * 2014-03-20 2015-09-24 Idec株式会社 Device for generating fine bubble liquid

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6058234A (en) * 1983-06-03 1985-04-04 ザ・ビ−オ−シ−・グル−プ・ピ−エルシ− Liquid phase oxidation
JPH08182994A (en) * 1994-11-01 1996-07-16 Sumitomo Seika Chem Co Ltd Removal of fluorescent material and device therefor
JPH1066850A (en) * 1996-08-29 1998-03-10 O H L Ryutai Kogaku Kenkyusho Solubility regulating method of continuous water passing-type gas-dissolving apparatus and continuos water passing-type gas-dissolving apparatus for execution thereof
US20010050443A1 (en) * 1999-04-19 2001-12-13 Joseph Thomas Fitzgeorge Method and apparatus for diffusing ozone gas into liquid
JP2002018253A (en) * 2000-07-06 2002-01-22 Sasakura Engineering Co Ltd Hydrogen dissolving apparatus
JP2003260341A (en) * 2002-03-08 2003-09-16 Sasakura Engineering Co Ltd Ozonized water supplying apparatus
JP2004267940A (en) * 2003-03-10 2004-09-30 Nippon Kankyo Kagaku:Kk Method and apparatus for mixing/reacting gas with liquid
JP2004290870A (en) * 2003-03-27 2004-10-21 Mori Kikai Seisakusho:Kk Reduction potential adjusting process and apparatus for the same
JP2006281000A (en) * 2005-03-31 2006-10-19 Kubota Corp Apparatus for reducing trace of hazardous substance in water
JP2007509740A (en) * 2003-10-30 2007-04-19 オテヴェ・ソシエテ・アノニム Apparatus and method for purifying aqueous effluents by oxidation and membrane filtration
JP2007181801A (en) * 2006-01-10 2007-07-19 Yokogawa Electric Corp Purified water supply method and system
US20090008807A1 (en) * 2006-01-31 2009-01-08 Hydro Processing & Mining Ltd. Apparatus and method of dissolving a gas into a liquid
JP2009090258A (en) * 2007-10-12 2009-04-30 Toshiba Corp Waste liquid treatment apparatus and treatment method therefor
JP2009112953A (en) * 2007-11-07 2009-05-28 Ihi Corp Method and apparatus for treating water

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6058234A (en) * 1983-06-03 1985-04-04 ザ・ビ−オ−シ−・グル−プ・ピ−エルシ− Liquid phase oxidation
JPH08182994A (en) * 1994-11-01 1996-07-16 Sumitomo Seika Chem Co Ltd Removal of fluorescent material and device therefor
JPH1066850A (en) * 1996-08-29 1998-03-10 O H L Ryutai Kogaku Kenkyusho Solubility regulating method of continuous water passing-type gas-dissolving apparatus and continuos water passing-type gas-dissolving apparatus for execution thereof
US20010050443A1 (en) * 1999-04-19 2001-12-13 Joseph Thomas Fitzgeorge Method and apparatus for diffusing ozone gas into liquid
JP2002018253A (en) * 2000-07-06 2002-01-22 Sasakura Engineering Co Ltd Hydrogen dissolving apparatus
JP2003260341A (en) * 2002-03-08 2003-09-16 Sasakura Engineering Co Ltd Ozonized water supplying apparatus
JP2004267940A (en) * 2003-03-10 2004-09-30 Nippon Kankyo Kagaku:Kk Method and apparatus for mixing/reacting gas with liquid
JP2004290870A (en) * 2003-03-27 2004-10-21 Mori Kikai Seisakusho:Kk Reduction potential adjusting process and apparatus for the same
JP2007509740A (en) * 2003-10-30 2007-04-19 オテヴェ・ソシエテ・アノニム Apparatus and method for purifying aqueous effluents by oxidation and membrane filtration
JP2006281000A (en) * 2005-03-31 2006-10-19 Kubota Corp Apparatus for reducing trace of hazardous substance in water
JP2007181801A (en) * 2006-01-10 2007-07-19 Yokogawa Electric Corp Purified water supply method and system
US20090008807A1 (en) * 2006-01-31 2009-01-08 Hydro Processing & Mining Ltd. Apparatus and method of dissolving a gas into a liquid
JP2009090258A (en) * 2007-10-12 2009-04-30 Toshiba Corp Waste liquid treatment apparatus and treatment method therefor
JP2009112953A (en) * 2007-11-07 2009-05-28 Ihi Corp Method and apparatus for treating water

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014042886A (en) * 2012-08-28 2014-03-13 Tsukishima Kikai Co Ltd Inorganic particle continuous reactor
JP2014091094A (en) * 2012-11-05 2014-05-19 Panasonic Corp Ozone water generator
KR101402369B1 (en) 2012-12-27 2014-06-03 변진섭 Gas-liquid mixing device of high concentrations using a rotating spray nozzle
WO2015134061A1 (en) * 2014-03-04 2015-09-11 Westinghouse Electric Company Llc Loop dissolution system
US9718038B1 (en) 2014-03-04 2017-08-01 Westinghouse Electric Company Llc Loop dissolution system
WO2015141459A1 (en) * 2014-03-20 2015-09-24 Idec株式会社 Device for generating fine bubble liquid
JP2015181976A (en) * 2014-03-20 2015-10-22 Idec株式会社 Fine bubble liquid generation device
KR20160128336A (en) * 2014-03-20 2016-11-07 아이뎃쿠 가부시키가이샤 Device for generating fine bubble liquid
TWI639464B (en) * 2014-03-20 2018-11-01 Idec股份有限公司 Fine bubble liquid generating apparatus
US10315170B2 (en) 2014-03-20 2019-06-11 Idec Corporation Fine bubble-containing liquid generating apparatus
KR102324526B1 (en) * 2014-03-20 2021-11-09 아이뎃쿠 가부시키가이샤 Device for generating fine bubble liquid

Also Published As

Publication number Publication date
JP5682904B2 (en) 2015-03-11

Similar Documents

Publication Publication Date Title
KR100843970B1 (en) Apparatus of generating microbubble
US7622036B2 (en) Bio tank/oxygen replenishment system
US11339068B2 (en) Eductor-based membrane bioreactor
JP5682904B2 (en) High concentration dissolved water generating apparatus and high concentration dissolved water generating system
US20120211426A1 (en) Method and system for treating a contaminated fluid
US20100243580A1 (en) Hyperoxidation advanced oxidative treatment of water
US20120228404A1 (en) Systems and methods for delivering a liquid having a desired dissolved gas concentration
KR20120029259A (en) Apparatus for generating water containing micro-nano bubbles
KR101220539B1 (en) Water treating apparatus
JP5331238B1 (en) Pressurized ozone dissolution treatment equipment
JP2011218343A (en) Nozzle for gas-liquid mixing, gas-liquid mixing mechanism and application of the same
JP2010214263A (en) Ozone dissolving device and automatic ozone dissolving system
JP2010536553A (en) Anion generating water purification apparatus and treatment method thereof
KR101824240B1 (en) High-density micro-bubble generating device
JP2008114099A (en) Microbubble generation device and bubble fining implement
KR101024323B1 (en) Apparatus for gas dissolution and reaction
KR100795228B1 (en) Apparatus for mixing water and chemicals ,and mixing pond having the same
JP4910452B2 (en) Contaminated water treatment method using ozone fine bubbles, and contaminated water treatment apparatus using ozone fine bubbles
JP2004313847A (en) Gas-liquid dissolving device, water treatment system using the device and water treatment method
RU2768703C1 (en) Device and method for aeration of waste water
JP2008149270A (en) Ozone reaction apparatus
KR20170007614A (en) Water storage tank having apparatus for generating nanobubble
US20130064640A1 (en) Perforated hydrocratic generator
JP2007209908A (en) Microbubble generator
JPH07241592A (en) Sewage treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150107

R150 Certificate of patent or registration of utility model

Ref document number: 5682904

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250