JPH08182994A - Removal of fluorescent material and device therefor - Google Patents

Removal of fluorescent material and device therefor

Info

Publication number
JPH08182994A
JPH08182994A JP920195A JP920195A JPH08182994A JP H08182994 A JPH08182994 A JP H08182994A JP 920195 A JP920195 A JP 920195A JP 920195 A JP920195 A JP 920195A JP H08182994 A JPH08182994 A JP H08182994A
Authority
JP
Japan
Prior art keywords
water
oxygen
ozone
ozonized oxygen
ozonized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP920195A
Other languages
Japanese (ja)
Inventor
Minoru Isoda
実 磯田
Akihiro Yoshitaka
章博 吉高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Seika Chemicals Co Ltd
Original Assignee
Sumitomo Seika Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Seika Chemicals Co Ltd filed Critical Sumitomo Seika Chemicals Co Ltd
Priority to JP920195A priority Critical patent/JPH08182994A/en
Publication of JPH08182994A publication Critical patent/JPH08182994A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To economically remove a fluorescent material contained in water without using ion exchange treatment or active carbon treatment. CONSTITUTION: An ozonized oxygen containing 0.1-50mg ozone per 1l service water is blown into service water and mixed. By producing the ozonized oxygen having thigh ozone content by passing a concentrated oxygen through an ozonizer 2 using a PSA oxygen concentration device and blowing the ozonized oxygen into the service water 8, the ozone content in the service water is increased and the fluorescent material is easily decomposed and removed. The utilization efficiency is further increased by using a rotary atomizer 5 as the blowing means of the ozonized oxygen and the mixing means of the service water with the ozonized oxygen.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、用水中に含まれる蛍光
物質の除去方法および除去装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for removing fluorescent substances contained in water.

【0002】[0002]

【従来の技術】近年、大量の蛍光増白剤が、繊維工業や
製紙工業に使用され、また家庭洗剤にも配合されてい
る。これらの蛍光物質の多くが河川や湖沼に流出し、そ
の結果、これらの河川を供給源とする用水が蛍光物質で
汚染されるようになった。一般に用水は、使用目的によ
り凝集、沈殿、ろ過、イオン交換処理、活性炭処理など
を単独または組合わせて処理されている。しかし、蛍光
物質は、これらの処理にもかかわらず用水中に残存し、
問題になることがある。
2. Description of the Related Art In recent years, a large amount of fluorescent whitening agents have been used in the textile industry and paper industry, and have also been incorporated into household detergents. Many of these phosphors have run into rivers and lakes, and as a result, water from these rivers has become contaminated with phosphors. Generally, water is subjected to coagulation, precipitation, filtration, ion exchange treatment, activated carbon treatment, or the like alone or in combination depending on the purpose of use. However, the fluorescent substance remains in the water in spite of these treatments,
It can be a problem.

【0003】蛍光物質をガーゼや包帯などの衛生材料、
医療材料に使用することは禁止されており、蛍光物質を
含む用水をこれらの資材の製造に使用することはできな
い。従来、その製造に使用する用水は、イオン交換処
理、活性炭処理など行い蛍光物質を除去していたが、こ
れらの処理は再生や脱着操作をともない製造コストに占
める用水費が過大になっていた。
Hygiene materials such as gauze and bandages, fluorescent materials,
Its use in medical materials is prohibited and water containing fluorescent substances cannot be used in the manufacture of these materials. Conventionally, the water used for the production has been subjected to ion exchange treatment, activated carbon treatment or the like to remove the fluorescent substance, but these treatments involve excessive regeneration and desorption operation, and the water cost in the production cost becomes excessive.

【0004】[0004]

【発明が解決しようとする課題】本発明は、イオン交換
処理、活性炭処理などによらない、効果的、かつ、経済
的な蛍光物質の除去方法の提供を課題として完成され
た。
The present invention has been completed with the object of providing an effective and economical method for removing a fluorescent substance, which does not rely on ion exchange treatment, activated carbon treatment or the like.

【0005】[0005]

【課題を解決するための手段】オゾンは強力な酸化力を
有するので、従来から工場排水の脱色や浄水の脱臭に用
いられることがあったが、有毒であって処理時に危険を
伴うことがあり、一般的に広く用いられるに至らなかっ
た。本発明者は、オゾンの強力な酸化力に着目し、精力
的に研究の結果、オゾンを効率的に利用する適当な手段
と条件とを確立し、用水中の蛍光物質を容易かつ経済的
に除去できることを見出だした。すなわち、用水1リッ
トル当り、0.1〜50mgのオゾンを含むオゾン化酸
素を吹込んで混合し、該用水中に含まれる蛍光物質を酸
化除去することを特徴とする蛍光物質除去方法を完成し
た。
[Means for Solving the Problems] Ozone has a strong oxidizing power, so it has been conventionally used for decolorization of factory wastewater and deodorization of purified water, but it is toxic and may be dangerous during treatment. , Generally was not widely used. The present inventor paid attention to the strong oxidizing power of ozone, and as a result of vigorous research, established appropriate means and conditions for efficiently utilizing ozone, and easily and economically using fluorescent substances in water. I found that it can be removed. That is, a method for removing a fluorescent substance was completed, in which ozonized oxygen containing 0.1 to 50 mg of ozone was blown in and mixed with 1 liter of water to oxidize and remove the fluorescent substance contained in the water.

【0006】また、濃縮酸素を供給してオゾン化酸素を
発生させるオゾン発生装置と、発生させた比較的高濃度
のオゾンを含むオゾン化酸素を蛍光物質を含む用水中に
吹込む吹込手段と、吹込んだオゾン化酸素と用水とを接
触させる混合手段とから構成されていることを特徴とす
る、効率的な蛍光物質除去装置を完成した。とくに、オ
ゾン化酸素の吹込をかねて、オゾン化酸素と用水との接
触を行う吹込・混合手段にロータリーアトマイザを使用
すれば、オゾンの利用効率を高めることができるので好
ましい。図1は、本発明の蛍光物質除去装置の実施態様
例を示すフローシートであり、1は濃縮酸素供給装置、
2はオゾン発生装置、3は気液接触装置、4は用水の供
給配管、5はロータリーアトマイザ、6は処理済用水の
導出配管、7は残存オゾンの分解装置、8は用水、9は
オゾン化酸素配管である。
Further, an ozone generator for supplying concentrated oxygen to generate ozonized oxygen, and a blowing means for blowing the generated ozonized oxygen containing relatively high concentration ozone into the water containing the fluorescent substance, An efficient fluorescent substance removing device comprising a mixing means for bringing blown ozonized oxygen into contact with water has been completed. In particular, it is preferable to use a rotary atomizer for the blowing / mixing means for contacting the ozonized oxygen with the water, while also blowing the ozonized oxygen, because the use efficiency of ozone can be improved. FIG. 1 is a flow sheet showing an embodiment of the fluorescent substance removing apparatus of the present invention, in which 1 is a concentrated oxygen supply apparatus,
2 is an ozone generator, 3 is a gas-liquid contact device, 4 is water supply piping, 5 is a rotary atomizer, 6 is treated water derivation piping, 7 is a device for decomposing residual ozone, 8 is water, and 9 is ozonization. It is an oxygen pipe.

【0007】[0007]

【作用と実施態様例】本発明について、図1を参照しな
がら具体的に説明する。まず、本発明に好適なオゾンの
発生手段2を説明する。本発明は、オゾン発生装置2に
濃縮した酸素を供給し、比較的高濃度のオゾンを含むオ
ゾン化酸素を発生させ、このオゾン化酸素を蛍光物質に
接触させて酸化分解するところに一つの特長がある。こ
のため、利用する酸素供給装置1には、PSA(Pre
ssure Swing Adsorption)酸素
発生装置を用いて濃縮した酸素や、高圧容器に充填した
高濃度酸素などを用いる。なかでも、PSA酸素発生装
置は操作が簡単で経済的に高濃度の酸素を得ることがで
きるので便利である。濃縮した酸素の濃度は、通常、5
0容量%程度以上であればよいが、80容量%以上であ
ればさらに好ましい。オゾン発生装置2にとくに限定は
なく、無声放電や紫外線照射を利用することができる。
オゾン発生装置に空気を供給してオゾンを発生させる
と、オゾン化酸素中のオゾン濃度は、通常、3000p
pm程度である。このオゾン化酸素をエゼクターなどを
用いて用水中に吹込むと、用水中のオゾン濃度は約5p
pmになる。一方、オゾン発生装置2に濃度90%の酸
素を供給すると、得られるオゾン化酸素中のオゾン濃度
は、通常、10000〜50000ppmに達する。ゼ
オライトモレキュラーシーブまたはカーボンモレキュラ
ーシーブを吸着剤とするPSA酸素発生装置を利用すれ
ば、濃度が30〜99%の濃縮酸素を容易に得られる。
この濃縮酸素を供給してオゾン化すれば、4000〜5
0000ppm程度のオゾンを含むオゾン化酸素を、容
易、かつ経済的に製造することができる。
FUNCTION AND EXAMPLE OF EMBODIMENT The present invention will be described in detail with reference to FIG. First, the ozone generating means 2 suitable for the present invention will be described. One feature of the present invention is that concentrated oxygen is supplied to the ozone generator 2 to generate ozonized oxygen containing a relatively high concentration of ozone, and the ozonized oxygen is brought into contact with a fluorescent substance to be oxidatively decomposed. There is. Therefore, the oxygen supply device 1 to be used has a PSA (Pre
Sure Swing Adsorption) Oxygen concentrated using an oxygen generator, high-concentration oxygen filled in a high-pressure container, or the like is used. Among them, the PSA oxygen generator is convenient because it is easy to operate and economically obtains a high concentration of oxygen. The concentration of concentrated oxygen is usually 5
It may be about 0% by volume or more, and more preferably 80% by volume or more. The ozone generator 2 is not particularly limited, and silent discharge or ultraviolet irradiation can be used.
When air is supplied to the ozone generator to generate ozone, the ozone concentration in the ozonized oxygen is usually 3000 p
It is about pm. When this ozonized oxygen is blown into the water using an ejector, the ozone concentration in the water is about 5p.
It will be pm. On the other hand, when oxygen having a concentration of 90% is supplied to the ozone generator 2, the ozone concentration in the ozonized oxygen obtained usually reaches 10,000 to 50,000 ppm. If a PSA oxygen generator using a zeolite molecular sieve or a carbon molecular sieve as an adsorbent is used, concentrated oxygen having a concentration of 30 to 99% can be easily obtained.
If this concentrated oxygen is supplied and ozonized, 4000-5
Ozonized oxygen containing ozone of about 0000 ppm can be easily and economically produced.

【0008】発生させたオゾン化酸素は、エゼクター、
ノズルなどガス吹込手段を用いて用水中に吹込み、スタ
ティックミキサー、気液混合ポンプなどの混合手段を用
いて、用水と効率的に接触させる必要がある。本発明に
おいては、図示したように、ロータリーアトマイザー5
が、オゾン化酸素の吹込および混合を同時に実施する手
段として、とくに好ましく利用できる。図2を参照して
ロータリーアトマイザーの基本原理を簡単に説明する。
図2は、ロータリーアトマイザーの取付概略図である。
ロータリーアトマイザー21は、用水22中に、カップ
状の回転子23をうつぶせに取付けて中心軸24を回転
軸として高速回転させながら、オゾン化酸素送入管29
を通して回転子23内にオゾン化酸素を供給し、下端の
開口部25からオゾン化酸素を用水22中に溢流させる
構造になっている。溢流したオゾン化酸素は回転子表面
にオゾン化酸素膜26を形成し、用水22と気体膜26
との間の剪断応力によって、オゾン化酸素が微細気泡2
7に分断され用水22中に分散する。処理済水は配管3
0から系外に排出する。28は用水供給管である。な
お、詳細は省略するが、回転子の形状などに工夫を加え
たものも当然に使用することができる。ロータリーアト
マイザーは、たとえば混合手段にラインミキサーを用い
る場合に較べて、数倍の気液接触効率を有する。通常、
ロータリーアトマイザーの回転子の回転数は、1000
〜3000rpmである。
The generated ozonized oxygen is ejected by the ejector,
It is necessary to blow gas into the water by using a gas blowing means such as a nozzle, and efficiently contact the water by using a mixing means such as a static mixer or a gas-liquid mixing pump. In the present invention, as shown, the rotary atomizer 5
However, it can be used particularly preferably as a means for simultaneously performing the blowing and mixing of ozonized oxygen. The basic principle of the rotary atomizer will be briefly described with reference to FIG.
FIG. 2 is a schematic view of the mounting of the rotary atomizer.
The rotary atomizer 21 mounts the cup-shaped rotor 23 on the bottom of the water 22 and rotates at high speed with the central shaft 24 as the rotation shaft, while the ozonized oxygen inlet pipe 29
Through this, ozonized oxygen is supplied into the rotor 23, and the ozonized oxygen is made to overflow into the water 22 through the opening 25 at the lower end. The overflowed ozonized oxygen forms an ozonized oxygen film 26 on the rotor surface, and the water 22 and the gas film 26 are formed.
Due to the shear stress between
It is divided into 7 and dispersed in the water 22. Treated water is pipe 3
Discharge from 0 to the outside of the system. 28 is a water supply pipe. Although details are omitted, it is of course possible to use a rotor whose shape is modified. The rotary atomizer has a gas-liquid contact efficiency several times higher than that when a line mixer is used as a mixing means, for example. Normal,
The rotation speed of the rotor of the rotary atomizer is 1000.
~ 3000 rpm.

【0009】オゾンの吹込量は、処理する用水1リット
ル当り0.1〜50mg、好ましくは0.5〜20mg
である。0.1mg未満では蛍光物質の酸化分解に十分
でなく、50mgを超えて吹込んでも用水に溶解されな
いので、吹込量に見合う効果を得られない。酸化処理に
要する時間は、通常0.5分〜3時間である。
The amount of ozone blown is 0.1 to 50 mg, preferably 0.5 to 20 mg, per liter of water to be treated.
Is. If it is less than 0.1 mg, it is not sufficient for the oxidative decomposition of the fluorescent substance, and if it exceeds 50 mg, it will not be dissolved in the water, so that an effect commensurate with the amount of injection cannot be obtained. The time required for the oxidation treatment is usually 0.5 minutes to 3 hours.

【0010】本発明の蛍光物質除去装置に、未反応オゾ
ンを無害化する排オゾン分解装置7を設けてもよい。排
オゾン分解装置の形式に制限はなく、触媒分解や熱分解
などを利用することができる。
The fluorescent substance removing device of the present invention may be provided with an exhaust ozone decomposing device 7 for detoxifying unreacted ozone. There is no limitation on the type of the exhaust ozone decomposing device, and catalytic decomposition or thermal decomposition can be used.

【0011】本発明を利用して殆どの種類の蛍光物質を
除去することができる。たとえば、ジアミノスチルベン
−ジスルホン酸誘導体、イミダゾール誘導体、クマリン
誘導体、ピラゾリン誘導体、オキサゾール系ナフタルイ
ミド誘導体、ビスベンゾオキサゾリル誘導体、ビススチ
ルビフェニル誘導体があげられる。これらの中でも、ジ
アミノスチルベン−ジスルホン酸誘導体、クマリン誘導
体およびビスベンゾオキサゾリル誘導体の除去に効果的
である。
The present invention can be used to remove most types of fluorescent materials. Examples thereof include diaminostilbene-disulfonic acid derivative, imidazole derivative, coumarin derivative, pyrazoline derivative, oxazole-based naphthalimide derivative, bisbenzoxazolyl derivative, and bisstilbiphenyl derivative. Among these, it is effective in removing the diaminostilbene-disulfonic acid derivative, the coumarin derivative and the bisbenzoxazolyl derivative.

【0012】[0012]

【実施例】本発明を実施例をあげて具体的に説明する。
なお、用水中の蛍光度の測定は、つぎのようにして行っ
た。
EXAMPLES The present invention will be specifically described with reference to examples.
The fluorescence in water was measured as follows.

【0013】標準蛍光度: 100mgのジアミノスチ
ルベン−ジスルホン酸誘導体(I型化合物)(蛍光増白
剤:ハッコールBNコンク:昭和化学(株)製)に精製
水を加えて1リットル水溶液の原液を調整した。この原
液100mlにさらに水を加えて1リットルに希釈し、
蛍光標準液を作成した。この蛍光標準液を1、3、5、
7、10、30、50、70および100mlづつを分
取し、それぞれ別個に水を加えて100mlにした。暗
所で、この溶液に2号ろ紙を約10分間、浸漬した後、
取出し絞らないで素早く時計皿上に移し、105〜11
0℃で約30分間乾燥した。乾燥したろ紙の蛍光度を、
前記溶液の分取量記載順に、0.1度、0.3度、0.
5度、0.7度、1度、3度、5度、7度および10度
とした。これらのろ紙の蛍光度は少なくとも1月は安定
していた。
Standard fluorescence: 100 mg of diaminostilbene-disulfonic acid derivative (type I compound) (fluorescent whitening agent: Hakkol BN Conc: Showa Kagaku Co., Ltd.) was added with purified water to prepare a 1 liter aqueous solution. did. Add 100 ml of this stock solution to water to dilute it to 1 liter,
A fluorescent standard solution was prepared. Add this fluorescent standard solution to 1, 3, 5,
7, 10, 30, 50, 70 and 100 ml each were separated, and water was added to each to make 100 ml. After soaking No. 2 filter paper in this solution for about 10 minutes in the dark,
Take it out and swiftly transfer it to the watch glass without squeezing.
It was dried at 0 ° C. for about 30 minutes. The fluorescence of the dried filter paper
In the order in which the amounts of the solutions are listed, 0.1 degree, 0.3 degree, 0.
It was set to 5 degrees, 0.7 degrees, 1 degree, 3 degrees, 5 degrees, 7 degrees and 10 degrees. The fluorescence of these filter papers was stable for at least January.

【0014】測定操作: 2号ろ紙をセットしたブッフ
ナー漏斗に、検水3000mlを注ぎ、重力ろ過した。
検水が濁っている場合は、予め、ガラス濾過器(3G
3)またはガラス繊維ろ紙(GS−25:(東洋濾紙
(株)製)を用いて検水をろ化しておいた。ろ過後、ろ
紙を時計皿上に移し、105〜110℃で約30分間乾
燥し、暗所で紫外線(366nm)を照射し、標準蛍光
度と比較し、同じ蛍光度を有する蛍光度とした。
Measurement operation: 3000 ml of test water was poured into a Buchner funnel with No. 2 filter paper set, and gravity filtration was performed.
If the test water is cloudy, use a glass filter (3G
3) or the glass fiber filter paper (GS-25: manufactured by Toyo Roshi Kaisha, Ltd.) was used to filter the test water.After filtration, the filter paper was transferred to a watch glass and kept at 105 to 110 ° C for about 30 minutes. It was dried, irradiated with ultraviolet rays (366 nm) in the dark, and compared with the standard fluorescence to obtain the fluorescence having the same fluorescence.

【0015】実施例1 PSA酸素発生装置(S−05:住友精化(株)製)を
用いて空気中の酸素濃度を90容量%に濃縮し、得られ
た濃縮酸素を沿面放電式のオゾン発生装置(SA−10
0:住友精化(株)製)を用い、17000ppmのオ
ゾンを含む60リットル/時のオゾン化酸素を発生させ
た。一方、下部にロータリーアトマイザー(OB−1
0:住友精化(株)製)を装着した実質内容積が0.5
3 の気液接触装置に、蛍光度が0.4〜0.6の工業
用水を1m3 /時の割合で供給し、ロータリーアトマイ
ザーを通して前記のオゾン化酸素を、工業用水中に混
合、攪拌しながら吹込んだ。工業用水の平均滞留時間は
20分で、工業用水1リットル当りのオゾン吹込量は約
2.2mgであった。処理を終えた工業用水の蛍光度を
測定したところ、0であった。
Example 1 A PSA oxygen generator (S-05: manufactured by Sumitomo Seika Co., Ltd.) was used to concentrate the oxygen concentration in the air to 90% by volume, and the resulting concentrated oxygen was subjected to creeping discharge ozone. Generator (SA-10
0: Sumitomo Seika Co., Ltd.) was used to generate 60 liters / hour of ozonated oxygen containing 17,000 ppm of ozone. On the other hand, the rotary atomizer (OB-1
0: Sumitomo Seika Chemicals Co., Ltd. installed has a real internal volume of 0.5
the gas-liquid contact apparatus of m 3, the industrial water fluorescence is 0.4 to 0.6 was supplied at a rate of 1 m 3 / time, mixing said ozonized oxygen through a rotary atomizer, industrial water, stirred While blowing. The average retention time of industrial water was 20 minutes, and the amount of ozone blown per liter of industrial water was about 2.2 mg. The fluorescence of the treated industrial water was measured and found to be 0.

【0016】実施例2 PSA酸素発生装置(S−05:住友精化(株)製)を
用いて空気中の酸素濃度を90容量%に濃縮し、得られ
た濃縮酸素を沿面放電式のオゾン発生装置(SA−10
0:住友精化(株)製)を用い、22000ppmのオ
ゾンを含む60リットル/時のオゾン化酸素を発生させ
た。一方、蛍光度が0.6の工業用水20リットルに、
ジアミノスチルベン−ジスルホン酸誘導体の蛍光増白剤
(ハッコールBNコンク:昭和化学(株)製)を加え、
蛍光度2の試験用水を調製した。この試験用水を下部に
ロータリーアトマイザー(OB−1:住友精化(株)
製)を装着した実質内容積が50リットルの気液接触装
置に投入した。ロータリーアトマイザーを通して、前記
のオゾン化酸素を、投入した試験用水中に混合、攪拌し
ながら吹込み、試験用水を回分方式で処理した。処理開
始30秒後にサンプリングした試験用水中の蛍光度を測
定したところ、すでに0であった。試験用水1リットル
当りのオゾン吹込量は約1.2mgであった。
Example 2 Using a PSA oxygen generator (S-05: Sumitomo Seika Chemicals Co., Ltd.), the oxygen concentration in the air was concentrated to 90% by volume, and the resulting concentrated oxygen was subjected to creeping discharge ozone. Generator (SA-10
0: Sumitomo Seika Co., Ltd.) was used to generate 60 liters / hour of ozonated oxygen containing 22000 ppm of ozone. On the other hand, in 20 liters of industrial water with a fluorescence of 0.6,
A diaminostilbene-disulfonic acid derivative fluorescent whitening agent (Hakkor BN Conc .: Showa Kagaku Co., Ltd.) was added,
Test water having a fluorescence of 2 was prepared. This test water is at the bottom with a rotary atomizer (OB-1: Sumitomo Seika Chemicals Ltd.)
Was put into a gas-liquid contactor having a substantial internal volume of 50 liters. Through the rotary atomizer, the above-mentioned ozonized oxygen was mixed with the test water that had been introduced, and the test water was blown with stirring to treat the test water in a batch system. When the fluorescence degree in the test water sampled 30 seconds after the start of the treatment was measured, it was already zero. The amount of ozone blown per liter of test water was about 1.2 mg.

【0017】実施例3 実施例2に使用したのと同じ装置を用い、実施例2と同
様にオゾン化酸素を流通させながら、試験用水を回分方
式で処理した。試験用水は、蛍光度が0.7の工業用水
20リットルに、ジアミノスチルベン−ジスルホン酸誘
導体の蛍光増白剤(チノパールCBS−X:チバ・ガイ
ギー製)を加え、蛍光度10に調整した。オゾン化酸素
は、空気中の酸素濃度を90容量%に濃縮し、オゾン発
生装置において15000ppmのオゾンを含む3リッ
トル/分のオゾン化酸素を発生させた。ロータリーアト
マイザーを通してこのオゾン化酸素を、試験用水中に混
合、攪拌しながら吹込んだ。処理開始90秒後にサンプ
リングした試験用水中の蛍光度を測定したところ、すで
に0であった。試験用水1リットル当りのオゾン吹込量
は約7.5mgであった。
Example 3 Using the same apparatus as used in Example 2, the test water was treated in a batch system while flowing ozonized oxygen in the same manner as in Example 2. The test water was adjusted to have a fluorescence of 10 by adding a fluorescent whitening agent of a diaminostilbene-disulfonic acid derivative (Tinopearl CBS-X: manufactured by Ciba Geigy) to 20 liters of industrial water having a fluorescence of 0.7. The ozonized oxygen was obtained by concentrating the oxygen concentration in the air to 90% by volume, and generating 3 liters / min of ozonized oxygen containing 15000 ppm of ozone in the ozone generator. The ozonized oxygen was mixed into the test water through the rotary atomizer and blown with stirring. When the fluorescence degree in the test water sampled 90 seconds after the start of the treatment was measured, it was already zero. The amount of ozone blown in per liter of test water was about 7.5 mg.

【0018】実施例4 実施例2に使用したのと同じ装置を用い、実施例2と同
様にオゾン化酸素を流通させながら、試験用水を回分方
式で処理した。試験用水は、蛍光度が0.6の工業用水
20リットルに、クマリン誘導体の蛍光増白剤(イルミ
ナールWN:昭和化工(株)製)を加え、蛍光度5に調
整した。オゾン化酸素は、空気中の酸素濃度を90容量
%に濃縮し、オゾン発生装置において16000ppm
のオゾンを含む3リットル/分のオゾン化酸素を発生さ
せた。ロータリーアトマイザーを通してこのオゾン化酸
素を、試験用水中に混合、攪拌しながら吹込んだ。処理
開始90秒後にサンプリングした試験用水中の蛍光度を
測定したところ、すでに0であった。試験用水1リット
ル当りのオゾン吹込量は約7.8mgであった。
Example 4 Using the same apparatus as used in Example 2, the test water was treated in a batch system while flowing ozonized oxygen in the same manner as in Example 2. The test water was adjusted to a fluorescence level of 5 by adding a fluorescent whitening agent of a coumarin derivative (Illuminal WN: Showa Kako Co., Ltd.) to 20 liters of industrial water having a fluorescence level of 0.6. Ozonized oxygen concentrates the oxygen concentration in the air to 90% by volume, and is 16000 ppm in the ozone generator.
3 liters / minute of ozonized oxygen containing 1 oz of ozone was generated. The ozonized oxygen was mixed into the test water through the rotary atomizer and blown with stirring. When the fluorescence degree in the test water sampled 90 seconds after the start of the treatment was measured, it was already zero. The amount of ozone blown in per liter of test water was about 7.8 mg.

【0019】実施例5 実施例2に使用したのと同じ装置を用い、実施例2と同
様にオゾン化酸素を流通させながら、試験用水を回分方
式で処理した。試験用水は、蛍光度が0.7の工業用水
20リットルに、ビスベンゾオキサゾリル誘導体の蛍光
増白剤(ミカホワイトKTNコンク:日本化薬(株)
製)を加え、蛍光度7に調整した。オゾン化酸素は、実
施例4と同様に発生させて使用した。処理開始120秒
後にサンプリングした試験用水中の蛍光度を測定したと
ころ、すでに0であった。試験用水1リットル当りのオ
ゾン吹込量は約8mgであった。
Example 5 Using the same apparatus as used in Example 2, test water was treated in a batch system while flowing ozonized oxygen in the same manner as in Example 2. The test water consisted of 20 liters of industrial water with a fluorescence of 0.7 and a fluorescent whitening agent of bisbenzoxazolyl derivative (Mika White KTN Conc: Nippon Kayaku Co., Ltd.).
Manufactured) was added to adjust the fluorescence to 7. Ozonized oxygen was generated and used in the same manner as in Example 4. When the fluorescence in the test water sampled 120 seconds after the start of treatment was measured, it was already zero. The amount of ozone blown in per liter of test water was about 8 mg.

【0020】[0020]

【発明の効果】本発明の蛍光物質除去方法や蛍光物質除
去装置は、オゾンの強力な酸化力を利用するものであっ
て、濃縮酸素を用いて比較的高濃度のオゾンを含むオゾ
ン化酸素を連続的に発生させ、用水中に吹込んで蛍光物
質を酸化除去するので、用水中の蛍光物質は容易、かつ
完全に分解される。従来の除去装置のように再生、脱着
などの操作を必要とせず、1系列で連続処理が可能にな
り、操作が簡単で経済的である。また、オゾン化酸素の
吹込みにロータリーアトマイザを利用すれば、気液の混
合接触が抜群に向上するので、吹込んだオゾンは効率よ
く利用される。
INDUSTRIAL APPLICABILITY The fluorescent substance removing method and the fluorescent substance removing apparatus of the present invention utilize the strong oxidizing power of ozone, and use concentrated oxygen to remove ozonized oxygen containing relatively high concentration of ozone. Since the fluorescent substance is continuously generated and blown into the water for oxidation to remove the fluorescent substance, the fluorescent substance in the water is easily and completely decomposed. Unlike conventional removal devices, operations such as regeneration and desorption are not required, and continuous processing can be performed in one series, which is simple and economical. Further, if a rotary atomizer is used for blowing ozonized oxygen, mixed contact of gas and liquid is significantly improved, and thus blown ozone is efficiently used.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の蛍光物質除去装置の実施態様例を示
すフローシート。
FIG. 1 is a flow sheet showing an embodiment of a fluorescent substance removing apparatus of the present invention.

【図2】 ロータリーアトマイザーの取付概略図。FIG. 2 is a schematic view of the installation of a rotary atomizer.

【符号の説明】[Explanation of symbols]

1:酸素供給装置 2:オゾン発生装置 3:気液接触装置 4:用水の供給配管 5:ロー
タリーアトマイザ 6:処理済用水の導出配管 7:残存オゾンの分解装
置 8:用水 9:オゾン化酸素配管 21:ロータリーアトマイザー 22:用水 2
3:回転子 24:中心軸 25:開口部 26:オゾン化酸素
膜 27:微細気泡 28:用水供給管 29:オゾン
化酸素送入管 30:処理済水配管
1: Oxygen supply device 2: Ozone generator 3: Gas-liquid contact device 4: Water supply pipe 5: Rotary atomizer 6: Treated water outlet pipe 7: Residual ozone decomposing device 8: Water 9: Ozonized oxygen pipe 21: Rotary atomizer 22: Water 2
3: Rotor 24: Central axis 25: Opening 26: Ozonized oxygen film 27: Micro bubbles 28: Water supply pipe 29: Ozonized oxygen inlet pipe 30: Treated water pipe

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】用水1リットル当り、0.1〜50mgの
オゾンを含むオゾン化酸素を吹込んで混合し、該用水中
に含まれる蛍光物質を酸化除去することを特徴とする蛍
光物質除去方法。
1. A method for removing a fluorescent substance, characterized in that ozonated oxygen containing 0.1 to 50 mg of ozone is blown in and mixed with 1 liter of water to oxidize and remove the fluorescent substance contained in the water.
【請求項2】濃縮酸素を供給してオゾン化酸素を発生さ
せるオゾン発生装置と、発生させたオゾン化酸素を蛍光
物質を含む用水中に吹込む吹込手段と、吹込んだオゾン
化酸素と用水とを接触させる混合手段とから構成されて
いることを特徴とする蛍光物質除去装置。
2. An ozone generator for supplying concentrated oxygen to generate ozonized oxygen, a blowing means for blowing the generated ozonized oxygen into water containing a fluorescent substance, blown ozonized oxygen and water. And a mixing means for contacting the fluorescent substance with the fluorescent substance removing device.
【請求項3】オゾン化酸素の吹込手段およびオゾン化酸
素と用水との混合手段に、ロータリーアトマイザを使用
することを特徴とする、請求項2記載の蛍光物質除去装
置。
3. A fluorescent substance removing apparatus according to claim 2, wherein a rotary atomizer is used as a blowing means of ozonized oxygen and a mixing means of the ozonized oxygen and water.
JP920195A 1994-11-01 1995-01-24 Removal of fluorescent material and device therefor Pending JPH08182994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP920195A JPH08182994A (en) 1994-11-01 1995-01-24 Removal of fluorescent material and device therefor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP26844994 1994-11-01
JP6-268449 1994-11-01
JP920195A JPH08182994A (en) 1994-11-01 1995-01-24 Removal of fluorescent material and device therefor

Publications (1)

Publication Number Publication Date
JPH08182994A true JPH08182994A (en) 1996-07-16

Family

ID=26343886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP920195A Pending JPH08182994A (en) 1994-11-01 1995-01-24 Removal of fluorescent material and device therefor

Country Status (1)

Country Link
JP (1) JPH08182994A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008023460A (en) * 2006-07-21 2008-02-07 Ugajin Denki Kk Water purification method and apparatus using ozone gas
JP2011056498A (en) * 2009-08-12 2011-03-24 Kyushu Institute Of Technology Apparatus and system for generating high-concentration dissolved water
CN109179569A (en) * 2018-11-14 2019-01-11 四川中盛净源环保设备有限公司 A kind of processing organic wastewater with difficult degradation thereby oxidant cooperative photocatalysis oxidation reaction apparatus and application

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008023460A (en) * 2006-07-21 2008-02-07 Ugajin Denki Kk Water purification method and apparatus using ozone gas
JP2011056498A (en) * 2009-08-12 2011-03-24 Kyushu Institute Of Technology Apparatus and system for generating high-concentration dissolved water
CN109179569A (en) * 2018-11-14 2019-01-11 四川中盛净源环保设备有限公司 A kind of processing organic wastewater with difficult degradation thereby oxidant cooperative photocatalysis oxidation reaction apparatus and application

Similar Documents

Publication Publication Date Title
US4298467A (en) Water treatment system
US5536400A (en) Apparatus for purifying fluids with UV radiation and ozone
JP3440313B2 (en) Method and apparatus for treating contaminated water
JPH11290878A (en) Control method for removing toc component
KR101890361B1 (en) An off ozone gas recirculation type UV disinfection system
JP2907814B1 (en) Photocatalytic reactor
JPH08182994A (en) Removal of fluorescent material and device therefor
JPH06277660A (en) Water treatment apparatus
JP3506171B2 (en) Method and apparatus for removing TOC component
JP3949811B2 (en) Wastewater treatment equipment
JPH03137990A (en) High level treatment of sewage to be treated
JP2000279977A (en) Fluid treatment and fluid treatment apparatus
Helmy et al. Ozone-based processes in dye removal
JPH03143594A (en) Water treatment
JPH0255117B2 (en)
JPH02203992A (en) Device for washing and purifying article
JP3493843B2 (en) Accelerated oxidation treatment equipment in water treatment
JP3537995B2 (en) Wastewater treatment method
KR100207095B1 (en) Water purification system using ozone and ultra-violet light
RU2471723C2 (en) Method of obtaining decontaminated with ozone bottled water, and decontaminated bottled water
JPH11347576A (en) Method and apparatus for treating water
JPH0731990A (en) Decoloring treating method of colored waste water and device therefor
JP3547573B2 (en) Water treatment method
JPH0663571A (en) Ozone-bioactive carbon treatment device
JPH09155337A (en) Method and apparatus for decomposing and removing volatile organic compound

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20050111

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050531