JPH0255117B2 - - Google Patents

Info

Publication number
JPH0255117B2
JPH0255117B2 JP62275627A JP27562787A JPH0255117B2 JP H0255117 B2 JPH0255117 B2 JP H0255117B2 JP 62275627 A JP62275627 A JP 62275627A JP 27562787 A JP27562787 A JP 27562787A JP H0255117 B2 JPH0255117 B2 JP H0255117B2
Authority
JP
Japan
Prior art keywords
photocatalyst
water
peroxide
hydrogen peroxide
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62275627A
Other languages
Japanese (ja)
Other versions
JPH01119394A (en
Inventor
Toshiaki Fujii
Yoshiharu Ootsuka
Yoshio Hori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Corp
Ebara Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Ebara Research Co Ltd filed Critical Ebara Corp
Priority to JP27562787A priority Critical patent/JPH01119394A/en
Publication of JPH01119394A publication Critical patent/JPH01119394A/en
Publication of JPH0255117B2 publication Critical patent/JPH0255117B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、各種産業廃水、都市下水、上水等の
水の処理方法に関し、水中の有機物の酸化分解処
理、脱色、脱臭、殺菌を行なう方法に関するもの
である。 表―1に本発明の用途並びに用途に対応した利
用分野を示す。
[Industrial Application Field] The present invention relates to a method for treating water such as various industrial wastewater, urban sewage, and tap water, and relates to a method for oxidative decomposition, decolorization, deodorization, and sterilization of organic matter in water. Table 1 shows the uses of the present invention and the fields of application corresponding to the uses.

〔従来の技術及びその問題点〕[Conventional technology and its problems]

水中の有機物の処理方法について説明する。 従来から、微生物を使用する方法以外の方法と
して一般に良く知られている排水中の溶解有機物
の除去方法としては、活性炭法、オゾン法、電気
分解法、化学的酸化法、電気透析法などがある。 この中、実際規模のものとして工業化されてい
るものとしては、活性炭法、オゾン法、電気分解
法の各処理法がある。 しかしながら、これらの処理法には次の如き問
題点がある。 活性炭法 処理効率は比較的良いが、活性炭の再生が面
倒でありコストが高い。 オゾン法 有機物処理として脱色、脱臭、分解作用の効
率は比較的良く、他に殺菌作用が存在するが、
オゾンは製造するのにコスト高であり、又未利
用のオゾンが廃オゾンとして放出されるため、
リーク廃オゾンの公害対策が必要である。 電気分解法 有機物処理としての脱色の効率は比較的良い
が、有機物分解には充分な効果が得られない。
又、コスト高である。 〔発明の目的〕 本発明は、水を過酸化物の存在下に光照射され
ている光触媒で処理することにより、水中の有機
物の酸化分解或いは水の脱色及び/又は脱臭処理
並びに殺菌処理を行なうことを目的とする。 〔発明の構成〕 本発明は、水をPH8以下で過酸化物の存在下に
反応装置の下部から空気又は酸素を吹込みながら
光照射されている光触媒で処理することを特徴と
する水の処理方法であつて、水の脱色、脱臭、殺
菌あるいは水に含有されている有機物の分解等を
効率よく行なうものである。 第1図に基いて本発明によりし尿を処理する方
法について説明する。 生物化学的に脱窒されたし尿は原水導入口1よ
り反応槽10に導入され反応部Aで酸化処理さ
れ、処理液は出口2より排出される。 反応部Aは、浮遊状態の光触媒3及び紫外線ラ
ンプ4よりなり下部配管5より過酸化水素が配管
6より散気装置7を介して空気が供給される。 空気は反応部A中を気泡となり上昇し、その撹
拌作用等により反応部Aにおける作用を促進す
る。 反応部Aにおいては、紫外線ランプ4の照射を
受けた光触媒3と過酸化水素の作用により原水中
の有機物が分解され、脱色とCODの除去が行な
われる。 反応部Aにおける作用は、次のように考えられ
る。 紫外線照射を受けた光触媒と過酸化水素によ
り、非常に強力な酸化作用を有するヒドロキシラ
ジカルをはじめとする酸素活性種(例・OH,
HO2,,O2 -)が効率良く生成され、原水中の有
機物と反応し、該有機物を酸化分解する。 次に、光触媒について説明する。 光触媒材は、光照射により励起され、過酸化水
素との作用により酸素活性種を効果的に生成させ
るものであれば何れでも良い。 通常半導体材料が効果的であり容易に入手出
来、加工性も良いことから好ましい。 効果や経済性の面から、Se,Ge,Si,Ti,
Zn,Cu,Al,Sn,Ga,In,P,As,Sb,C,
Cd,S,Te,Ni,Fe,Co,Ag,Mo,Sr,W,
Cr,Ba,Pbのいずれか、又はこれらの化合物、
又は合金、又は酸化物が好ましく、これらは単独
で、又二種類以上を複合して用いる。 例えば、元素としてはSi,Ge,Se、化合物と
してはAlP,AlAs,GaP,AlSb,GaAs,InP,
GaSb,InAs,InSb,CdS,CdSe,ZnS,MoS2
WTe2,Cr2Te3,MoTe,Cu2S,WS2、酸化物
としてはTiO2,Bi2O3,CuO,Cu2O,ZnO,
MoO3,InO3,Ag2O,PbO,SrTiO3,BaTiO3
Co3O4,Fe2O3,NiO等がある。 光触媒は、第1図に示したように浮遊状態で用
いてもよく、或いは、壁面への固定化、膜状ある
いは膜固定した状態即ち、紫外線を透過する膜で
光触媒を包み、又は挾み込んで膜状に固定した状
態で用いてもよい。 光触媒の使用量は、一般に0.001〜5%、通常
は0.01〜1%(原水に対する重量比)である。 光触媒は、粉体状のままで用いることが出来る
が、焼結、蒸着、スパツタリング等の周知の方法
で適宜の形状にして用いることも出来る。 これらは、反応装置の規模や形状、処理対象物
の濃度、種類、光源の種類や形状、光触媒の種
類、希望する効果、経済性等により適宜選択する
ことが出来る。 過酸化物は、光触媒との作用により酸素活性種
を効率良く生成するものであれば何れでも良い。 過酸化物としては、過酢酸、過酸化水素等があ
るが、通常過酸化水素が取扱いやすさ、効果等か
ら好ましい。 光源としては、可視及び/又は紫外領域の光を
発するものであれば良く、紫外線ランプや太陽光
を適宜用いることが出来る。通常、紫外線ランプ
が処理速度が早いこと等から好ましい。 紫外線は光触媒材好ましくは光触媒材と過酸化
物の双方に吸収される波長を有するものが良く、
光触媒材、過酸化物の種類により定まる光吸収領
域の波長を放出するランプを選べば良い。例えば
光触媒材としてTiO2を用いる場合は、光吸収が
近紫外部にあるため近紫外部の波長の光を放出す
るランプを使用する。 光源は、水銀灯、水素放電管、キセノン放電
管、ライマン放電管などを適宜1種又は2種以上
を組合せて利用することが出来る。 光源が過酸化物に吸収される波長を有すること
により、過酸化物の光触媒による酸素活性種への
変換に加えて、過酸化物の紫外線吸収による自己
分解による酸素活性種の生成が起こり、酸素活性
種の生成効率が高まる。 光源の位置は、第1図に示すように光触媒反応
器10内部に設置してもよいが、別の例として該
反応器外側に設置し紫外線を反射面を利用するこ
とにより、あるいは照射窓を通して光触媒材に照
射するようにしても良い。 過酸化水素の供給は、第1図に示すように反応
部Aの下部に別途供給する他、処理水入口1より
供給してもよく、あるいは供給空気6に同伴させ
行なつてもよく、反応装置の規模や形状等により
適宜選択することができる。 過酸化水素の供給量は、有機物の濃度、種類、
効果、経済性等により、予め予備試験を行ない適
宜決めることが出来る。 例えば、有機物としてフミン酸が多い場合は、
フミン酸濃度に対して0.1倍〜1.0倍(過酸化水素
のフミン酸に対する重量比)、通常0.3〜0.5倍程
度の過酸化水素の濃度で十分な効果が得られる。 過酸化水素は、光触媒との作用で効率良くヒド
ロキシラジカルのような酸素活性種に変換され、
非常に強力な酸化剤として効果的に作用するの
で、供給量は比較的に少なくても良い。 反応部Aでの撹拌混合は、第1図に示す例にお
いては供給空気の気泡により行なわれているが空
気の代わりに酸素を用いてもよい。空気又は酸素
の供給は反応部Aでの酸化反応を促進させる。 11は、粒状の光触媒3が反応部Aから外部に
流出するのを妨ぐスクリーンである。 12は、供給空気や反応により生じたCO2等の
排気孔である。 反応部Aの温度は、温度を上昇させた方が反応
は促進されるが、一般には特に加温は不要で任意
に行なうことが出来る。 処理水のPHは8以下で実施するのが好ましい。 実施例 第1図に示した装置を用いてCOD100mg/、
色度200゜、PH約6の排水を光触媒反応器に入れ、
過酸化水素を加え下方より空気を散気孔を介して
供給し、CODと色度の変化を調べた。 反応器大きさ;3 光触媒:二酸化チタン(TiO2,アナターゼ
型)、1g/ 光 源:低圧水銀灯32W 過酸化水素:50mg/(100%過酸化水素換算) 空気量:500ml/min 又、光と光触媒のみの場合(過酸化水素がない
場合)及び光と過酸化水素のみの場合(光触媒が
ない場合)についても比較例として同様に行なつ
た。 結 果 第2図、第3図にそれぞれCODの経時変化及
び色度の経時変化を示す。第2図、第3図から10
分後及び40分後の値を下表に示す。
A method for treating organic matter in water will be explained. Traditionally, well-known methods for removing dissolved organic matter from wastewater other than methods using microorganisms include activated carbon method, ozone method, electrolysis method, chemical oxidation method, and electrodialysis method. . Among these, the activated carbon method, the ozone method, and the electrolysis method are the ones that have been industrialized on an actual scale. However, these processing methods have the following problems. Activated carbon method Treatment efficiency is relatively good, but regeneration of activated carbon is troublesome and costs are high. Ozone method has relatively high efficiency in decolorizing, deodorizing, and decomposing effects as an organic matter treatment, and also has bactericidal effects, but
Ozone is expensive to produce, and unused ozone is released as waste ozone.
It is necessary to take measures against pollution from leaked waste ozone. Electrolysis method The efficiency of decolorization as a treatment for organic matter is relatively good, but a sufficient effect cannot be obtained for decomposing organic matter.
Moreover, the cost is high. [Object of the invention] The present invention performs oxidative decomposition of organic matter in water, decolorization and/or deodorization treatment, and sterilization treatment of water by treating water with a photocatalyst that is irradiated with light in the presence of peroxide. The purpose is to [Structure of the Invention] The present invention is a water treatment characterized by treating water with a photocatalyst that is irradiated with light while blowing air or oxygen from the lower part of a reaction device in the presence of peroxide at a pH of 8 or less. It is a method that efficiently decolorizes, deodorizes, and sterilizes water, and decomposes organic matter contained in water. A method for treating human waste according to the present invention will be explained based on FIG. Biochemically denitrified human waste is introduced into the reaction tank 10 through the raw water inlet 1 and oxidized in the reaction section A, and the treated liquid is discharged through the outlet 2. The reaction section A includes a photocatalyst 3 in a floating state and an ultraviolet lamp 4, and hydrogen peroxide is supplied from a lower pipe 5, and air is supplied from a pipe 6 via an aeration device 7. Air rises in the form of bubbles in the reaction part A, and promotes the action in the reaction part A by its stirring action and the like. In the reaction section A, the organic matter in the raw water is decomposed by the action of the photocatalyst 3 irradiated by the ultraviolet lamp 4 and hydrogen peroxide, and decolorization and COD removal are performed. The action in the reaction part A can be considered as follows. The photocatalyst and hydrogen peroxide exposed to ultraviolet rays generate active oxygen species (e.g. OH,
HO 2 , , O 2 ) is efficiently generated, reacts with organic matter in the raw water, and oxidizes and decomposes the organic matter. Next, the photocatalyst will be explained. The photocatalyst material may be any material as long as it is excited by light irradiation and effectively generates oxygen active species through its action with hydrogen peroxide. Generally, semiconductor materials are preferred because they are effective, readily available, and have good processability. From the viewpoint of effectiveness and economy, Se, Ge, Si, Ti,
Zn, Cu, Al, Sn, Ga, In, P, As, Sb, C,
Cd, S, Te, Ni, Fe, Co, Ag, Mo, Sr, W,
Cr, Ba, Pb or any of these compounds,
, alloys, or oxides are preferable, and these are used alone or in combination of two or more types. For example, the elements are Si, Ge, Se, and the compounds are AlP, AlAs, GaP, AlSb, GaAs, InP,
GaSb, InAs, InSb, CdS, CdSe, ZnS, MoS 2 ,
WTe 2 , Cr 2 Te 3 , MoTe, Cu 2 S, WS 2 , oxides include TiO 2 , Bi 2 O 3 , CuO, Cu 2 O, ZnO,
MoO 3 , InO 3 , Ag 2 O, PbO, SrTiO 3 , BaTiO 3 ,
Examples include Co 3 O 4 , Fe 2 O 3 , NiO, etc. The photocatalyst may be used in a floating state as shown in Figure 1, or it may be immobilized on a wall, in the form of a film, or in a membrane-fixed state, that is, it may be wrapped or sandwiched in a film that transmits ultraviolet rays. It may also be used in a state where it is fixed in the form of a film. The amount of photocatalyst used is generally 0.001 to 5%, usually 0.01 to 1% (weight ratio to raw water). The photocatalyst can be used as it is in powder form, but it can also be used in an appropriate shape by well-known methods such as sintering, vapor deposition, and sputtering. These can be appropriately selected depending on the scale and shape of the reaction apparatus, the concentration and type of the object to be treated, the type and shape of the light source, the type of photocatalyst, desired effects, economic efficiency, and the like. Any peroxide may be used as long as it can efficiently generate oxygen active species through its action with the photocatalyst. Peroxides include peracetic acid, hydrogen peroxide, etc., but hydrogen peroxide is usually preferred due to its ease of handling and effectiveness. The light source may be anything that emits light in the visible and/or ultraviolet region, and an ultraviolet lamp or sunlight can be used as appropriate. Usually, an ultraviolet lamp is preferable because of its fast processing speed. The ultraviolet rays preferably have a wavelength that is absorbed by both the photocatalytic material and the peroxide.
It is sufficient to select a lamp that emits wavelengths in the light absorption region determined by the type of photocatalyst material and peroxide. For example, when using TiO 2 as a photocatalyst material, light absorption is in the near ultraviolet range, so a lamp that emits light with a wavelength in the near ultraviolet range is used. As the light source, a mercury lamp, a hydrogen discharge tube, a xenon discharge tube, a Lyman discharge tube, etc. can be appropriately used alone or in combination of two or more types. Because the light source has a wavelength that is absorbed by peroxide, in addition to the conversion of peroxide into oxygen active species by the photocatalyst, the generation of oxygen active species occurs through self-decomposition due to ultraviolet absorption of peroxide, and oxygen The efficiency of generating active species increases. The light source may be placed inside the photocatalytic reactor 10 as shown in FIG. 1, but as another example, the light source may be placed outside the reactor and the ultraviolet rays may be emitted by using a reflective surface or through an irradiation window. The photocatalytic material may also be irradiated with the irradiation. Hydrogen peroxide may be supplied separately to the lower part of the reaction section A as shown in FIG. It can be selected as appropriate depending on the scale, shape, etc. of the device. The amount of hydrogen peroxide supplied depends on the concentration and type of organic matter,
Depending on effectiveness, economical efficiency, etc., a preliminary test can be carried out in advance to decide as appropriate. For example, if there is a lot of humic acid as an organic substance,
A sufficient effect can be obtained at a hydrogen peroxide concentration of 0.1 to 1.0 times the humic acid concentration (weight ratio of hydrogen peroxide to humic acid), usually about 0.3 to 0.5 times. Hydrogen peroxide is efficiently converted into oxygen active species such as hydroxyl radicals through the action of a photocatalyst.
Since it effectively acts as a very strong oxidizing agent, the amount supplied may be relatively small. In the example shown in FIG. 1, stirring and mixing in the reaction section A is carried out by supplying air bubbles, but oxygen may be used instead of air. The supply of air or oxygen accelerates the oxidation reaction in reaction section A. 11 is a screen that prevents the granular photocatalyst 3 from flowing out from the reaction section A. Reference numeral 12 indicates an exhaust hole for supplying air and CO 2 generated by the reaction. Although the reaction is promoted by increasing the temperature of the reaction part A, generally heating is not necessary and can be carried out as desired. It is preferable that the pH of the treated water is 8 or less. Example Using the apparatus shown in Figure 1, COD100mg/,
Put wastewater with a chromaticity of 200° and a pH of about 6 into a photocatalytic reactor,
Hydrogen peroxide was added and air was supplied from below through the diffuser hole, and changes in COD and chromaticity were examined. Reactor size: 3 Photocatalyst: Titanium dioxide (TiO 2 , anatase type), 1g/Light source: Low pressure mercury lamp 32W Hydrogen peroxide: 50mg/(100% hydrogen peroxide conversion) Air volume: 500ml/min Also, light and Comparative examples were also carried out in the case of only a photocatalyst (in the absence of hydrogen peroxide) and in the case of only light and hydrogen peroxide (in the absence of a photocatalyst). Results Figures 2 and 3 show the changes in COD and chromaticity over time, respectively. 10 from Figures 2 and 3
The values after 1 minute and 40 minutes are shown in the table below.

〔発明の効果〕〔Effect of the invention〕

1 光、光触媒及び過酸化物を用いることによ
り、 酸素活性種が効果的に生成し、水中汚染物
の処理が効果的に行なえる。 有機物は、酸化分解し、分解生成物はCO2
のような気体状となるので、分解処理後の溶
液の後処理が不要である。 処理液の温度、あるいはPH等の管理が不要
で、測置の維持管理が容易である。 処理工程が簡素化され、取扱いやすく経済
的に有利となつた。 従えば、従来のし尿処理におけるCOD除去及
び脱色工程は混合槽、凝集槽、凝集沈でん槽、オ
ゾン反応槽、砂ろ過槽、活性炭槽等から成り複雑
で、コスト高である。 2 光と光触媒を用いることにより、過酸化物は
効率良く、ヒドロキシラジカルのような強力な
酸素活性種を生成するので、過酸化物の供給量
は比較的少なくても効果がある。
1. By using light, photocatalysts, and peroxides, active oxygen species can be effectively generated and water pollutants can be effectively treated. Organic matter is decomposed by oxidation, and the decomposition product is CO 2
Since it is in a gaseous state, post-treatment of the solution after the decomposition treatment is not necessary. There is no need to manage the temperature or pH of the processing liquid, and the maintenance and management of the measurement system is easy. The processing process has been simplified, making it easier to handle and economically advantageous. Accordingly, the COD removal and decolorization process in conventional human waste treatment is complicated and expensive, as it consists of a mixing tank, a flocculation tank, a flocculation sedimentation tank, an ozone reaction tank, a sand filter tank, an activated carbon tank, etc. 2. By using light and a photocatalyst, peroxide efficiently generates strong oxygen active species such as hydroxyl radicals, so even a relatively small amount of peroxide is effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を説明するための概略図、
第2図及び第3図は、本発明方法ならびに光と光
触媒のみ及び光と過酸化水素のみを用いた場合の
COD及び色度の経時変化を示す図である。 1…被処理水入口、2…処理水出口、3…光触
媒、4…紫外線ランプ、5…過酸化水素供給管、
6…空気供給管、9…気泡、10…反応器、11
…スクリーン、12…排気孔。
FIG. 1 is a schematic diagram for explaining the method of the present invention,
Figures 2 and 3 show the results of the present invention, using only light and a photocatalyst, and using only light and hydrogen peroxide.
FIG. 3 is a diagram showing changes in COD and chromaticity over time. 1... Inlet of water to be treated, 2... Outlet of treated water, 3... Photocatalyst, 4... Ultraviolet lamp, 5... Hydrogen peroxide supply pipe,
6...Air supply pipe, 9...Bubble, 10...Reactor, 11
...Screen, 12...Exhaust hole.

Claims (1)

【特許請求の範囲】 1 水を、PH8以下で過酸化物の存在下に反応装
置の下部から空気又は酸素を吹込みながら光照射
されている光触媒で処理することを特徴とする光
触媒による水の処理方法。 2 光触媒が半導体である特許請求の範囲第1項
記載の水の処理方法。 3 光触媒がSe,Ge,Si,Ti,Zn,Cu,Sn,
Al,Ga,In,P,As,Bb,C,Cd,S,Te,
Ni,Fe,Co,Ag,Mo,Sr,W,Cr,Ba,Pb
のいずれか、又はその化合物、又は合金、又は酸
化物より選ばれた一種又は二種以上の複合体より
なる特許請求の範囲第2項記載の水の処理方法。 4 過酸化物が過酸化水素である特許請求の範囲
第1項、第2項又は第3項記載の水の処理方法。 5 光触媒への光の照射を水銀灯、水素放電管、
キセノン放電管またはライマン放電管を用いて行
なう特許請求の範囲第1項乃至第4項の何れか1
つに記載の水の処理方法。
[Claims] 1. Water using a photocatalyst, which is characterized in that water is treated with a photocatalyst that is irradiated with light while blowing air or oxygen from the bottom of a reaction device in the presence of peroxide at a pH of 8 or less. Processing method. 2. The water treatment method according to claim 1, wherein the photocatalyst is a semiconductor. 3 The photocatalyst is Se, Ge, Si, Ti, Zn, Cu, Sn,
Al, Ga, In, P, As, Bb, C, Cd, S, Te,
Ni, Fe, Co, Ag, Mo, Sr, W, Cr, Ba, Pb
The water treatment method according to claim 2, comprising a composite of one or more selected from the group consisting of any one of the above, or a compound, an alloy, or an oxide thereof. 4. The water treatment method according to claim 1, 2 or 3, wherein the peroxide is hydrogen peroxide. 5 Irradiation of light to the photocatalyst using a mercury lamp, hydrogen discharge tube,
Any one of claims 1 to 4, which is carried out using a xenon discharge tube or a Lyman discharge tube.
The water treatment method described in .
JP27562787A 1987-11-02 1987-11-02 Treatment of water by photocatalyst Granted JPH01119394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27562787A JPH01119394A (en) 1987-11-02 1987-11-02 Treatment of water by photocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27562787A JPH01119394A (en) 1987-11-02 1987-11-02 Treatment of water by photocatalyst

Publications (2)

Publication Number Publication Date
JPH01119394A JPH01119394A (en) 1989-05-11
JPH0255117B2 true JPH0255117B2 (en) 1990-11-26

Family

ID=17558090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27562787A Granted JPH01119394A (en) 1987-11-02 1987-11-02 Treatment of water by photocatalyst

Country Status (1)

Country Link
JP (1) JPH01119394A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD4041C2 (en) * 2008-11-10 2010-12-31 Государственный Университет Молд0 Process for biochemical treatment of vinasse

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1147771A (en) * 1997-07-31 1999-02-23 Meidensha Corp Continuous water passing type water treatment apparatus
KR100297928B1 (en) * 1999-03-09 2001-09-22 이정형 Method of nitrogen removal in wastewater with photocatalytic technology
JP4191373B2 (en) * 2000-09-01 2008-12-03 独立行政法人科学技術振興機構 Method for producing highly active photocatalyst and method for treating hydrogen sulfide for recovering hydrogen gas with low energy using highly active photocatalyst
WO2003037504A1 (en) * 2001-11-02 2003-05-08 Japan Techno Co., Ltd. Vibratory stirrer for sterilization and sterilizer and sterilization method employing vibratory stirrer
JP2006068604A (en) * 2004-08-31 2006-03-16 Toyota Motor Corp Deodorizing device
JP4881308B2 (en) * 2005-08-08 2012-02-22 ヤーマン株式会社 Spraying equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6354992A (en) * 1986-08-27 1988-03-09 Oji Paper Co Ltd Photochemical treatment of pulp waste water
JPH0194998A (en) * 1987-10-05 1989-04-13 Agency Of Ind Science & Technol Photochemical treatment of waste water

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6354992A (en) * 1986-08-27 1988-03-09 Oji Paper Co Ltd Photochemical treatment of pulp waste water
JPH0194998A (en) * 1987-10-05 1989-04-13 Agency Of Ind Science & Technol Photochemical treatment of waste water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD4041C2 (en) * 2008-11-10 2010-12-31 Государственный Университет Молд0 Process for biochemical treatment of vinasse

Also Published As

Publication number Publication date
JPH01119394A (en) 1989-05-11

Similar Documents

Publication Publication Date Title
US4012321A (en) Oxidation of refractory organics in aqueous waste streams by hydrogen peroxide and ultraviolet light
Kim et al. Landfill leachate treatment by a photoassisted Fenton reaction
US5234606A (en) Method and system for recovering wastewater
US5582741A (en) Method for treating polluted water
US6846468B2 (en) Method for decomposing bromic acid by photocatalyst and apparatus therefor
JPH1043775A (en) Decomposing method of organic matter in water by photocatalyst
US5932111A (en) Photoelectrochemical reactor
JPH0975993A (en) Treatment of organic matter-containing waste water and device therefor
JPH05154473A (en) Photochemical reaction treatment for fluid
JPH0255117B2 (en)
JPH10174983A (en) Accelerated oxidation treatment apparatus using ozone and photocatalyst
JP2008302308A (en) Photocatalyst and method for manufacturing thereof, method and apparatus for water treatment using thereof
JPH10305287A (en) Ozone catalytic reactor
JPH11226587A (en) Water treatment apparatus
JP3352200B2 (en) Method for treating volatile organic chlorine compounds
JPH0521635B2 (en)
JPH0871573A (en) Method and apparatus for water treatment by photocatalyst
JPH02203992A (en) Device for washing and purifying article
CN103964620A (en) Super-gravity alkali-out coupled optical microwave treatment method for purifying ammonia in garbage leachate
JP3493843B2 (en) Accelerated oxidation treatment equipment in water treatment
CN111499061B (en) Natural water body treatment method and device
JP3624625B2 (en) Water purification method using excimer ultraviolet lamp
JPH02184393A (en) Oxidation of organic compound in water
JPS5929084A (en) Treatment of organic waste water
JPH0975959A (en) Treatment of waste water by ozone and photocatalyst

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term