JPH0521635B2 - - Google Patents

Info

Publication number
JPH0521635B2
JPH0521635B2 JP30328389A JP30328389A JPH0521635B2 JP H0521635 B2 JPH0521635 B2 JP H0521635B2 JP 30328389 A JP30328389 A JP 30328389A JP 30328389 A JP30328389 A JP 30328389A JP H0521635 B2 JPH0521635 B2 JP H0521635B2
Authority
JP
Japan
Prior art keywords
water
gas
disinfectant
residual
chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30328389A
Other languages
Japanese (ja)
Other versions
JPH03165889A (en
Inventor
Takayuki Saito
Takeshi Nakajima
Yoko Iwase
Hiroyuki Shima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Corp
Ebara Research Co Ltd
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Ebara Research Co Ltd, Ebara Infilco Co Ltd filed Critical Ebara Corp
Priority to JP30328389A priority Critical patent/JPH03165889A/en
Publication of JPH03165889A publication Critical patent/JPH03165889A/en
Publication of JPH0521635B2 publication Critical patent/JPH0521635B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Physical Water Treatments (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、水を殺菌剤で殺菌処理した場合に、
残留した殺菌剤を分解除去する方法に関するもの
である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides that when water is sterilized with a disinfectant,
This invention relates to a method for decomposing and removing residual disinfectant.

〔従来の技術〕[Conventional technology]

従来、水の殺菌には塩素、次亜塩素酸ナトリウ
ムが広く用いられているが、近年、有機塩素化合
物の発ガン性が指摘され、オゾン、二酸化塩素等
による殺菌が注目されている。
Conventionally, chlorine and sodium hypochlorite have been widely used for water sterilization, but in recent years, the carcinogenicity of organic chlorine compounds has been pointed out, and sterilization using ozone, chlorine dioxide, etc. has attracted attention.

また、超純水のように極端に不純物の混入を嫌
うシステムの殺菌には、過酸化水素が多用され
る。過酸化水素は水と酸素に分解するため、不純
物の増加がなく、超純水に適していると言える。
Furthermore, hydrogen peroxide is often used to sterilize systems such as ultrapure water, which are extremely sensitive to impurities. Since hydrogen peroxide decomposes into water and oxygen, there is no increase in impurities, making it suitable for ultrapure water.

このように、水の殺菌を目的として酸化力のあ
る薬品が用いられるが、過剰に添加された殺菌剤
が処理水に残留する。
As described above, chemicals with oxidizing power are used for the purpose of sterilizing water, but the sterilizing agent added in excess remains in the treated water.

殺菌効果を維持するためには、殺菌剤が長時間
処理水に残留することが好ましいが、例えばイオ
ン交換樹脂或は逆浸透膜で純水を製造する場合、
酸化力のある殺菌剤は、イオン交換樹脂や逆浸透
膜を劣化させるため除去しなければならない。ま
た、食品工業でのプロセス用水或は洗浄用水に酸
化剤が溶存していると、製品が脱色されたり変質
するなどの製品劣化を引き起す恐れがある。
In order to maintain the bactericidal effect, it is preferable that the bactericide remains in the treated water for a long time, but for example, when producing pure water using an ion exchange resin or a reverse osmosis membrane,
Oxidizing disinfectants must be removed because they degrade ion exchange resins and reverse osmosis membranes. Furthermore, if an oxidizing agent is dissolved in process water or cleaning water in the food industry, there is a risk of product deterioration such as decolorization or alteration of the product.

従来、前記殺菌剤を除去する方法として、亜硫
酸ナトリウム、チオ硫酸ナトリウム等の還元剤を
水に添加し、化学的に除去するか、活性炭層に通
水して除去する等の方法が用いられてきた。
Conventionally, the disinfectants have been removed by adding a reducing agent such as sodium sulfite or sodium thiosulfate to water and removing them chemically, or by passing water through an activated carbon layer. Ta.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の亜硫酸ナトリウム等の還元剤を添加する
方法は、簡便であるという利点を持つが、還元剤
が処理水に残留したり、硫酸イオン、ナトリウム
イオン等の増加を生じる。このため、例えば純水
を製造する場合、残留した還元剤及び殺菌剤と反
応して生成した硫酸等のイオンは、イオン交換樹
脂或は逆浸透膜の負荷を増大させることになる。
The above method of adding a reducing agent such as sodium sulfite has the advantage of being simple, but the reducing agent remains in the treated water and sulfate ions, sodium ions, etc. increase. For this reason, when producing pure water, for example, ions such as sulfuric acid generated by reaction with the remaining reducing agent and disinfectant increase the load on the ion exchange resin or reverse osmosis membrane.

また、活性炭を用いた場合では、活性炭層内で
塩素フリーとなり、バクテリアが再び活性炭層内
で繁殖する。
In addition, when activated carbon is used, the activated carbon layer becomes free of chlorine, allowing bacteria to propagate within the activated carbon layer again.

以上示したように、従来の方法では還元剤が残
留したり、バクテリアの繁殖を引き起す等の問題
があつた。
As shown above, conventional methods have problems such as residual reducing agent and bacterial growth.

そこで、本発明は前記のような問題点を解決
し、残留した殺菌剤を容易に除去し、不純物の増
加もバクテリウムの繁殖も生じない残留殺菌剤の
除去方法を提供することを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to solve the above-mentioned problems and provide a method for easily removing residual disinfectants that does not cause an increase in impurities or the proliferation of bacteria.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明では、水を
殺菌剤で殺菌処理したのち、残留した殺菌剤を含
む水にH2ガスを溶解し、紫外線を照射すること
を特徴とする残留殺菌剤の除去方法としたもので
ある。
In order to achieve the above object, the present invention provides a residual disinfectant, which is characterized in that after water is sterilized with a disinfectant, H2 gas is dissolved in the water containing the residual disinfectant and irradiated with ultraviolet rays. This is a removal method.

上記方法において、殺菌剤としては、オゾン、
過酸化水素、塩素、次亜塩素酸ナトリウム、二酸
化塩素等の酸化剤が使用できる。
In the above method, the disinfectant is ozone,
Oxidizing agents such as hydrogen peroxide, chlorine, sodium hypochlorite, and chlorine dioxide can be used.

以下に本発明を詳細に説明する。 The present invention will be explained in detail below.

本発明においては、殺菌剤を含有する原水を処
理するに際し、第1図に示すごとく原水1にH2
ガス2を溶解するH2ガス溶解装置3、次いで紫
外線を照射する紫外線照射装置4を備えたもので
あれば良い。
In the present invention, when treating raw water containing a disinfectant, H 2 is added to the raw water 1 as shown in Figure 1.
Any device may be used as long as it includes an H 2 gas dissolving device 3 for dissolving the gas 2 and an ultraviolet irradiation device 4 for irradiating ultraviolet light.

H2ガス2の原水1への溶解の手段は、例えば
第2図に示したように散気管7又は散気ノズル
7′を内蔵したH2溶解装置3で行うか、或は第3
図に示したように紫外線ランプ8、石英保護管9
からなる紫外線照射装置4の下部に散気ノズル
7′等のH2ガス溶解手段を内蔵させても良い。更
にガス透過膜10により膜を介してH2ガス2を
溶解させるならば、H2ガス中の微粒子等を膜で
ろ過できかつ水中でH2ガスの気泡も発生しない
利点がある(第5図)。
The means for dissolving the H 2 gas 2 into the raw water 1 is, for example, as shown in FIG.
As shown in the figure, an ultraviolet lamp 8, a quartz protection tube 9
H 2 gas dissolving means such as an aeration nozzle 7' may be incorporated in the lower part of the ultraviolet irradiation device 4 consisting of the following. Furthermore, if the H 2 gas 2 is dissolved through the gas permeable membrane 10, there is an advantage that fine particles etc. in the H 2 gas can be filtered through the membrane and no bubbles of H 2 gas are generated in the water (Fig. 5). ).

図中、5は中間処理水、6は最終処理水であ
る。
In the figure, 5 is intermediate treated water and 6 is final treated water.

使用する紫外線ランプの特性は、波長400nm以
下の紫外線を発生する光源であれば良く、光源と
して、一般的には水銀ランプを用いる。特に、波
長200nm以下の遠紫外線を用いれば極めて顕著な
効果があり、水銀ランプの他、エキシマレーザ
ー、電子シンクロトロン等も光源として使用可能
である。
The characteristics of the ultraviolet lamp used may be any light source that generates ultraviolet light with a wavelength of 400 nm or less, and a mercury lamp is generally used as the light source. In particular, the use of far ultraviolet light with a wavelength of 200 nm or less has a very remarkable effect, and in addition to mercury lamps, excimer lasers, electron synchrotrons, etc. can also be used as light sources.

〔作用〕[Effect]

殺菌剤、例えばオゾンを溶存する水に紫外線を
照射することでO3を分解できることは公知であ
る。この場合O3は、下記式により O3+H2O→UVO2+2OH (註)OHはヒドロキシラジカル 酸素とヒドロキシラジカルが生成し、ヒドロキ
シラジカルは有機物等と反応し消滅する。従つ
て、O3の光分解ではDOが増加する。
It is known that O 3 can be decomposed by irradiating water with a disinfectant, such as ozone, dissolved in it with ultraviolet light. In this case, O 3 is expressed by the following formula: O 3 +H 2 O→UVO 2 +2OH (Note) OH is a hydroxyl radical Oxygen and a hydroxyl radical are generated, and the hydroxyl radical reacts with an organic substance and disappears. Therefore, photolysis of O 3 increases DO.

同様に、過酸化水素(H2O2)や残留塩素
(HClO,ClO-)も紫外線を照射することで分解
は可能であるが、その反応はO3より緩やかであ
り、反応を完結させるためには、長時間のUV照
射を必要とする。
Similarly, hydrogen peroxide (H 2 O 2 ) and residual chlorine (HClO, ClO - ) can be decomposed by irradiation with ultraviolet light, but the reaction is slower than that of O 3 and it takes time to complete the reaction. requires long-term UV irradiation.

このため、紫外線と酸化還元触媒を併用する方
法も考えられる。確かに触媒を併用すれば、酸化
性物質は比較的速やかに分解するが、触媒の形態
が通常粉末であり、水に分散させたのではその回
収が困難となるなど、実用面で問題がある。
Therefore, a method of using ultraviolet rays and a redox catalyst in combination is also considered. It is true that oxidizing substances can be decomposed relatively quickly if a catalyst is used together, but the catalyst is usually in the form of a powder, and it is difficult to recover if dispersed in water, which poses practical problems. .

本発明は、還元剤としてH2ガスを用い、水に
H2ガスを溶解して紫外線を照射すると、下記式 O3+3H2→UV3H2O H2O2+H2→UV2H2O HClO+H2→UVCl-+H++H2O ClO-+H2→UVCl-+H2O に示すごとく速やかに水を生成する。このため、
反応が極めて短時間であり、不純物の増加もな
い。
The present invention uses H2 gas as a reducing agent and
When H 2 gas is dissolved and irradiated with ultraviolet rays, the following formula O 3 +3H 2 →UV3H 2 O H 2 O 2 +H 2 →UV2H 2 O HClO+H 2 →UVCl - +H + +H 2 O ClO - +H 2 →UVCl - +H 2 O Produces water quickly as shown. For this reason,
The reaction is extremely short and there is no increase in impurities.

更に当然のことながら、紫外線には殺菌作用が
あり、活性炭のようにバクテリアの温床となるこ
とはなく、過剰の殺菌剤を除去し、かつ殺菌を行
う作用がある。
Furthermore, as a matter of course, ultraviolet rays have a sterilizing effect, and unlike activated carbon, they do not become a breeding ground for bacteria, and have the effect of removing excess sterilizing agents and sterilizing them.

〔実施例〕〔Example〕

以下に、本発明を実施例及び比較例を挙げて説
明するが、本発明は次の実施例に限定されるもの
ではない。
The present invention will be described below with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

実施例 1 残留塩素0.6mg/の水道水を原水1として、
第6図に示す実験装置の容器11に、流量30/
hで導入した。第6図中、容器11の有効体積は
約1であり、容器11には、中央に人工石英保
護管9を介して消費電力100Wの低圧水銀ランプ
8を点灯し、保護管9下部より散気ノズル7′で
H2ガスを50N−ml/minで通気した。
Example 1 Tap water with residual chlorine of 0.6 mg/ is used as raw water 1,
In the container 11 of the experimental apparatus shown in FIG.
It was introduced in h. In FIG. 6, the effective volume of the container 11 is approximately 1, and a low-pressure mercury lamp 8 with a power consumption of 100 W is lit in the center of the container 11 through an artificial quartz protection tube 9, and air is diffused from the bottom of the protection tube 9. at nozzle 7'
H2 gas was bubbled in at 50 N-ml/min.

処理結果を第7図のグラフに示す。反応は瞬時
に行なわれ、残留塩素はDPD法で検出されなか
つた。
The processing results are shown in the graph of FIG. The reaction took place instantly, and no residual chlorine was detected by the DPD method.

比較例 1 次に水銀ランプを消灯しH2ガスのみ通気する
と第7図に示したように残留塩素はほぼ原水と同
じ濃度の0.57mg/となつた。
Comparative Example 1 Next, when the mercury lamp was turned off and only H 2 gas was vented, the residual chlorine amounted to 0.57 mg/ml, which is almost the same concentration as the raw water, as shown in Figure 7.

比較例 2 次にH2ガスの通気を止め、水銀ランプを点灯
した。第7図に示したように残留塩素は0.50mg/
であつた。
Comparative Example 2 Next, the ventilation of H 2 gas was stopped, and the mercury lamp was turned on. As shown in Figure 7, the residual chlorine is 0.50mg/
It was hot.

〔発明の効果〕〔Effect of the invention〕

本発明は、殺菌剤を残留する水にH2ガスを溶
解し、紫外線を照射することにより、残留殺菌剤
を容易に分解除去するものであり、 還元性薬剤を用いる従来法では、還元剤の残
留等の不純物の増加があり、水質の低下を招く
が、本発明ではH2ガス以外の不純物の増加は
ない。
The present invention easily decomposes and removes residual disinfectants by dissolving H 2 gas in water containing residual disinfectants and irradiating the solution with ultraviolet rays. However, in the present invention, there is no increase in impurities other than H2 gas.

酸化物物質を紫外線照射により活性化するた
め、H2ガスとの反応は瞬時に行なわれること
から、装置を極めて小型化できる。
Since the oxide material is activated by ultraviolet irradiation, the reaction with H 2 gas occurs instantaneously, allowing the device to be extremely miniaturized.

紫外線には殺菌作用があり、過剰に残留した
殺菌剤を除去すると同時に、水の殺菌を行うこ
とができる。
Ultraviolet rays have a bactericidal effect, and can remove excess disinfectant residue and sterilize water at the same time.

等の効果がある。There are other effects.

このため、本発明によれば、高純度の水質を要
求する超純水の製造、食品工業のプロセス用水の
製造等、各種分野において工業的に応用できる。
Therefore, the present invention can be industrially applied in various fields such as the production of ultrapure water that requires high purity water quality and the production of process water in the food industry.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の基本工程図であり、第2図、
第3図は本発明に用いるH2ガス溶解装置の概略
断面図であり、第4図、第5図は本発明の他の例
を示す概略断面図であり、第6図は実施例及び比
較例に用いた装置の概略断面図であり、第7図は
各処理条件における処理水の残留塩素濃度を示す
グラフである。 1……原水、2……H2ガス、3……H2ガス溶
解装置、4……紫外線照射装置、5……中間処理
水、6……最終処理水、7,7′……散気管(ノ
ズル)、8……紫外線ランプ、9……石英保護管、
10……ガス透過膜、11……容器。
FIG. 1 is a basic process diagram of the present invention, and FIG.
FIG. 3 is a schematic cross-sectional view of an H 2 gas dissolving apparatus used in the present invention, FIGS. 4 and 5 are schematic cross-sectional views showing other examples of the present invention, and FIG. 6 is a schematic cross-sectional view showing an example and a comparison FIG. 7 is a schematic cross-sectional view of the apparatus used in the example, and FIG. 7 is a graph showing the residual chlorine concentration of treated water under each treatment condition. 1... Raw water, 2... H2 gas, 3... H2 gas dissolving device, 4... Ultraviolet irradiation device, 5... Intermediate treated water, 6... Final treated water, 7, 7'... Diffusion pipe (nozzle), 8...UV lamp, 9...quartz protection tube,
10... Gas permeable membrane, 11... Container.

Claims (1)

【特許請求の範囲】 1 水を殺菌剤で殺菌処理したのち、残留した殺
菌剤を含む水にH2ガスを溶解し、紫外線を照射
することを特徴とする残留殺菌剤の除去方法。 2 前記殺菌剤が、オゾン、過酸化水素、塩素、
次亜塩素酸ナトリウム、二酸化塩素から選ばれた
酸化剤である請求項1記載の残留殺菌剤の除去方
法。
[Claims] 1. A method for removing residual disinfectants, which comprises dissolving H 2 gas in water containing the residual disinfectant after sterilizing water with a disinfectant, and irradiating the water with ultraviolet rays. 2 The disinfectant is ozone, hydrogen peroxide, chlorine,
The method for removing residual disinfectant according to claim 1, wherein the oxidizing agent is selected from sodium hypochlorite and chlorine dioxide.
JP30328389A 1989-11-24 1989-11-24 Method for removing residual germicide Granted JPH03165889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30328389A JPH03165889A (en) 1989-11-24 1989-11-24 Method for removing residual germicide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30328389A JPH03165889A (en) 1989-11-24 1989-11-24 Method for removing residual germicide

Publications (2)

Publication Number Publication Date
JPH03165889A JPH03165889A (en) 1991-07-17
JPH0521635B2 true JPH0521635B2 (en) 1993-03-25

Family

ID=17919095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30328389A Granted JPH03165889A (en) 1989-11-24 1989-11-24 Method for removing residual germicide

Country Status (1)

Country Link
JP (1) JPH03165889A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996034832A1 (en) * 1995-03-30 1996-11-07 Sato Yasuoh Processed potable water capable of being strored for long period of time and method of rendering the same harmless
JP2001070937A (en) * 1999-09-06 2001-03-21 Kurita Water Ind Ltd Membrane for treating water containing oxidizing agent and treating method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4565364B2 (en) * 1999-08-02 2010-10-20 栗田工業株式会社 Antibacterial method and antibacterial device for ultrapure water production and supply device
JP4635827B2 (en) * 2005-11-07 2011-02-23 栗田工業株式会社 Ultrapure water production method and apparatus
JP2007160241A (en) * 2005-12-15 2007-06-28 Omega:Kk Hypohalous acid decomposing method
JP4835498B2 (en) * 2007-04-17 2011-12-14 栗田工業株式会社 Water treatment apparatus for ultrapure water production and water treatment system for ultrapure water production
WO2022208798A1 (en) * 2021-03-31 2022-10-06 中国電力株式会社 Automatic residual chlorine analyzer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996034832A1 (en) * 1995-03-30 1996-11-07 Sato Yasuoh Processed potable water capable of being strored for long period of time and method of rendering the same harmless
JP2001070937A (en) * 1999-09-06 2001-03-21 Kurita Water Ind Ltd Membrane for treating water containing oxidizing agent and treating method

Also Published As

Publication number Publication date
JPH03165889A (en) 1991-07-17

Similar Documents

Publication Publication Date Title
US6716354B2 (en) Methods of treating water using combinations of chlorine dioxide, chlorine and ammonia
US5234606A (en) Method and system for recovering wastewater
Benitez et al. Gallic acid degradation in aqueous solutions by UV/H2O2 treatment, Fenton's reagent and the photo-Fenton system
US5582741A (en) Method for treating polluted water
Ishaq et al. Disinfection methods
CN111762840A (en) UV/NH2Method for removing iopamidol in water by Cl combined process
JPH10127760A (en) Disinfecting method and device for medical apparatus
JPH0521635B2 (en)
JP6047699B2 (en) Production method, production apparatus and ozone-containing aqueous solution of ozone-containing aqueous solution
JPH02144195A (en) Device for producing and supplying ultrapure water
JP7489689B2 (en) Ultraviolet treatment method and system
US20230322595A1 (en) Wastewater Ozone Treatment
JPH1157753A (en) Removing method of toc component and device therefor
JPS61185386A (en) Apparatus for purifying drinking water
JPH0255117B2 (en)
JPH07241598A (en) Water treatment apparatus
JP2021188434A (en) Water generating method
JPH01284385A (en) Process and apparatus for producing pure water and superpure water
CN111977866A (en) Chlorine dioxide and ultraviolet and chlorine coupled water purification method
JP3300852B2 (en) Method and apparatus for treating contaminated water
JPH11347576A (en) Method and apparatus for treating water
JP2007160241A (en) Hypohalous acid decomposing method
JPH0323357Y2 (en)
JP2003001272A (en) Method for removing manganese
JP3558378B2 (en) Water treatment method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees