JPH05154473A - Photochemical reaction treatment for fluid - Google Patents

Photochemical reaction treatment for fluid

Info

Publication number
JPH05154473A
JPH05154473A JP34850591A JP34850591A JPH05154473A JP H05154473 A JPH05154473 A JP H05154473A JP 34850591 A JP34850591 A JP 34850591A JP 34850591 A JP34850591 A JP 34850591A JP H05154473 A JPH05154473 A JP H05154473A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
fluid
reaction
photochemical
material
treating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34850591A
Other languages
Japanese (ja)
Inventor
Koji Nakano
Yuji Yamakoshi
浩二 中野
裕司 山越
Original Assignee
Nippon Fuoto Sci:Kk
株式会社日本フォトサイエンス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultra-violet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection

Abstract

PURPOSE:To obtain a treated fluid of high quality which does not contain an organic material, a bacteria, a harmful material or the like by efficiently executing photochemical reaction treating to the fluid under presence of a photo- catalyst by light irradiation. CONSTITUTION:In photochemical reaction treating such as oxidative decomposition of the organic material, sterilization of the bacteria and decomposition of the harmful material executed under the presence of the photocatalyst in which anatase type titanium or the like has a large contact area and which has a shape excellent in passability by irradiation of a light such as ultraviolet ray or sunlight, photochemical reaction treating is accelerated by adding an oxidizing agent such as BrO3 into the fluid.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は、光触媒の存在下において紫外線、太陽光線等の光照射によって、流体に含まれている有機物の酸化分解、細菌の殺菌、有害物質の分解等の光化学反応処理を行い、有機物、細菌、有害物質等を除去する流体の光化学反応処理方法に関するものである。 BACKGROUND OF THE INVENTION This invention provides UV in the presence of a photocatalyst, upon exposure to radiation in the sunlight and the like, oxidative decomposition of organic matter contained in the fluid, bacterial sterilization, photochemical reaction treatment such as decomposition of harmful substances was carried out, those organic substances, bacteria, about a photochemical reaction treatment method of a fluid for removing harmful substances.

【0002】 [0002]

【従来の技術】最近、半導体または液晶製造工程、医薬品製造工程において、超純水やクリーンガス等の高純度の流体が使用されている。 Recently, semiconductor or liquid crystal manufacturing process, in pharmaceutical manufacturing process, high purity fluids, such as ultrapure water and clean gas is used. 例えば、LSI等の半導体を製造する際には、半導体の洗浄水として超純水が使用されているが、通常の場合、この分野で用いられる超純水は、紫外線照射、イオン交換、超濾過、逆浸透膜等を適宜組み合わせた超純水製造システムによって製造されている。 For example, when manufacturing a semiconductor such as LSI, but ultra-pure water is used as a semiconductor cleaning water, usually ultra-pure water used in this field, ultraviolet radiation, ion exchange, ultrafiltration , manufactured by ultrapure water production system that combines a reverse osmosis membrane or the like as appropriate. この種の超純水製造システムにおいては、光化学反応処理の一つである紫外線照射によって超純水の原水である一次純水に含まれている有機物を酢酸等の有機酸、二酸化炭素等に酸化分解し、次いでこの処理水に含まれている有機酸、二酸化炭素等を、イオン交換樹脂、 In this type of ultra-pure water production system, oxidizing the organic matter contained in the primary pure water in raw water ultrapure water by ultraviolet radiation, which is one of the photochemical reaction process organic acids such as acetic acid, carbon dioxide, etc. decomposed, then the organic acid contained in the treated water, carbon dioxide, etc., ion exchange resins,
超濾過膜、逆浸透膜等で除去して超純水を製造している。 Ultrafiltration membrane, to remove by reverse osmosis membrane or the like has been manufacturing ultra-pure water.

【0003】また、原水中に細菌が含まれている場合には、紫外線照射によって原水中の細菌の殺菌をし、超純水を製造する後段のイオン交換樹脂、超濾過膜、逆浸透膜等が細菌で汚染されるのを防止している。 [0003] if it contains bacteria in the raw water, the sterilization of raw water bacteria by ultraviolet irradiation, subsequent ion exchange resin to produce ultrapure water, ultrafiltration membranes, reverse osmosis membrane or the like There has been prevented from being contaminated with bacteria. さらに、製造した超純水が細菌で汚染された場合には、LSI等の半導体が細菌で汚染されるのを防止するために、最終処理として、紫外線照射によって超純水中の細菌を殺菌をしている。 Furthermore, if the ultra-pure water produced is contaminated with bacteria, in order to prevent the semiconductor such as an LSI is contaminated by bacteria, as a final process, the sterilized ultrapure water bacteria by ultraviolet irradiation are doing. そして、いずれの場合においても、近年の技術の高度化に伴って、超純水の純度、特に従来より除去が難しいといわれている微量の有機物や細菌、有害物質等の除去が技術課題になっており、紫外線照射効率、すなわち光化学反応処理効率を向上させることによって超純水の純度を一段と高めることか求めれている。 Then, in any case, with the sophistication of recent technology, the purity of ultrapure water, in particular conventionally removed traces that are said to be difficult organic materials and bacteria, removal of hazardous substances becomes technical problem and which it has been determined whether to increase further the purity of ultrapure water by improving the ultraviolet irradiation efficiency, i.e., the photochemical reaction process efficiency.

【0004】近年、紫外線照射による水の光化学反応処理を行う場合に、酸化チタン(TiO 2 )等の微粒子に白金(Pt)等の金属の微粒子を担持した光触媒粒子、 Recently, in the case of performing photochemical reaction treatment of water by UV irradiation, photocatalytic particles carrying metallic fine particles such as platinum (Pt) in the particles such as titanium oxide (TiO 2),
すなわち白金担持酸化チタン等の光触媒粒子を用いることにより、紫外線照射効率を高めて超純水の純度を一段と高める工夫や改善が提案(特開昭62−193696 That is, by using the photocatalyst particles, such as platinum-supported titanium oxide, proposed further enhance devising and improving the purity of the ultrapure water to increase the ultraviolet irradiation efficiency (JP 62-193696
号)がなされている。 No.) it has been made. しかし、この白金担持酸化チタン等の光触媒粒子を用いた水の光化学反応処理は、処理水である超純水より白金担持酸化チタン等の光触媒粒子を分離することが非常に面倒であり、例えば光触媒粒子の沈殿分離を行うについては、沈殿に長時間を要するとともに分離性が悪くて実用的でなく、また光触媒粒子を濾過機やストレーナーで濾別して分離するについては、光触媒粒子によって濾過機やストレーナーが目詰まりし易く、かつ別途に分離装置を付設する必要があるために、 However, the photochemical reaction treatment of the water using a photocatalyst particles such as platinum-supported titanium oxide, it is very troublesome to separate the photocatalyst particles such as ultra-pure water of platinum supporting titanium oxide is treated water, for example a photocatalyst for performing the precipitation separation of the particles, precipitation not practical to poor isolation with time-consuming, and for separating by filtration the photocatalyst particles by filtration machine or a strainer, the filter machine and strainer by photocatalyst particles easily clogged, and because of the need to attaching a separate separation device,
装置設置費用が増大する欠点がある等の種々の不都合があった。 Device installation costs had various disadvantages such that there is a defect to increase.

【0005】 [0005]

【考案が解決しようとする課題】本発明は、光触媒の存在下において光照射による流体の有機物の酸化分解、細菌の殺菌、有害物質の分解等の光化学反応処理を行うについて、酸化剤の添加により反応効率を改善し、また流体と光触媒との接触面積を大きく保つことによって、光化学反応処理効率を高め、有機物、細菌、有害物質等を含まない純度の高い処理流体を得ることにある。 The present invention devised problems will to solve the above-oxidative decomposition of the organic matter of the fluid due to light irradiation in the presence of a photocatalyst, the bacteria sterilization, for performing a photochemical reaction treatment such as decomposition of harmful substances, the addition of the oxidizing agent the reaction efficiency was improved, and by keeping a large contact area between the fluid and the photocatalyst enhances the photochemical reaction process efficiency is to obtain organic, bacterial, high purity process fluids that do not contain harmful substances.

【0006】 [0006]

【課題を解決するための手段】 In order to solve the problems]

(1)本発明は、光触媒の存在下において紫外線、太陽光線等の光照射によって、流体に含まれている有機物の酸化分解、細菌の殺菌、有害物質の分解等の光化学反応処理を行うについて、流体にBrO 3 、H 22 、O (1) The present invention, ultraviolet in the presence of a photocatalyst, upon exposure to radiation in the sunlight and the like, oxidative decomposition of organic matter contained in the fluid, bacterial sterilization, for performing a photochemical reaction treatment such as decomposition of harmful substances, BrO 3 fluid, H 2 O 2, O
2 、O 3の酸化剤の一種または二種以上を添加して反応処理を促進することを特徴とするものである。 It is characterized in that the addition of 2, O 3 of one or two or more of the oxidizing agent to facilitate the reaction process. (2)また本発明は、前述の(1)の流体の光化学反応処理を行うについて、光触媒をアナタース型チタンまたはアナタース型チタンに白金等の金属を担持させた光触媒を用いることに特徴がある。 (2) The present invention, for performing a photochemical reaction treatment of fluids of the aforementioned (1), is characterized in that the photocatalytic metal such as platinum using an optical catalyst supported on anatase titanium or anatase type titanium. (3)さらに本発明は、前述の(1)の流体の光化学反応処理を行うについて、光触媒を網状やラシリング状等の接触面積が大きく、かつ流体の通過性のよい形状にしたことに特徴がある。 (3) The present invention, for performing a photochemical reaction treatment of fluids of the aforementioned (1), the photocatalyst large contact area, such as a net or Rashiringu shape, and is characterized in that it has a good shape of passage of the fluid is there. (4)さらに本発明は、前述の(1)の流体の光化学反応処理を行うについて、光触媒を石英ガラスや硬質ガラス製の粒子状の担体にコーティンするか、または担体を網状やラシリング状等の接触面積が大きく、かつ流体の通過性のよい形状にして石英ガラスや硬質ガラスを被覆し、これに光触媒をコーティングしたことに特徴がある。 (4) The present invention, for performing a photochemical reaction treatment of fluids of the aforementioned (1), or Kotin photocatalytic quartz glass or hard glass particulate carrier or carriers a network or Rashiringu shaped like the the contact area is large and in a good shape of passage of the fluid to cover the quartz glass or hard glass, it is characterized in that coated photocatalyst thereto.

【0007】本発明の光化学反応処理に使用する光触媒としては、酸化チタン(TiO 2 )があるが、酸化チタンのなかでもアナタース型が一般的に使用されることが多く、アナタース型以外にも、ルチル型、ブルカイト型も使用できる。 [0007] As a photocatalyst used in the photochemical reaction process of the present invention, it is titanium oxide (TiO 2), often anatase Among titanium oxide is generally used, in addition to anatase, rutile type, brookite type can also be used. また酸化チタン以外には、酸化亜鉛(Z Also the addition of titanium oxide, zinc oxide (Z
nO)、酸化第二鉄(Fe 23 )、カドミウム(Cd nO), ferric oxide (Fe 2 0 3), cadmium (Cd
S)等の金属が使用できる。 Metal S) or the like can be used. さらに酸化チタン(TiO Furthermore, titanium oxide (TiO
2 )に白金(Pt)を担持させたもの(TiO 2 /P 2) those of carrying platinum (Pt) (TiO 2 / P
t)も光触媒として使用することができ、この場合においては、白金以外にも、ニッケル(Ni)、ロジュム(Rh)の半導体が使用できるし、また酸化チタン以外に、酸化亜鉛(ZnO)、酸化第二鉄(Fe 23 )、カドミウム(CdS)の金属も使用できることはいうまでもない。 t) can also be used as a photocatalyst, in this case, in addition to platinum, nickel (Ni), to semiconductor Rojumu (Rh) may be used, also in addition to titanium oxide, zinc oxide (ZnO), ferric (Fe 2 0 3), metal cadmium (CdS) may of course be used.

【0008】酸化チタン等の金属と白金等の半導体の混合割合は、1:0.002〜15%にすることが望ましく、 [0008] Semiconductor mixing ratio of the metal and platinum such as titanium oxide, 1: it is desirable to 0.002 to 15%,
また酸化チタン等の金属と白金等の半導体のの担持法としては、公知の含浸法、混練法による他、光析出法(光電析法)、コロイド混合法を採用できる。 As the supporting method of the semiconductor metal platinum such as titanium oxide, a known impregnation method, et kneading method, an optical precipitation method (photoelectric precipitation method) can be employed colloidal mixing method. 以上述べたような光触媒を光化学反応処理条件に応じて、適宜組み合わせて使用すればよく、光触媒を被覆する際の厚さは、 Depending photocatalyst as described above photochemical reaction treatment conditions may be appropriately combined and used, the thickness at the time of coating the photocatalyst,
100〜1000オングストロームあればよい。 It is sufficient 100 to 1000 Angstroms. 光照射の代表例としては紫外線照射があるが、この場合に使用される紫外線ランプとしては、主波長254nmの低圧殺菌ランプ、主波長185nm、254nmの低圧オゾンランプ、主波長185nm、254nm、365nm There are UV irradiation as a representative example of the light irradiation, the ultraviolet lamp used in this case, low-pressure sterilizing lamp main wavelength 254 nm, main wavelength 185 nm, 254 nm of low-pressure ozone lamp, main wavelength 185 nm, 254 nm, 365 nm
の中・高圧ランプがあり、紫外線照射以外にも、光化学反応処理の目的に応じて、太陽光ランプ、ケミカルランプ、ブラックライトランプ、メタルハライドランプ、ナトリウムランプ、その他700nm以下の波長を発する各種のランプによる光照射を行う。 There is a high pressure lamp in a, in addition to ultraviolet irradiation, depending on the purpose of the photochemical reaction process, solar lamp, chemical lamp, black light lamp, a metal halide lamp, sodium lamp, various lamp emitting a wavelength other 700nm or less irradiated with light by.

【0009】光化学反応処理を促進するために流体に添加する酸化剤としては、BrO 3 、H 22 、O 2 、O [0009] The oxidizing agent to be added to the fluid to promote the photochemical reaction process, BrO 3, H 2 O 2 , O 2, O
3等があり、これらの一種または二種以上を光触媒の種類や処理目的に応じて適宜選択して使用する。 There are 3 or the like, and suitably selected depending These one or two or more kinds in the photocatalyst types and processing purposes. 酸化剤の添加量は、対象となる被反応物の内容によって異なるが、酸化剤に含まれる酸素量を、被反応物を完全酸化するのに必要な最低量の1.0〜100程度あればよい。 The addition amount of the oxidizing agent varies depending on the content of the reaction product of interest, the amount of oxygen contained in the oxidizing agent, if the degree 1.0 to 100 of the minimum amount required to completely oxidize the reactant good.
なお酸化剤を併用する場合には、酸化剤の濃度により紫外線等の光吸収係数が異なるために、酸化剤の濃度と光吸収係数との関係を考慮して流体の光化学反応処理を行う必要がある。 Note that when used in combination oxidizing agent, in order to light absorption coefficient of the ultraviolet rays is different depending on the concentration of the oxidizing agent, it is necessary in view of the relationship between the concentration and the light absorption coefficient of the oxidizing agent performing a photochemical reaction treatment fluid is there.

【0010】光触媒の形状は、ネット状に重ねものやラシリング状にしたものが望ましいが、これ以外にも接触面積が大きく、かつ流体の通過性のよい形状であれば、 [0010] The photocatalyst shape, it is preferable that the thing overlaid net-like or Rashiringu like, In addition to this large contact area also, and if a good shape of passage of the fluid,
どのような形状であってもよい。 Whatever the shape may be. または光触媒を、処理筒に充填した金属製またはプラスチック製のネット状に重ねたものに石英ガラスや硬質ガラス等を被覆した担体に、100オングストローム〜1mm程度にコーティングしてもよく、さらに光触媒を、金属製またはプラスチック製のラシリング状のものに石英ガラスや硬質ガラス等を被覆した担体に、100オングストローム〜1mm Or a photocatalyst, a carrier coated with quartz glass or hard glass or the like to that superimposed metal filled in the processing tube or like plastic net may be coated to about 100 Angstroms ~ 1 mm, further photocatalyst, a carrier coated with quartz glass or hard glass such as that of metal or plastic Rashiringu like, 100 Å ~1mm
程度コーティングしてもよい。 It may be the extent coating. 前述したように、光触媒をコーティングする担体の形状は、ネット状に重ねもの、ラシリング状にしてもの以外、接触面積が大きく、 As described above, the shape of the carrier coating a photocatalyst stuff superimposed on net-like, other than those in the Rashiringu shape, the contact area is large,
かつ流体の通過性のよい形状であれば、どのような形状であってもよい。 And if a good shape of passage of the fluid, may be any shape.

【0011】 [0011]

【実施例】イオン交換装置で製造した純水に、有機物としてメタノールを100ppb溶解し、また細菌として大腸菌を5.6×10 2個/ml添加し、さらに有害物質としてペンタクロロフェノールを150ppb溶解した原水を調整した。 Pure water prepared in EXAMPLES ion exchanger, methanol was dissolved 100ppb for the organic material, also the E. coli was added 5.6 × 10 2 cells / ml as bacteria and 150ppb dissolved pentachlorophenol as further toxic substances the raw water was adjusted. また光化学反応処理装置として、通常使用している紫外線照射装置、すなわちステンレス製の処理筒(直径90mm、長さ1000mm)の内部に、400nm以下の波長を有する紫外線ランプを内臓した石英ガラス製の透過筒を1本配置した実験筒を、下記のように処理筒1〜処理筒4の4セットを用意し、各処理筒の内面と透過筒の外側面によって構成される空間に、以下に示す各種の光触媒を充填した。 The photochemical reaction device, usually has an ultraviolet irradiation apparatus used, i.e. stainless steel treatment column (diameter 90 mm, length 1000 mm) inside, transparent quartz glass having built a UV lamp having a wavelength of 400nm or less of experiments tube arranged a cylindrical one, prepared four sets of processing cylinder 1 to processor tube (4) as described below, the space formed by the outer surface of the inner surface and the transmission tube for each treatment cylinder, various shown below the light catalyst was filled. *処理筒1 アナタース型チタンを網状に重ねた光触媒を充填し、 (従来例) 酸化剤を注入しないもの *処理筒2 アナタース型チタンを網状に重ねた光触媒を充填し、 (発明例) 酸化剤としてBrO 3を2ppmを注入したもの *処理筒3 アナタース型チタンに白金を担持した光触媒を網状に重ね (発明例) て充填し、酸化剤しとてH 22を2.5ppmを注入した もの *処理筒4 カドミウムにニッケルを担持したものを石英ガラス製の粒 (発明例) 子状の担体にコーティングした光触媒を充填し、酸化剤とし てO 3を2ppmを注入したもの * The processing cylinder 1 anatase titanium filled with a photocatalyst superimposed on mesh, (conventional example) a * Processor Tube 2 anatase titanium that does not inject the oxidant filled with a photocatalyst superimposed on mesh, (Inventive) oxidizing agent as BrO 3 those injected with 2 ppm * processor tube 3 anatase titanium photocatalyst carrying platinum was filled Te superimposed net (invention examples), was injected 2.5ppm the H 2 O 2 and O by an oxidizing agent things * processor tube (4) cadmium those carrying nickel filled with quartz glass particles (Inventive) photocatalyst was coated on a child-like carriers, that the O 3 was injected 2ppm as the oxidizing agent

【0012】そして、処理筒の流入管より上記の各種の酸化剤を原水に注入し(処理筒1には酸化剤を注入しない)、本発明の光化学反応処理を行ったところ、第1表のような処理結果を得た。 [0012] Then, by injecting the above-described various oxidizing agents than the inflow pipe processing tube to the raw water (the processing cylinder 1 not inject oxidant), it was subjected to photochemical reaction process of the present invention, in Table 1 It was obtained as a processing result.

【表1】 [Table 1] 以上の処理結果で明らかなように、従来例の酸化剤を注入しない処理筒1より発明例の処理筒2〜4のほうが、 As it is clear from the above processing results, better processing cylinder 2-4 of the invention from the processing cylinder 1 without injecting a conventional example of oxidant example,
メタノールの除去率がよく、また大腸菌数も少なく、さらに有害物質であるペンタクロロフェノールの除去率がよいことが分かる。 Good removal of methanol is also the number of E. coli is small and it can be seen removal rate of pentachlorophenol good is even harmful substances. 特に、発明例の処理筒2の場合には、酸化剤がBrO 3であるためにペンタクロロフェノールの除去効率は一段と向上する。 Particularly, in the case of treatment column 2 of the invention examples, the removal efficiency of pentachlorophenol to oxidizing agent is BrO 3 is further improved.

【0013】 [0013]

【発明の効果】本発明の光化学反応処理方法によると、 Effects of the Invention According to a photochemical reaction treatment method of the present invention,
光触媒の存在下において光照射による流体の有機物の酸化分解、細菌の殺菌、有害物質の分解等の光化学反応処理を、酸化剤の添加により反応効率を改善し、また流体と光触媒との接触面積を大きく保つために、光化学反応処理効率は飛躍的に向上し、有機物、細菌、有害物質等を含まない高品質の処理流体( TOC値 1〜10 ppb、菌数 0個/ml、有害物質値 0〜5ppb )を得ることができる。 Oxidative decomposition of the organic matter of the fluid due to light irradiation in the presence of a photocatalyst, the bacteria sterilization, a photochemical reaction treatment such as decomposition of harmful substances, improve the reaction efficiency by the addition of the oxidizing agent, also the contact area between the fluid and the photocatalyst in order to keep large, photochemical reaction treatment efficiency is dramatically improved, organic, bacteria, harmful substances such as high-quality treatment fluids (TOC value 1 to 10 ppb free of, bacteria number 0 / ml, toxic substances value 0 ~5ppb) can be obtained. 特に、光触媒を粒状物にコーテイングすると、接触面積は急激に増加し、光触媒の被覆量は格段に増加するために、光化学反応処理効率は画期的に向上し、極めて高品質の処理流体を得ることができる。 In particular, when coating the photocatalyst particulates, the contact area increases rapidly, the coating amount of the photocatalyst to increase dramatically, photochemical reaction treatment efficiency is remarkably improved, to obtain a very high quality of the processing fluid be able to. さらに、本発明の光化学反応処理を行う紫外線照射装置においては、白金担持酸化チタン等の光触媒粒子の剥離、流出がなく、光触媒を処理流体より分離する必要がなくなり、従来、時間がかかって面倒な沈殿分離処理装置や濾過機、ストレーナーの設置も不要になり、装置コストを安価にできるメリットもある。 Further, in the ultraviolet irradiation apparatus for performing a photochemical reaction treatment of the present invention, the release of the photocatalyst particles, such as platinum-supported titanium oxide, without spill, it is not necessary to separate from the process fluid photocatalytic conventionally troublesome time-consuming sedimentation separation device or filter machine, installation of the strainer becomes unnecessary, there is a merit that the apparatus can cost cheaper. 本発明の光化学反応処理を行う紫外線照射装置によって得られる超純水やクリーンエアーの流体は、半導体、医薬品、原子力等において使用することができる他に、トリハロメタン等の塩素有機化合物やその前駆物質の分解除去、地下水や工業用水中のトリクレン等の汚染水の処理、下水処理水のCOD Ultrapure water and clean air of the fluid obtained by the ultraviolet irradiation apparatus for performing a photochemical reaction treatment of the present invention, a semiconductor, pharmaceutical, in addition which can be used in nuclear power, etc., chlorine organic compounds and their precursors such as trihalomethane decomposition removal, treatment of contaminated water of trichlorethylene, etc. of water for groundwater and industrial, COD of sewage treated water
の低減、飲料水の浄化、医薬品用水よりのパイロジェンの除去、冷却水のスライム発生の防止、湖沼水中のアオコや赤潮の発生防止、水中の機器や構成物への海生生物の付着防止、プールや浴場用水の浄化、各種用水中の毒性物質、難分解性物質の分解除去等にも活用することができる。 Reduction of, purification of drinking water, the removal of pyrogen than pharmaceutical water, preventing the cooling water of slime generation, prevention of lake water blooms and red tides, prevent adhesion of marine organisms to the underwater equipment and constructs, Pool purification and baths water, toxicants various underwater, can be utilized to decompose and remove such a hardly decomposable substance.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl. 5識別記号 庁内整理番号 FI 技術表示箇所 C02F 1/30 9262−4D 1/72 101 9045−4D ────────────────────────────────────────────────── ─── front page continued (51) Int.Cl. 5 in identification symbol Agency Docket No. FI art display portion C02F 1/30 9262-4D 1/72 101 9045-4D

Claims (4)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】光触媒の存在下において紫外線、太陽光線等の光照射によって、流体に含まれている有機物の酸化分解、細菌の殺菌、有害物質の分解等の光化学反応処理を行うについて、流体にBrO 3 、H 22 、O 2 、O 3 1. A UV in the presence of a photocatalyst, upon exposure to radiation in the sunlight and the like, oxidative decomposition of organic matter contained in the fluid, bacterial sterilization, for performing a photochemical reaction treatment such as decomposition of harmful substances, the fluid BrO 3, H 2 O 2, O 2, O 3
    の酸化剤の一種または二種以上を添加して反応処理を促進することを特徴とする流体の光化学反応処理方法。 Photochemical reaction treatment method of a fluid, characterized in that one of the oxidizing agent or by adding of two or more to accelerate the reaction process.
  2. 【請求項2】請求項1の光触媒として、アナタース型チタンまたはアナタース型チタンに白金等の金属を担持させたものを使用することを特徴とする流体の光化学反応処理方法。 As wherein according to claim 1 photocatalytic photochemical reaction treatment method of a fluid, characterized by using one obtained by supporting a metal such as platinum anatase titanium or anatase type titanium.
  3. 【請求項3】請求項1の光触媒を、網状やラシリング状等の接触面積が大きく、かつ流体の通過性のよい形状にしたことを特徴とする流体の光化学反応処理方法。 3. A photocatalyst according to claim 1, net or Rashiringu shaped like large contact area, and the photochemical reaction treatment method of a fluid, characterized in that it has a good shape of passage of the fluid.
  4. 【請求項4】請求項1の光触媒を、石英ガラスや硬質ガラス製の粒子状の担体に、または網状やラシリング状等の接触面積が大きく、かつ流体の通過性のよい形状にしたものに石英ガラスや硬質ガラスを被覆した担体に、コーティングしたことを特徴とする流体の光化学反応処理方法。 The method according to claim 4 photocatalyst according to claim 1, a quartz glass or hard glass particulate carrier, or large contact area of ​​the mesh and Rashiringu shaped like, and quartz to those in good shape of passage of the fluid a carrier coated with glass or hard glass, photochemical reaction treatment method of a fluid, characterized in that coated.
JP34850591A 1991-12-06 1991-12-06 Photochemical reaction treatment for fluid Pending JPH05154473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34850591A JPH05154473A (en) 1991-12-06 1991-12-06 Photochemical reaction treatment for fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34850591A JPH05154473A (en) 1991-12-06 1991-12-06 Photochemical reaction treatment for fluid

Publications (1)

Publication Number Publication Date
JPH05154473A true true JPH05154473A (en) 1993-06-22

Family

ID=18397470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34850591A Pending JPH05154473A (en) 1991-12-06 1991-12-06 Photochemical reaction treatment for fluid

Country Status (1)

Country Link
JP (1) JPH05154473A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996013327A1 (en) * 1994-10-31 1996-05-09 Kanagawa Academy Of Science And Technology Titanium oxide photocatalyst structure and method of manufacturing the same
JPH0975959A (en) * 1995-09-14 1997-03-25 Agency Of Ind Science & Technol Treatment of waste water by ozone and photocatalyst
FR2760445A1 (en) * 1997-03-04 1998-09-11 Lyonnaise Eaux Eclairage Photocatalytic water treatment process
EP0824040A4 (en) * 1996-03-04 2000-01-19 Tao Inc Molded product having photocatalytic function
WO2000078680A1 (en) * 1999-06-21 2000-12-28 Mitsui Engineering & Shipbuilding Co., Ltd. Method and apparatus for purifying water
EP1112965A3 (en) * 1999-12-28 2002-03-13 Sociedad Espanola De Carburos Metalicos S.A. Process for the degradation of organic compounds in aqueous solution by means of ozonisation and sunlight irradiation
US6939611B2 (en) 1994-10-31 2005-09-06 Kanagawa Academy Of Science And Technology Window glass employing titanium dioxide photocatalyst
CN102010055A (en) * 2010-12-08 2011-04-13 江南大学 Ozonization water treatment method using zinc oxide nanometer material as catalyst
WO2017051537A1 (en) * 2015-09-22 2017-03-30 Nitto Denko Corporation Reticulated polymer photocatalytic air filter element

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996013327A1 (en) * 1994-10-31 1996-05-09 Kanagawa Academy Of Science And Technology Titanium oxide photocatalyst structure and method of manufacturing the same
US6939611B2 (en) 1994-10-31 2005-09-06 Kanagawa Academy Of Science And Technology Window glass employing titanium dioxide photocatalyst
US7157840B2 (en) 1994-10-31 2007-01-02 Kanagawa Academy Of Science And Technology Illuminating devices employing titanium dioxide photocatalysts
US7327074B2 (en) 1994-10-31 2008-02-05 Kanagawa Academy Of Science And Technology Illuminating devices employing titanium dioxide photocatalysts
JPH0975959A (en) * 1995-09-14 1997-03-25 Agency Of Ind Science & Technol Treatment of waste water by ozone and photocatalyst
EP0824040A4 (en) * 1996-03-04 2000-01-19 Tao Inc Molded product having photocatalytic function
FR2760445A1 (en) * 1997-03-04 1998-09-11 Lyonnaise Eaux Eclairage Photocatalytic water treatment process
WO2000078680A1 (en) * 1999-06-21 2000-12-28 Mitsui Engineering & Shipbuilding Co., Ltd. Method and apparatus for purifying water
EP1112965A3 (en) * 1999-12-28 2002-03-13 Sociedad Espanola De Carburos Metalicos S.A. Process for the degradation of organic compounds in aqueous solution by means of ozonisation and sunlight irradiation
ES2170626A1 (en) * 1999-12-28 2002-08-01 Soc Es Carburos Metalicos Sa Process for the degradation of organic compounds in aqueous solution by ozonation and irradiacionn sunlight.
CN102010055A (en) * 2010-12-08 2011-04-13 江南大学 Ozonization water treatment method using zinc oxide nanometer material as catalyst
WO2017051537A1 (en) * 2015-09-22 2017-03-30 Nitto Denko Corporation Reticulated polymer photocatalytic air filter element

Similar Documents

Publication Publication Date Title
Zhou et al. Advanced technologies in water and wastewater treatment
Cheremisinoff Handbook of water and wastewater treatment technologies
Poyatos et al. Advanced oxidation processes for wastewater treatment: state of the art
Matilainen et al. Removal of natural organic matter from drinking water by advanced oxidation processes
US6428705B1 (en) Process and apparatus for high flow and low pressure impurity removal
Kestioğlu et al. Feasibility of physico-chemical treatment and advanced oxidation processes (AOPs) as a means of pretreatment of olive mill effluent (OME)
Laîné et al. Status after 10 years of operation—overview of UF technology today
US6464877B1 (en) Water treating method
US6146524A (en) Multi-stage ozone injection water treatment system
Lu et al. Treatment of wastewater containing azo dye reactive brilliant red X-3B using sequential ozonation and upflow biological aerated filter process
US3779909A (en) Method of and apparatus for the purification of water containing organic contaminants
US5575919A (en) Method for removing toxic substances in water
Kondo et al. Photodegradation of chloroform and urea using Ag-loaded titanium dioxide as catalyst
Mills et al. Bromate removal from drinking water by semiconductor photocatalysis
US4863608A (en) Photocatalytic treatment of water for the preparation of ultra pure water
Miltner et al. Disinfection by-product formation and control by ozonation and biotreatment
Schlichter et al. Study of a hybrid process combining ozonation and microfiltration/ultrafiltration for drinking water production from surface water
Hsu et al. Removal of Giardia and Cryptosporidium in drinking water treatment: a pilot-scale study
US6761826B2 (en) Pulsed blackbody radiation flux enhancement
US6328896B1 (en) Process for removing strong oxidizing agents from liquids
Mohajerani et al. An overview of the integration of advanced oxidation technologies and other processes for water and wastewater treatment
US20020125196A1 (en) Methods of treating water using combinations of chlorine dioxide, chlorine and ammonia
US5039416A (en) Process for the purification of industrial waste-waters
US5788838A (en) Ultrapure water production system having pretreatment system for performing both anaerobic and aerobic organism treatments
Arora et al. Spent filter backwash water contaminants and treatment strategies