JPH0871573A - Method and apparatus for water treatment by photocatalyst - Google Patents

Method and apparatus for water treatment by photocatalyst

Info

Publication number
JPH0871573A
JPH0871573A JP23018094A JP23018094A JPH0871573A JP H0871573 A JPH0871573 A JP H0871573A JP 23018094 A JP23018094 A JP 23018094A JP 23018094 A JP23018094 A JP 23018094A JP H0871573 A JPH0871573 A JP H0871573A
Authority
JP
Japan
Prior art keywords
photocatalyst
light
water
support
water treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23018094A
Other languages
Japanese (ja)
Inventor
Toshiaki Fujii
敏昭 藤井
Yasuhiro Mitsui
康弘 三井
Kazuhiko Sakamoto
和彦 坂本
Hiroaki Tada
弘明 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Nippon Sheet Glass Co Ltd
Original Assignee
Ebara Corp
Ebara Research Co Ltd
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Ebara Research Co Ltd, Nippon Sheet Glass Co Ltd filed Critical Ebara Corp
Priority to JP23018094A priority Critical patent/JPH0871573A/en
Publication of JPH0871573A publication Critical patent/JPH0871573A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a method and apparatus for water treatment by a photocatalyst which is easy to handle, compact, inexpensive, and is efficient in treatment. CONSTITUTION: In an apparatus for the catalytic treatment of water containing organic substances having a photocatalyst carrier 3 in which a photocatalyst is supported on the uneven surface of a light transmitting support, a light source for radiating light to the photocatalyst carrier, and a means 6 for supplying gas containing oxygen, the light source is preferably located in the central part of the apparatus so that the light can be radiated from the rear of the light transmitting support.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、有機物を含む水の接触
処理方法に係り、特に、各種産業廃水、都市下水、上水
等の水中の有機物及び/又は微生物類を光触媒により酸
化分解処理(微生物類においては殺菌あるいは増殖防
止)する方法及び装置に関する。表1に、本発明の利用
分野と用途を示す。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a contact treatment method for water containing organic matter, and more particularly to oxidative decomposition treatment of organic matter and / or microorganisms in water such as various industrial wastewaters, municipal sewage and tap water by photocatalysis. The present invention relates to a method and a device for sterilizing or preventing the growth of microorganisms. Table 1 shows the fields of application and uses of the present invention.

【表1】 [Table 1]

【0002】[0002]

【従来の技術】水中の有機物の処理方法について説明す
る。従来から、微生物を使用する方法以外の方法として
一般に良く知られている排水中の溶解有機物の除去方法
としては、活性炭法、オゾン法、電気分解法、化学的酸
化法、電気透析法などがある。この中、実際規模のもの
として工業化されているものとしては、活性炭法、オゾ
ン法、電気分解法の各処理法がある。しかしながら、こ
れらの処理法には次の如き問題点がある。
2. Description of the Related Art A method for treating organic matter in water will be described. Conventionally, as a method well known as a method other than the method using microorganisms, a method for removing dissolved organic matter in wastewater includes an activated carbon method, an ozone method, an electrolysis method, a chemical oxidation method, an electrodialysis method, etc. . Among these, the ones that have been industrialized as actual-scale ones include activated carbon method, ozone method, and electrolysis method. However, these processing methods have the following problems.

【0003】 活性炭法 処理効率は比較的良いが、活性炭の再生が面倒でありコ
ストが高い。 オゾン法 有機物処理として脱色、脱臭、分解作用の効率は比較的
良く、他に殺菌作用が存在するが、オゾンは製造するの
にコスト高であり、また未利用のオゾンが廃オゾンとし
て放出されるため、リーク廃オゾンの公害対策が必要で
ある。 電気分解法 有機物処理としての脱色の効率は比較的良いが、有機物
分解には充分な効果が得られない。また、コスト高であ
る。
Activated carbon method Although the treatment efficiency is relatively good, the regeneration of activated carbon is troublesome and the cost is high. Ozone method Decontamination, deodorization, and decomposition of organic substances are relatively efficient, and there are other bactericidal effects, but ozone is expensive to produce, and unused ozone is released as waste ozone. Therefore, it is necessary to take measures against the pollution of leaked waste ozone. Electrolysis method Decolorization efficiency as an organic matter treatment is relatively good, but sufficient effect cannot be obtained for organic matter decomposition. In addition, the cost is high.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記従来技
術の問題点を解決し、取扱い易く、コンパクトで安価
な、しかも処理効率のよい光触媒による水処理方法とそ
の装置を提供することを課題とする。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above problems of the prior art and to provide a water treatment method using a photocatalyst which is easy to handle, compact and inexpensive, and has high treatment efficiency, and its apparatus. And

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、有機物を含む水を接触処理する方法に
おいて、該水を、表面が凹凸状をなす光透過性支持体の
表面に光触媒を担持させた光触媒担持体と、光照射下
に、酸素含有気体の存在下で接触させることとしたもの
である。前記処理方法において、光照射は、光透過性支
持体の裏面から行うのがよく、また電場下で行うことも
できる。
In order to solve the above-mentioned problems, in the present invention, in a method of contact-treating water containing an organic substance, the water is applied to the surface of a light-transmissive support having an uneven surface. The photocatalyst carrier carrying the photocatalyst is brought into contact with the photocatalyst carrier under light irradiation in the presence of an oxygen-containing gas. In the above treatment method, light irradiation is preferably performed from the back surface of the light transmissive support, or can be performed under an electric field.

【0006】また、本発明では、有機物を含む水を接触
処理する装置において、表面が凹凸状をなす光透過性支
持体の表面に光触媒を担持させた光触媒担持体と、該光
触媒担持体に光を照射する光源と、酸素含有気体を供給
する手段とを有することとしたものである。前記装置に
おいて、光源は、装置の中心部に設置され、光透過性支
持体の裏面から光が照射できるように設けることのがよ
い。本発明では、光照射による光触媒の作用により、被
処理水中の有機物及び/又は微生物類、例えば有機塩素
化合物(例、トリクロロエチレン、テトラクロロエチレ
ン等や水中の各種菌体が効果的に分解及び/又は滅菌さ
れ安全な処理水となる。
Further, according to the present invention, in an apparatus for contact-treating water containing an organic substance, a photocatalyst carrier having a photocatalyst carried on the surface of a light-transmissive support having an uneven surface, and a photocatalyst carrier carrying light And a means for supplying an oxygen-containing gas. In the above device, the light source is preferably installed at the center of the device so that light can be emitted from the back surface of the light transmissive support. In the present invention, by the action of the photocatalyst by light irradiation, organic substances and / or microorganisms in the water to be treated, such as organic chlorine compounds (e.g., trichlorethylene, tetrachloroethylene, etc., and various bacterial cells in the water, are effectively decomposed and / or sterilized. It becomes safe treated water.

【0007】次に、本発明の各構成を詳細に説明する。
本発明において、照射する光は紫外光及び/又は可視光
が使用でき、太陽光でも人工光でもよい。本発明で用い
る光触媒は、表面を凹凸状(粗面化)とした光透過性支
持体の表面に担持させて用いる。こうすることで、触媒
担持体に光を照射することにより光触媒による反応速度
が著しく向上する。ここで光の照射は、前記支持体の表
面に被覆した光触媒に、該支持体内部に導入した光、す
なわち、被覆した触媒に対して裏面から光を照射するの
がよい。上記の光触媒による作用が効果的になる理由は
次の2つの効果に起因するものである。1つは、平滑表
面状支持体を用いる場合に比べて、本発明では表面の凹
凸状支持体によって光反応面積が一層増大することであ
る。他の1つは、光が該表面の凹凸で散乱されるため
に、有効に光触媒としての半導体によって吸収されるこ
とである。
Next, each structure of the present invention will be described in detail.
In the present invention, the irradiation light may be ultraviolet light and / or visible light, and may be sunlight or artificial light. The photocatalyst used in the present invention is used by supporting it on the surface of a light-transmissive support having an uneven (roughened) surface. By doing so, the reaction rate by the photocatalyst is significantly improved by irradiating the catalyst carrier with light. Here, the light irradiation is preferably performed by irradiating the photocatalyst coated on the surface of the support with the light introduced into the support, that is, the back surface of the coated catalyst. The reason why the action of the photocatalyst is effective is due to the following two effects. One is that in the present invention, the photoreactive area is further increased by the uneven support on the surface, as compared with the case of using the smooth surface support. The other is that the light is effectively absorbed by the semiconductor as a photocatalyst because it is scattered by the unevenness of the surface.

【0008】光透過性支持体の材料としては、紫外光及
び/又は可視光透過率が大きなもので有れば何でも用い
ることができるが、特に耐光性に優れた石英ガラス、パ
イレックスガラス、ソーダライムガラスなどのガラス材
を好適に用いることができる。形状は、板状、シート
状、曲面状、柱状、棒状、線状、網状、格子状、ファイ
バー状等が使用できる。光透過性支持体の厚さや太さ
は、薄いほどあるいは細ければ細い程良いが、強度的に
は0.1mm以上の厚さ、あるいはφ0.1mm以上で
あることが望ましい。また、上限は無いが、厚いほど、
また太くなるほどファイバーの体積当りの光反応効率は
低下することになるが、用途によっては10mm程度で
も使用することができる。
As the material of the light-transmissive support, any material having a large ultraviolet and / or visible light transmittance can be used, but particularly quartz glass, Pyrex glass, soda lime having excellent light resistance. A glass material such as glass can be preferably used. As the shape, a plate shape, a sheet shape, a curved surface shape, a column shape, a rod shape, a linear shape, a net shape, a lattice shape, a fiber shape, or the like can be used. The thickness or thickness of the light transmissive support is better as it is thinner or thinner, but in terms of strength, it is preferably 0.1 mm or more or φ0.1 mm or more. Also, there is no upper limit, but the thicker the
Further, the thicker the fiber, the lower the photoreaction efficiency per volume of fiber, but depending on the application, it can be used even at about 10 mm.

【0009】なお、光透過性支持体表面の粗面化法とし
ては、特に限定されず、HF水溶液による化学的エッチ
ング及び研磨材による物理的なスリ加工などを用いれば
良い。凹凸のディメンジョンとしては、紫外及び/又は
可視光を散乱するために、約200nm以上が必要にな
る。しかし、凹凸サイズが大きすぎると、反応表面積が
小さくなることから、効率は低下することになる、その
結果、上限は0.1mmであることが望ましい。凹凸状
の光透過性支持体上に担持する光触媒の種類は、対象と
なる有害ガス及び光源の種類などを考慮の上、選定する
ことができる。光触媒活性の高さと化学的な安定性か
ら、現在最も広範に用いられている光触媒はTiO2
あり、本発明に好適に使用することができる。しかしな
がら、本発明に使用される光触媒はこれに限定されるこ
となく、従来光触媒として知られているものは如何なる
ものでも使用することができる。
The method of roughening the surface of the light-transmitting support is not particularly limited, and chemical etching with an HF aqueous solution and physical shaving with an abrasive may be used. The dimension of the unevenness needs to be about 200 nm or more in order to scatter ultraviolet and / or visible light. However, if the irregularity size is too large, the reaction surface area becomes small, so the efficiency decreases, and as a result, the upper limit is preferably 0.1 mm. The type of photocatalyst supported on the uneven light-transmitting support can be selected in consideration of the types of target harmful gas and light source. Due to its high photocatalytic activity and chemical stability, the most widely used photocatalyst at present is TiO 2 , which can be suitably used in the present invention. However, the photocatalyst used in the present invention is not limited to this, and any photocatalyst conventionally known as a photocatalyst can be used.

【0010】通常半導体材料が効果的であり容易に入手
出来、加工性も良いことから好ましい。効果や経済性の
面から、Se,Ge,Si,Ti,Zn,Cu,Al,
Sn,Ga,In,P,As,Sb,C,Cd,S,T
e,Ni,Fe,Co,Ag,Mo,Sr,W,Cr,
Ba,Pbのいずれか、又はこれらの化合物、又は合
金、又は酸化物が好ましく、これらは単独で、又は二種
類以上を複合して用いる。例えば、元素としてはSi,
Ge,Se、化合物としてはAlP,AlAs,Ga
P,AlSb,GaAs,InP,GaSb,InA
s,InSb,CdS,CdSe,ZnS,MoS2
WTe2 ,Cr2 Te3 ,MoTe,Cu2 S,W
2 、酸化物としてはTiO2 ,Bi2 3 ,CuO,
Cu2 O,ZnO,MoO3 ,InO3 ,Ag2 O,P
bO,SrTiO3 ,BaTiO3 ,Co34 ,Fe
2 3 ,NiO等がある。
Usually, a semiconductor material is preferable because it is effective, easily available, and has good workability. From the viewpoint of effect and economy, Se, Ge, Si, Ti, Zn, Cu, Al,
Sn, Ga, In, P, As, Sb, C, Cd, S, T
e, Ni, Fe, Co, Ag, Mo, Sr, W, Cr,
One of Ba and Pb, or a compound, alloy or oxide of these is preferable, and these are used alone or in combination of two or more kinds. For example, the element is Si,
Ge, Se, as compounds AlP, AlAs, Ga
P, AlSb, GaAs, InP, GaSb, InA
s, InSb, CdS, CdSe, ZnS, MoS 2 ,
WTe 2 , Cr 2 Te 3 , MoTe, Cu 2 S, W
S 2 , oxides such as TiO 2 , Bi 2 O 3 , CuO,
Cu 2 O, ZnO, MoO 3 , InO 3 , Ag 2 O, P
bO, SrTiO 3 , BaTiO 3 , Co 3 O 4 , Fe
2 O 3 , NiO and the like.

【0011】光触媒膜の厚みは、薄すぎると、光を十分
に吸収できない。一方、厚すぎると、膜中で生じた光キ
ャリヤーが表面まで拡散できないために、触媒活性が低
下する。従って、最適値が存在することになる。その値
は、用いる光触媒の種類によって異なるが、数nm〜数
μmの範囲になる。上記の光触媒の使用においては、電
場下で行うと効果的である。電場の強さは、1V/cm
〜10kV/cm、通常10V/cm〜1kV/cmで
ある。電場は、光触媒の近傍に線状、網状、棒状、格子
状など、適宜の電極材を設置し、該光触媒との間に電圧
を印加することにより設定でき、光触媒や電極材の形状
などにより、適宜予備試験を行い、適正条件を選び行う
ことができる。
If the photocatalyst film is too thin, it cannot absorb light sufficiently. On the other hand, if it is too thick, the photocarriers generated in the film cannot diffuse to the surface, and the catalytic activity decreases. Therefore, the optimum value exists. The value varies depending on the type of photocatalyst used, but is in the range of several nm to several μm. It is effective to use the above-mentioned photocatalyst under an electric field. Electric field strength is 1V / cm
-10 kV / cm, usually 10 V / cm-1 kV / cm. The electric field can be set in the vicinity of the photocatalyst by setting an appropriate electrode material such as a linear shape, a net shape, a rod shape, or a grid shape and applying a voltage between the photocatalyst and the shape of the photocatalyst or the electrode material. Preliminary tests can be performed as appropriate to select appropriate conditions.

【0012】光触媒の種類や厚み、電場の有無やその強
さは、利用分野、処理対象物質の種類や濃度、光源の種
類、光触媒の支持体の種類や形状、要求性能等により適
宜予備試験を行い決めることができる。光源は、光触媒
を励起する波長を有するものであれば、何れでも良く、
低圧水銀灯、中圧水銀灯、高圧水銀灯、キセノン灯等が
使用でき、また利用先によっては太陽光が適宜利用でき
る。通常、反応器の中心部に光源を設置すると、光源か
ら放射状に放出される光が全て有効利用されるので好ま
しい。本発明で用いる酸素含有気体は、通常空気でよ
く、空気以外に酸素富化空気あるいは酸素を用いること
ができ、その供給手段としては通常の散気装置を用いる
ことができる。
The type and thickness of the photocatalyst, the presence or absence of an electric field, and the strength thereof can be appropriately preliminarily tested depending on the field of use, the type and concentration of the substance to be treated, the type of light source, the type and shape of the support of the photocatalyst, and the required performance. You can decide what to do. The light source may be any as long as it has a wavelength that excites the photocatalyst,
A low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, a xenon lamp, etc. can be used, and sunlight can be appropriately used depending on the destination. Usually, it is preferable to install a light source in the center of the reactor because all the light emitted radially from the light source can be effectively used. The oxygen-containing gas used in the present invention may be ordinary air, and oxygen-enriched air or oxygen can be used in addition to air, and an ordinary air diffuser can be used as the supply means.

【0013】[0013]

【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明はこれらの実施例に限定されるものではな
い。 実施例1 図1に、本発明の光触媒を用いた水処理装置の一例の概
略構成図を示す。図1において、生物化学的に処理され
た上水用原水が、原水導入口1より反応部Aに導入さ
れ、反応部Aで原水中の微量有機物、特に有機塩素化合
物が酸化分解処理され、処理水は出口2より排出され
る。反応部Aは、表面が凹凸状の光透過性支持体の表面
に光触媒を担持させた光触媒担持体3及び紫外線ランプ
4よりなる。図1(b)に図1(a)のA−A′断面図
を示す。下部配管5より空気が散気装置6を介して原水
に供給される。該空気は、反応部A中を気泡となり上昇
し、その攪拌作用等により反応部Aにおける作用を促進
する。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. Example 1 FIG. 1 shows a schematic configuration diagram of an example of a water treatment device using the photocatalyst of the present invention. In FIG. 1, biochemically treated raw water for drinking water is introduced into a reaction section A through a raw water inlet 1, and in the reaction section A, trace organic substances in raw water, particularly organic chlorine compounds, are oxidatively decomposed and treated. Water is discharged from the outlet 2. The reaction part A is composed of a photocatalyst carrier 3 and a UV lamp 4 in which a photocatalyst is carried on the surface of a light-transmitting support having an uneven surface. FIG. 1B is a sectional view taken along the line AA ′ of FIG. Air is supplied from the lower pipe 5 to the raw water via the air diffuser 6. The air becomes bubbles in the reaction part A and rises, and promotes the action in the reaction part A by its stirring action and the like.

【0014】反応部Aでは、紫外線ランプの照射を受け
た光触媒の作用により、原水中の有機物、特に有機塩素
化合物(例、トリクロロエチレン、テトラクロロエチレ
ン)が効果的に分解され、安全な上水となる。上記の光
触媒担持体3は、多数のガラス製棒状支持体上に光触媒
のTiO2 を30nm被覆したものを用いており、反応
器内に紫外線ランプ4を設置している。一方、適用分
野、光源の種類、装置形状によっては、光源を反応器の
外側に設置し、反応器内に設置した線状あるいはファイ
バー状の光触媒担持体に光を導入し、上記と同様にして
処理を行うことができる。
In the reaction section A, the organic matter in the raw water, especially the organic chlorine compound (eg trichloroethylene, tetrachloroethylene) is effectively decomposed by the action of the photocatalyst irradiated with the ultraviolet lamp, and safe drinking water is obtained. As the photocatalyst carrier 3, a large number of glass rod-shaped supports coated with 30 nm of photocatalyst TiO 2 are used, and an ultraviolet lamp 4 is installed in the reactor. On the other hand, depending on the field of application, the type of light source, and the shape of the device, the light source is installed outside the reactor, and light is introduced into the linear or fiber-shaped photocatalyst carrier installed in the reactor, and the same as above. Processing can be performed.

【0015】実施例2 図1に示した装置を用いて、トリクロルエタン1mg/
リットルを含む排水を光触媒反応器に入れ、空気又は酸
素を散気孔を介して導入し、トリクロルエタンの濃度変
化を調べた。 反応器の大きさ: 3リットル 光 源: 主波長365nmの水銀灯、250W 空気又は酸素の供給量: 0.5リットル/min 光触媒担持体は、次のようにして製造した。
Example 2 Using the apparatus shown in FIG. 1, trichloroethane 1 mg /
Waste water containing 1 liter was put into a photocatalytic reactor, and air or oxygen was introduced through the diffusion holes to examine the change in the concentration of trichloroethane. Size of reactor: 3 liters Light source: Mercury lamp having main wavelength of 365 nm, 250W Supply amount of air or oxygen: 0.5 liters / min The photocatalyst support was manufactured as follows.

【0016】光透過性支持体としては、表面を研磨した
平滑表面石英製ロッド(直径10mm)を用意し、表面
を研磨砂によるスリ加工を行い、粗面化した。チタン
(IV)プロポキシド28.39gを18.43gの無
水エタノールに添加し、室温で約3分間攪拌した後に、
氷冷した(溶液A)。エタノール(18.43g)、水
(1.8g)、塩酸(0.29g)の混合水溶液を調製
した(溶液B)。溶液Aを攪拌しながら、溶液Bをビュ
レットを用いてゆっくりと滴下することにより、均一混
合溶液とした(溶液C) 前記石英製ロッドを溶液C中に浸漬した後に、ディッピ
ング装置を用いて、1.8cm/分の一定速度で引き上
げた。空気中で十分に乾燥させた後に、500℃で10
分間焼成した。得られたTiO2 被覆石英製ロッドの光
触媒担持体の模式図を図2に示した。
As the light-transmitting support, a smooth-surfaced quartz rod having a polished surface (diameter: 10 mm) was prepared, and the surface was roughened by polishing with sand. After adding 28.39 g of titanium (IV) propoxide to 18.43 g of absolute ethanol and stirring at room temperature for about 3 minutes,
It was ice-cooled (solution A). A mixed aqueous solution of ethanol (18.43 g), water (1.8 g) and hydrochloric acid (0.29 g) was prepared (solution B). While stirring Solution A, Solution B was slowly added dropwise using a buret to form a uniform mixed solution (Solution C). It was pulled up at a constant speed of 0.8 cm / min. After fully drying in air, 10 at 500 ° C
Bake for minutes. A schematic view of the obtained photocatalyst carrier of the TiO 2 -coated quartz rod is shown in FIG.

【0017】図2は、本発明の光触媒20の作用を示す
説明図である。光透過性支持体10の表面には、光触媒
膜12が担持されている。光透過性支持体10から導入
された光13は、凹凸化された支持体10の表面の作用
で効果的に光触媒膜12に吸収される。光触媒膜12
が、禁制帯の幅以上のエネルギーを持つ光を吸収すると
電子は伝導帯14に励起され、価電子帯15に正孔17
ができる。このようにして、価電子帯15の正孔17は
酸化力を、伝導帯14の励起電子16は還元力を持つ。
18は被処理物であり、被処理物は上記作用の力により
分解され、無害分解生成物19となる。
FIG. 2 is an explanatory view showing the action of the photocatalyst 20 of the present invention. A photocatalyst film 12 is carried on the surface of the light transmissive support 10. The light 13 introduced from the light-transmissive support 10 is effectively absorbed by the photocatalyst film 12 by the action of the surface of the uneven support 10. Photocatalyst film 12
However, when light having an energy larger than the forbidden band is absorbed, electrons are excited in the conduction band 14 and holes 17 are generated in the valence band 15.
You can In this way, the holes 17 in the valence band 15 have an oxidizing power, and the excited electrons 16 in the conduction band 14 have a reducing power.
Reference numeral 18 denotes an object to be treated, and the object to be treated is decomposed by the force of the above action to become a harmless decomposition product 19.

【0018】結 果 反応部における滞留時間と、除去率の関係を図3に示
す。図において、空気を供給した場合は−○−、酸素を
供給した場合は−●−である。なお、比較のため、紫外
線ランプを点灯しない場合、−△−(空気の供給)、−
▲−(酸素の供給)、また、平滑表面の石英製支持体
(直径10mm)を粗面化しないで同様にTiO2 を被
覆したものの場合、−□−を示す。この図より、本発明
では短時間に100%近い除去率が得られた。
Results The relationship between the residence time in the reaction section and the removal rate is shown in FIG. In the figure, it is-○-when air is supplied and-●-when oxygen is supplied. For comparison, if the ultraviolet lamp is not turned on,-△-(air supply),-
In the case of ▲-(supply of oxygen), and a quartz support (diameter 10 mm) having a smooth surface, which was similarly coated with TiO 2 without roughening,-□-is shown. From this figure, in the present invention, a removal rate close to 100% was obtained in a short time.

【0019】実施例3 実施例2において、し尿処理場における凝集沈殿工程後
の下記試料を、同様に調べた。 試 料; COD:29(mg/リットル)、色:黄色 臭気:臭気濃度20 結 果 1、5分後の各測定値を表2に示す。
Example 3 In Example 2, the following sample after the coagulation-sedimentation step in the night soil treatment plant was examined in the same manner. Test material; COD: 29 (mg / liter), color: yellow Odor: odor concentration 20 Result 1, 2 minutes later, each measured value is shown in Table 2.

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【発明の効果】本発明によれば、光触媒の支持体として
凹凸状の光透過性のガラス材を用いたことにより、次の
ような効果を奏した。 支持体がガラス材であるので、光触媒への紫外光及
び/又は可視光の光照射を処理物を介さずに、光触媒の
裏面より直接できるので、該照射が長期にわたり、安定
してできた。すなわち、従来の表面のみからの照射だ
と、時間経過により光触媒表面に固体状物質などが付着
した場合、その部分は全くデッドスペースとなり性能劣
化した。また、従来法は処理物を介して照射されるの
で、処理物により性能が影響を受け、また処理物によっ
ては処理物が光を吸収してしまい光が有効に利用できな
かった。本発明では、前記したように性能が処理物によ
らず、長時間安定に維持できた。
EFFECTS OF THE INVENTION According to the present invention, the following effects are obtained by using the uneven light transmitting glass material as the support of the photocatalyst. Since the support is a glass material, the photocatalyst can be irradiated with ultraviolet light and / or visible light directly from the back surface of the photocatalyst without passing through the treated material, so that the irradiation can be stably performed for a long time. That is, when irradiation is performed only from the conventional surface, when a solid substance or the like adheres to the photocatalyst surface over time, that portion becomes a dead space and the performance deteriorates. Further, in the conventional method, since the irradiation is performed through the treated product, the performance is affected by the treated product, and depending on the treated product, the treated product absorbs light, so that the light cannot be effectively used. In the present invention, as described above, the performance can be stably maintained for a long time regardless of the processed material.

【0022】 凹凸状の支持体であるので、光反応
(照射)の面積が増大した。また、光が該凹凸表面で散
乱されるので、有効に光触媒に吸収された。これによ
り、処理効率が向上し、反応速度が早くなった。 有機物、微生物類の両方が同時処理されるので(有
機物がなくなるので)、各種の微生物、菌類の発生や、
増殖防止が効果的にできた。
Since it is the uneven support, the area of photoreaction (irradiation) was increased. In addition, since light is scattered on the uneven surface, it is effectively absorbed by the photocatalyst. As a result, the processing efficiency was improved and the reaction rate was increased. Since both organic matter and microorganisms are processed at the same time (because the organic matter disappears), the generation of various microorganisms and fungi,
Proliferation could be effectively prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明の光触媒を用いた水処理装置の
一例を示す概略構成図で、(b)は(a)のA−A′断
面図。
FIG. 1A is a schematic configuration diagram showing an example of a water treatment device using a photocatalyst of the present invention, and FIG. 1B is a sectional view taken along the line AA ′ of FIG.

【図2】本発明で用いる光触媒の作用を示す説明図。FIG. 2 is an explanatory view showing the action of the photocatalyst used in the present invention.

【図3】滞留時間と除去率の関係を示すグラフ。FIG. 3 is a graph showing the relationship between retention time and removal rate.

【符号の説明】[Explanation of symbols]

1:原水導入口、2:処理水排出口、3:光触媒担持
体、4:紫外線ランプ、5:空気導入管、6:散気装
置、A:反応部、10:光透過性支持体、11:支持体
凹凸面、12:光触媒膜、13:光、14:伝導帯、1
5:価電子帯、16:励起電子、17:正孔、18:有
害有機物、19:無害分解生成物、20:光触媒担持体
1: Raw water inlet, 2: Treated water outlet, 3: Photocatalyst carrier, 4: Ultraviolet lamp, 5: Air inlet pipe, 6: Air diffuser, A: Reaction part, 10: Light transmissive support, 11 : Uneven surface of support, 12: photocatalyst film, 13: light, 14: conduction band, 1
5: Valence band, 16: Excited electron, 17: Hole, 18: Harmful organic substance, 19: Harmless decomposition product, 20: Photocatalyst carrier

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三井 康弘 東京都港区港南1丁目6番27号 荏原イン フィルコ株式会社内 (72)発明者 坂本 和彦 埼玉県浦和市南元宿2−4−1 (72)発明者 多田 弘明 大阪府大阪市中央区道修町3丁目5番11号 日本板硝子株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuhiro Mitsui 6-27 Konan, Minato-ku, Tokyo Ebara In Filco Co., Ltd. (72) Inventor Kazuhiko Sakamoto 2-4-1 Minamimotojuku, Urawa-shi, Saitama (72) ) Inventor Hiroaki Tada 3-5-11 Doshomachi, Chuo-ku, Osaka City, Osaka Prefecture Nippon Sheet Glass Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 有機物を含む水を接触処理する方法にお
いて、該水を、表面が凹凸状をなす光透過性支持体の表
面に光触媒を担持させた光触媒担持体と、光照射下に、
酸素含有気体の存在下で接触させることを特徴とする光
触媒による水処理方法。
1. A method of contact-treating water containing an organic substance, which comprises: a photocatalyst carrier having a photocatalyst supported on the surface of a light-transmissive support having an uneven surface;
A method for treating water with a photocatalyst, which comprises contacting in the presence of an oxygen-containing gas.
【請求項2】 前記光照射は、光透過性支持体の裏面か
ら行うことを特徴とする請求項1記載の光触媒による水
処理方法。
2. The water treatment method using a photocatalyst according to claim 1, wherein the light irradiation is performed from the back surface of the light transmissive support.
【請求項3】 前記光照射は、電場下で行うことを特徴
とする請求項1又は2記載の光触媒による水処理方法。
3. The water treatment method using a photocatalyst according to claim 1, wherein the light irradiation is performed under an electric field.
【請求項4】 有機物を含む水を接触処理する装置にお
いて、表面が凹凸状をなす光透過性支持体の表面に光触
媒を担持させた光触媒担持体と、該光触媒担持体に光を
照射する光源と、酸素含有気体を供給する手段とを有す
ることを特徴とする光触媒による水処理装置。
4. A photocatalyst carrier in which a photocatalyst is carried on the surface of a light-transmitting support having an uneven surface, and a light source for irradiating the photocatalyst carrier with light in a device for contact-treating water containing an organic substance. And a means for supplying an oxygen-containing gas, the photocatalytic water treatment device.
【請求項5】 前記光源は、装置の中心部に設置され、
光透過性支持体の裏面から光が照射できるように設ける
ことを特徴とする請求項4記載の光触媒による水処理装
置。
5. The light source is installed in the center of the device,
The water treatment apparatus using a photocatalyst according to claim 4, wherein the water permeable support is provided so that light can be radiated from the back surface thereof.
JP23018094A 1994-09-01 1994-09-01 Method and apparatus for water treatment by photocatalyst Pending JPH0871573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23018094A JPH0871573A (en) 1994-09-01 1994-09-01 Method and apparatus for water treatment by photocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23018094A JPH0871573A (en) 1994-09-01 1994-09-01 Method and apparatus for water treatment by photocatalyst

Publications (1)

Publication Number Publication Date
JPH0871573A true JPH0871573A (en) 1996-03-19

Family

ID=16903863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23018094A Pending JPH0871573A (en) 1994-09-01 1994-09-01 Method and apparatus for water treatment by photocatalyst

Country Status (1)

Country Link
JP (1) JPH0871573A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6491883B2 (en) 1999-12-27 2002-12-10 Nihon Parkerizing Co., Ltd. Air-cleaning photocatalytic filter
WO2006105730A1 (en) * 2005-04-05 2006-10-12 72G Group Limited Water treatment module and water treatment apparatus using thereof
JP2009279543A (en) * 2008-05-23 2009-12-03 Panasonic Corp Method of treating organic wastewater using aeration tank
JP2010022936A (en) * 2008-07-18 2010-02-04 Ube Ind Ltd Apparatus and method for producing ultrapure water
JP2014500137A (en) * 2010-10-26 2014-01-09 エンパイア テクノロジー ディベロップメント エルエルシー Water treatment equipment and system
JP2014221438A (en) * 2013-05-13 2014-11-27 實野 孝久 Method for producing photocatalyst body and photocatalyst body
KR101518037B1 (en) * 2014-04-21 2015-05-07 주식회사 장호 block system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6491883B2 (en) 1999-12-27 2002-12-10 Nihon Parkerizing Co., Ltd. Air-cleaning photocatalytic filter
WO2006105730A1 (en) * 2005-04-05 2006-10-12 72G Group Limited Water treatment module and water treatment apparatus using thereof
JP2009279543A (en) * 2008-05-23 2009-12-03 Panasonic Corp Method of treating organic wastewater using aeration tank
JP2010022936A (en) * 2008-07-18 2010-02-04 Ube Ind Ltd Apparatus and method for producing ultrapure water
JP2014500137A (en) * 2010-10-26 2014-01-09 エンパイア テクノロジー ディベロップメント エルエルシー Water treatment equipment and system
JP2014221438A (en) * 2013-05-13 2014-11-27 實野 孝久 Method for producing photocatalyst body and photocatalyst body
KR101518037B1 (en) * 2014-04-21 2015-05-07 주식회사 장호 block system

Similar Documents

Publication Publication Date Title
Akyol et al. Photocatalytic degradation of Remazol Red F3B using ZnO catalyst
Sauer et al. Advanced oxidation processes applied to tannery wastewater containing Direct Black 38—Elimination and degradation kinetics
US5395522A (en) Apparatus for removal of organic material from water
US5449443A (en) Photocatalytic reactor with flexible supports
EP0671363B1 (en) Method and system for treating polluted water
CN101492200A (en) Method for photoelectrocatalysis oxidization of organic waste water with ozone
US5932111A (en) Photoelectrochemical reactor
Bauer Applicability of solar irradiation for photochemical wastewater treatment
Adish Kumar et al. Synergistic degradation of hospital wastewater by solar/TiO2/Fe2+/H2O2 process
JPH05154473A (en) Photochemical reaction treatment for fluid
JPH0871573A (en) Method and apparatus for water treatment by photocatalyst
US20030211022A1 (en) Method and apparatus for decontaminating water or air by a photolytic and photocatalytic reaction
JPH10174983A (en) Accelerated oxidation treatment apparatus using ozone and photocatalyst
JP2907814B1 (en) Photocatalytic reactor
JP2008302308A (en) Photocatalyst and method for manufacturing thereof, method and apparatus for water treatment using thereof
WO2001012562A1 (en) Apparatus for purification of contaminated water by using rotating member
JP3233596U (en) Water purification equipment and water purification unit
JP2001259620A (en) Water treating device by semiconductor photocatalyst using microwave and uv ray jointly
JPH0975929A (en) Circulative purifying device for liquid, purifying method for liquid and circulative purifying system for liquid
JP2006026194A (en) Organic matter removing apparatus
CN112573740B (en) Method and device for degrading organic micro-pollutants by catalyzing potassium permanganate through medium-pressure ultraviolet
JPH01119394A (en) Treatment of water by photocatalyst
JP3430218B2 (en) Water treatment equipment
CN111499061B (en) Natural water body treatment method and device
JPH1177031A (en) Method and apparatus for ultraviolet radiation sterilizing purification