JP2004290870A - Reduction potential adjusting process and apparatus for the same - Google Patents

Reduction potential adjusting process and apparatus for the same Download PDF

Info

Publication number
JP2004290870A
JP2004290870A JP2003088274A JP2003088274A JP2004290870A JP 2004290870 A JP2004290870 A JP 2004290870A JP 2003088274 A JP2003088274 A JP 2003088274A JP 2003088274 A JP2003088274 A JP 2003088274A JP 2004290870 A JP2004290870 A JP 2004290870A
Authority
JP
Japan
Prior art keywords
hydrogen gas
liquid
water tank
reduction potential
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003088274A
Other languages
Japanese (ja)
Inventor
Mitsunori Mori
光典 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mori Kikai Seisakusho KK
Original Assignee
Mori Kikai Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mori Kikai Seisakusho KK filed Critical Mori Kikai Seisakusho KK
Priority to JP2003088274A priority Critical patent/JP2004290870A/en
Publication of JP2004290870A publication Critical patent/JP2004290870A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reduction potential adjusting method and an apparatus for the same, which simplify process work to make mass process efficient and reduce a variety of costs so as to improve a dissolution rate of a hydrogen gas and ensure safety. <P>SOLUTION: The reduction potential adjusting method for use in the apparatus includes the following processes of; dissolving the hydrogen gas turned into fine bubbles in a liquid, recovering the part of the hydrogen gas that does not dissolve into the liquid but separate from it, and turning the recovered hydrogen gas into fine bubbles and dissolve them in the liquid. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、還元性水素水における還元電位調整方法およびその装置に関する。
【0002】
【従来技術】
従来の還元性水素水の還元電位を調整するのに用いられる水素ガス溶解法は、一次工程で液体を脱気処理し、二次工程において水素ガスの溶解処理を行う高度処理法がある。(たとえば、特許文献1および特許文献2参照)
また、配管中の液体に水素ガスを微細気泡化して流入させて攪拌することによって、水素ガスの溶解処理を行う簡易処理法がある。(たとえば、特許文献3参照)
【0003】
【特許文献1】
特開平11−77021号公報(〔0005〕9行〜22行)
【特許文献2】
特許第2890342号公報(〔0005〕2行〜11行)
【特許文献3】
特開2000−354696号公報(〔0004〕1行〜4行、〔図1〕)
【0004】
ところで、前記高度処理法における一次処理は、たとえば、真空脱気や減圧膜脱気等が有るが、いずれについても、その脱気装置およびその管理技術者、さらには相当の処理時間等を要している。
また、二次処理については、たとえば、ガス透過膜や簡易的なバブリングおよびインラインミキシング等が有るが、いずれについても、その溶解装置およびその管理技術者を要し、前記簡易的な溶解方法では未溶解水素ガスの処理についての解決手段を検討する必要が有る。
以上のように、従来の高度処理法においては、一次処理と二次処理の処理分割による処理作業の煩雑化の解消、処理作業に必要な装置、管理技術者、さらには相当の処理時間および未溶解水素ガス処理により高くなる生産コストの削減が課題となっている。
【0005】
従来の高度処理法における課題を解決する手段として、前記例示した簡易処理法であれば、脱気処理することなく溶解処理を行うため、処理作業の煩雑化は解消され、生産コストの削減も実現するものと思われる。
しかしながら、水素ガス自体が難溶解性であるので、短時間に大量の水素ガスを溶解させることは難しく、一部の水素ガスが気泡の状態で流出してしまう可能性が有る。
しかも、脱気処理をしていない関係で、水素ガスの溶解が進むにつれて液中の溶存ガスが気泡として出現し、この溶存ガスの気泡と流出した水素ガスが混合されて危険性を有するガスが発生する可能性が有る。
つまり、従来の簡易処理法においては、処理作業が簡略化されて効率的な処理が可能となり、かつ各種コストの削減を達成できるものの、水素ガスの溶解率の向上および安全性の確保という課題が残る。
【0006】
【発明が解決しようとする課題】
そこで本発明は、処理作業を簡潔化して大量処理を効率化し、各種コストを削減した上で、水素ガスの溶解率の向上および安全性の確保を課題とし、この課題を解決する還元電位調整方法およびその装置の提供を目的とする。
【0007】
【課題を解決するための手段】
上記した目的を達成するために本発明は下記の技術的手段を採用した。
その技術的手段は、微細気泡化した水素ガスを液中に溶解する工程、液中で分離した未溶解の水素ガスを回収する工程、回収した水素ガスを微細気泡化して液中に溶解する工程を含む還元電位調整方法である。(請求項1)
【0008】
さらには、一方の水槽において、微細気泡化した水素ガスを液中に溶解する工程、液中で分離した未溶解の水素ガスを回収する工程、他方の水槽において、前記回収した水素ガスを微細気泡化して液中に溶解する工程、回収した一部の低濃度水素ガスおよび水素ガス以外の液中溶存ガスを排気する工程を含む還元電位調整方法である。(請求項2)
【0009】
【発明の実施の形態】
請求項1の方法は、図1および図2に示すように、水槽1内で水素ガスを微細気泡化して液中に噴出させる噴出部2と、液中で分離した未溶解の水素ガスを回収する回収部3と、回収部3で回収された水素ガスを微細気泡化して液中に噴出させる副噴出部4とを含む還元電位調整装置Aによって実現できる。(請求項3)
【0010】
また、請求項2の方法は、図3および図4に示すように、少なくとも主水槽1Aと副水槽1Bを含み、主水槽1Aには、水槽内で水素ガスを微細気泡化して液中に噴出させる噴出部2と、液中で分離した未溶解の水素ガスを回収する回収部3とを含み、副水槽1Bには、回収部3で回収された水素ガスを微細気泡化して液中に噴出させる副噴出部4と、回収した一部の低濃度水素ガスおよび水素ガス以外の液中溶存ガスを排気する排気部6とを含む還元電位調整装置Aによって実現できる。(請求項4)
【0011】
請求項1の還元電位調整方法および請求項3の還元電位調整装置によれば、噴出部2から液中に噴出される微細気泡化した水素ガスが未脱気の液中に溶解される。
一部未溶解の水素ガスは液外へ放出されるが、この水素ガスは回収部3で回収され、回収された水素ガスが副噴出部4から液中に微細気泡化状に噴出して溶解される。
【0012】
つまり、前記処理動作を1サイクルとしてこれを連続して行うことによって、液外へ放出される未溶解の水素ガスを水槽内で残留させることなく、その都度回収・噴出して溶解させるので、水素ガスの溶解率の向上が実現する。
さらに、液体を脱気処理することなく前記した溶解処理を行うので、処理作業が簡素化されて大量の溶解処理を効率的に行うことができる。
また、液中の溶存ガスが出現しても、当該溶存ガスは液外へ放出される未溶解の水素ガスとともに回収・噴出して液中に溶解されるので、溶存ガスと水素ガスが混合することによる危険性を有するガスの発生を抑制することができる。
したがって、処理作業を簡潔化して大量処理を効率化し、各種コストを削減した上で、水素ガスの溶解率の向上および安全性の確保を実現した還元電位調整方法およびその装置を提供することができる。
【0013】
また、請求項2の還元電位調整方法および請求項4の還元電位調整装置によれば、噴出部2から噴出される微細気泡化した水素ガスが主水槽1A内の未脱気の液中に溶解される。
一部未溶解の水素ガスは液外へ放出されるが、この水素ガスは回収部3で回収され、回収された水素ガスが副噴出部4から副水槽1B内の未脱気の液中に微細気泡化状に噴出して溶解される。
副水槽1Bに噴出される水素ガスは、主水槽1Aの液中で溶解せずに分離したものであって、濃度的には主水槽1Aに噴出される水素ガスよりも低濃度であるので、副水槽1B内で放出される未溶解の水素ガスは最も低濃度となる。
そして、前記最も低濃度の水素ガスおよび放出される液中の溶存ガスは水槽外へ排気される。
【0014】
つまり、前記処理動作を1サイクルとしてこれを連続して行うことによって、液外へ放出される未溶解の水素ガスを水槽内で残留させることなく、その都度回収・噴出・溶解・排気させるので、水素ガスの溶解率の向上が実現するとともに、溶存ガスと水素ガスが混合することによる危険性を有するガスの発生を抑制することができる。
さらに、液体を脱気処理することなく前記した溶解処理を行うので、処理作業が簡素化されて大量の溶解処理を効率的に行うことができる。
したがって、本発明によっても、処理作業を簡潔化して大量処理を効率化し、各種コストを削減した上で、水素ガスの溶解率の向上および安全性の確保を実現した還元電位調整方法およびその装置を提供することができる。
【0015】
請求項4に記載の還元電位調整装置である場合、好ましくは、主水槽1Aと副水槽1Bを連通(請求項5)し、比較的溶解水素濃度が高い主水槽1A内の液体と溶存水素濃度が低い副水槽1B内の液体とを混合する構成である。
請求項5の発明によれば、双方の水槽内における液体の溶解水素濃度を自動的に同濃度にして排水することができる。
【0016】
【実施例】
以下、本発明の実施例を図面に基づいて説明すると、図1は第1実施例、図2は第2実施例、図3は第3実施例、図4は第4実施例を示している。
第1実施例および第2実施例の還元電位調整装置Aは、請求項1の還元電位調整方法を実施するための請求項3に対応する装置である。
第3実施例および第4実施例の還元電位調整装置Aは、請求項2の還元電位調整方法を実施するための請求項4に対応する装置である。
【0017】
第1実施例の還元電位調整装置Aは、請求項1の発明を実施するごく基本的な形態のものであり、水槽1と、噴出部2と、回収部3と、副噴出部4と、排水部5と、水素ガスのタンクTと、水位センサーSとから構成してある。
水槽1は密閉状とすることが可能なものであり、密閉することによって液外から放出される未溶解の水素ガスおよび液体溶存ガスの水槽外への漏出を防止している。
排水部5は、水槽1内の液体を排出するためのものであり、バルブ51によって開閉する。
水位センサーSは水槽内の液体の水位を感知し、未溶解水素ガスが放出される空間を容易に確保するものである。
【0018】
噴出部2は、水槽1内の噴出ノズル21と、噴出ノズル21と水槽1内を配管する循環パイプ22と、循環パイプ22の道中に装備されたポンプPと、ポンプPの下流と前記タンクとを配管する導入パイプ23とから構成してある。
【0019】
回収部3は、水槽1内と副噴出部4とを配管する回収パイプ31である。
副噴出部4は、水槽1内の噴出ノズル41と、噴出ノズル41と水槽1内を配管する循環パイプ42と、循環パイプ42の道中に装備されたポンプPから構成してある。
前記回収パイプ31は、前記ポンプPの下流側に配管してある。
【0020】
第2実施例の還元電位調整装置Aは、基本的には第1実施例と同様の構成であるので、重複する部位についての説明は同符号を付すことによって省略する。
本実施例の還元電位調整装置Aの水位センサーSは、ボールタップ構造のものであり、一定水位となるまで液体が水槽1内に放水され、一定水位となった時点で液体の放水を停止させるようにしたものである。
また、本実施例の排水部5には、フィルター52が備えられており、このフィルター52によって極めて細かい水素ガスの微細気泡をろ過することによって、排水部5からの水素ガスの流出を防止している。
このフィルター52に関しては、当該装置の作動において、水素ガスの溶解を行いながら排水・液体供給を連続して行う作動に好適なものであり、液中に水素ガスの微細気泡が残留している状態で排水したときに、フィルター52が微細気泡をろ過することで水素ガスの流出を防止する。
【0021】
第3実施例の還元電位調整装置Aは、主水槽1Aと副水槽1Bとを備えたものである。
なお、本実施例についても前記実施例と重複する部位の説明は同符号を付すことにより省略する。
主水槽1Aには前記実施例と同様の噴出部2を配設し、副水槽1Bには前記実施例と同様の副噴出部4を配設してある。
回収部3は主水槽1Aと副噴出部4とに亘って配管してある。
副水槽1Bには、放出された低濃度の未溶解水素ガスおよび液中の溶存ガスを排気する排気部6を備えている。
主水槽1Aと副水槽1Bとは連結管1Cによって連通してある。
【0022】
第4実施例の還元電位調整装置Aは、基本的には第3実施例と同様の構成であるので、重複する部位についての説明は同符号を付すことによって省略する。
本実施例の還元電位調整装置Aには、当該装置の動作を制御して、無人の自動運転を行うための制御部7を備えてある。
制御部7は、溶存水素センサー71、電磁弁72、排気ガス濃度センサー73、排気ファン74、拡散ファン75、ポンプPを接続し、これらの動作を集中制御するようにしている。
【0023】
制御部7の制御を例示すると、あらかじめ、主水槽1A内の液中の溶存水素濃度の上限を設定しておき、溶存水素センサー71が設定された溶存水素濃度を感知すると、制御部7が電磁弁72を閉じて水素ガスの供給を停止するとともに、ポンプPの作動を停止させる制御が可能である。
また、あらかじめ、排気部内の排気ガス濃度の上限を設定しておき、排気ガス濃度センサー73が設定された排気ガス濃度を感知すると、排気ファン74を作動させて外気を排気部6に送風して排気ガスと混合させてその濃度を下げた状態で強制排気する制御が可能である。
さらに、前記排気ファン74の作動と同時に拡散ファン75を作動させて、排気ガスを拡散排気する制御が可能である。
【0024】
なお、なお、本発明は、例示した実施例における構造に限定されるものではなく、特許請求の範囲の各項に記載の範囲において、他の構造にすることも任意である。
【図面の簡単な説明】
【図1】本発明に係る還元電位調整装置の第1実施例を示す模式図。
【図2】同、第2実施例を示す模式図。
【図3】同、第3実施例を示す模式図。
【図4】同、第4実施例を示す模式図。
【符号の説明】
A:還元電位調整装置
1:水槽
1A:主水槽
1B:副水槽
1C:連結管
2:噴出部
3:回収部
4:副噴出部
6:排気部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for adjusting a reduction potential in reducing hydrogen water.
[0002]
[Prior art]
Conventional hydrogen gas dissolving methods used to adjust the reduction potential of reducing hydrogen water include an advanced treatment method in which a liquid is degassed in a first step and a hydrogen gas dissolving treatment is performed in a second step. (For example, see Patent Documents 1 and 2)
There is also a simple processing method for dissolving hydrogen gas by causing hydrogen gas to be made into fine bubbles and flowing into the liquid in the pipe, followed by stirring. (For example, see Patent Document 3)
[0003]
[Patent Document 1]
JP-A-11-77021 ([0005] lines 9 to 22)
[Patent Document 2]
Japanese Patent No. 2890342 ([0005] lines 2 to 11)
[Patent Document 3]
JP-A-2000-354696 ([0004] Lines 1 to 4, [FIG. 1])
[0004]
By the way, the primary treatment in the advanced treatment method includes, for example, vacuum degassing, decompression film degassing, etc., and in any case, requires a degassing device and a management technician thereof, and further requires a considerable processing time. ing.
For the secondary treatment, for example, there are a gas permeable membrane, simple bubbling, in-line mixing, and the like. It is necessary to consider a solution for the treatment of dissolved hydrogen gas.
As described above, in the conventional advanced processing method, it is possible to eliminate the complexity of the processing work by dividing the processing into the primary processing and the secondary processing, to reduce the equipment required for the processing work, the management technician, and to further reduce the processing time and the processing time. The challenge is to reduce the production cost, which is high due to dissolved hydrogen gas processing.
[0005]
As a means for solving the problem in the conventional advanced processing method, if the simple processing method described above is used, the dissolution processing is performed without degassing processing, so that the processing work is not complicated and the production cost is reduced. It seems to do.
However, since hydrogen gas itself is hardly soluble, it is difficult to dissolve a large amount of hydrogen gas in a short time, and there is a possibility that some hydrogen gas may flow out in a bubble state.
In addition, since the degassing process has not been performed, the dissolved gas in the liquid appears as bubbles as the dissolution of the hydrogen gas progresses, and the bubbles of the dissolved gas are mixed with the outflowing hydrogen gas to form a dangerous gas. May occur.
In other words, in the conventional simple processing method, although the processing operation is simplified and efficient processing is possible, and various costs can be reduced, there is a problem of improving the dissolution rate of hydrogen gas and ensuring safety. Will remain.
[0006]
[Problems to be solved by the invention]
Therefore, the present invention aims at improving the dissolution rate of hydrogen gas and ensuring safety after reducing the various costs by simplifying the processing work to increase the efficiency of mass processing, and a reduction potential adjusting method for solving this problem. And the provision of such a device.
[0007]
[Means for Solving the Problems]
To achieve the above object, the present invention employs the following technical means.
The technical means includes a step of dissolving hydrogen gas that has been microbubble into liquid, a step of collecting undissolved hydrogen gas separated in liquid, and a step of dissolving hydrogen gas that has been collected into microbubble. This is a method for adjusting the reduction potential including: (Claim 1)
[0008]
Further, in one of the water tanks, a step of dissolving the microbubble hydrogen gas in the liquid, a step of collecting the undissolved hydrogen gas separated in the liquid, and in the other water tank, The method is a reduction potential adjusting method including a step of converting into a liquid by dissolving in a liquid, and a step of exhausting a part of the recovered low-concentration hydrogen gas and a dissolved gas other than the hydrogen gas in the liquid. (Claim 2)
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
As shown in FIG. 1 and FIG. 2, the method of claim 1 collects an undissolved hydrogen gas separated in the liquid and an ejection part 2 for forming fine bubbles of hydrogen gas in a water tank 1 and ejecting the gas into the liquid. It can be realized by a reduction potential adjusting device A including a recovery unit 3 that performs the recovery and a sub-blowing unit 4 that forms the hydrogen gas recovered by the recovery unit 3 into fine bubbles and blows out into the liquid. (Claim 3)
[0010]
As shown in FIGS. 3 and 4, the method of claim 2 includes at least a main water tank 1A and a sub-water tank 1B. In the main water tank 1A, hydrogen gas is finely bubbled in the water tank and jetted into the liquid. And a recovery section 3 for recovering undissolved hydrogen gas separated in the liquid. The sub-water tank 1B forms the hydrogen gas recovered by the recovery section 3 into fine bubbles and blows out into the liquid. This can be realized by a reduction potential adjusting device A including a sub-ejection unit 4 to be exhausted and an exhaust unit 6 for exhausting a part of the recovered low-concentration hydrogen gas and a dissolved gas other than hydrogen gas. (Claim 4)
[0011]
According to the reduction potential adjusting method of the first aspect and the reduction potential adjusting device of the third aspect, the hydrogen gas that is microbubble ejected into the liquid from the ejection part 2 is dissolved in the undegassed liquid.
Partially undissolved hydrogen gas is released out of the liquid, but this hydrogen gas is recovered by the recovery unit 3, and the recovered hydrogen gas is jetted out of the sub-jet unit 4 into the liquid in the form of fine bubbles to be dissolved. Is done.
[0012]
In other words, by continuously performing this processing operation as one cycle, the undissolved hydrogen gas released outside the liquid is recovered and jetted and dissolved each time without remaining in the water tank. An improvement in the gas dissolution rate is realized.
Further, since the above-described dissolution treatment is performed without degassing the liquid, the treatment operation is simplified, and a large amount of dissolution treatment can be efficiently performed.
In addition, even if a dissolved gas in the liquid appears, the dissolved gas is recovered and ejected together with the undissolved hydrogen gas released outside the liquid and dissolved in the liquid, so that the dissolved gas and the hydrogen gas are mixed. Therefore, generation of a gas having a risk due to this can be suppressed.
Therefore, it is possible to provide a reduction potential adjusting method and a device for realizing an improvement in the dissolution rate of hydrogen gas and ensuring safety while reducing processing costs by simplifying the processing operation and increasing the efficiency of mass processing. .
[0013]
Further, according to the reduction potential adjusting method of the second aspect and the reduction potential adjusting apparatus of the fourth aspect, the hydrogen gas that has been microbubbled and ejected from the ejection portion 2 is dissolved in the undegasified liquid in the main water tank 1A. Is done.
Partially undissolved hydrogen gas is released out of the liquid, but this hydrogen gas is recovered by the recovery unit 3 and the recovered hydrogen gas is discharged from the sub-jet unit 4 into the undegassed liquid in the sub-water tank 1B. It is ejected and dissolved in the form of fine bubbles.
The hydrogen gas spouted into the sub-tank 1B is separated without dissolving in the liquid in the main water tank 1A and has a lower concentration than the hydrogen gas spouted into the main water tank 1A. The undissolved hydrogen gas released in the sub water tank 1B has the lowest concentration.
Then, the lowest concentration hydrogen gas and the dissolved gas in the released liquid are exhausted to the outside of the water tank.
[0014]
In other words, by continuously performing the processing operation as one cycle, the undissolved hydrogen gas released outside the liquid is not left in the water tank, but is recovered, jetted, dissolved, and exhausted each time. An improvement in the dissolution rate of hydrogen gas is realized, and generation of a gas having a risk due to mixing of the dissolved gas and the hydrogen gas can be suppressed.
Further, since the above-described dissolution treatment is performed without degassing the liquid, the treatment operation is simplified, and a large amount of dissolution treatment can be efficiently performed.
Therefore, according to the present invention, a reduction potential adjusting method and an apparatus for realizing an improvement in the dissolution rate of hydrogen gas and ensuring safety while reducing the various costs by simplifying the processing operation to increase the efficiency of mass processing are also provided. Can be provided.
[0015]
In the case of the reduction potential adjusting device according to claim 4, the main water tank 1A and the auxiliary water tank 1B are preferably communicated with each other (claim 5), and the liquid in the main water tank 1A having a relatively high dissolved hydrogen concentration and the dissolved hydrogen concentration are preferably used. Is mixed with the liquid in the auxiliary water tank 1B having a low water content.
According to the fifth aspect of the present invention, it is possible to automatically set the dissolved hydrogen concentration of the liquid in both water tanks to the same concentration and to drain the water.
[0016]
【Example】
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a first embodiment, FIG. 2 shows a second embodiment, FIG. 3 shows a third embodiment, and FIG. 4 shows a fourth embodiment. .
The reduction potential adjusting device A of the first embodiment and the second embodiment is a device corresponding to claim 3 for implementing the reduction potential adjusting method of claim 1.
The reduction potential adjusting device A according to the third and fourth embodiments is a device corresponding to claim 4 for implementing the reduction potential adjusting method according to claim 2.
[0017]
The reduction potential adjusting device A of the first embodiment is of a very basic form for carrying out the invention of claim 1, and includes a water tank 1, an ejection part 2, a recovery part 3, a sub-ejection part 4, It comprises a drain section 5, a tank T for hydrogen gas, and a water level sensor S.
The water tank 1 can be made in a closed state, and by closing the water tank 1, leakage of undissolved hydrogen gas and liquid dissolved gas discharged from outside of the liquid to the outside of the water tank is prevented.
The drain 5 is for discharging the liquid in the water tank 1 and is opened and closed by a valve 51.
The water level sensor S senses the water level of the liquid in the water tank and easily secures a space from which undissolved hydrogen gas is released.
[0018]
The ejection part 2 includes an ejection nozzle 21 in the water tank 1, a circulation pipe 22 for piping the ejection nozzle 21 and the inside of the water tank 1, a pump P provided in the course of the circulation pipe 22, a downstream of the pump P, and the tank. And an introduction pipe 23 for piping.
[0019]
The recovery unit 3 is a recovery pipe 31 that connects the inside of the water tank 1 and the sub-jet unit 4.
The sub-ejection unit 4 includes an ejection nozzle 41 in the water tank 1, a circulation pipe 42 for piping the ejection nozzle 41 and the inside of the water tank 1, and a pump P provided on the way of the circulation pipe 42.
The recovery pipe 31 is provided downstream of the pump P.
[0020]
Since the reduction potential adjusting device A of the second embodiment has basically the same configuration as that of the first embodiment, the description of the overlapping portions will be omitted by attaching the same reference numerals.
The water level sensor S of the reduction potential adjusting device A of the present embodiment is of a ball tap structure, and the liquid is discharged into the water tank 1 until the liquid level reaches a certain level, and the discharge of the liquid is stopped when the level reaches the certain level. It was made.
Further, a filter 52 is provided in the drain section 5 of the present embodiment, and the filter 52 filters out extremely fine hydrogen gas bubbles, thereby preventing the outflow of hydrogen gas from the drain section 5. I have.
This filter 52 is suitable for an operation of continuously performing drainage and liquid supply while dissolving hydrogen gas in the operation of the device, and is a state in which fine bubbles of hydrogen gas remain in the liquid. When the water is drained, the filter 52 filters the fine bubbles to prevent the outflow of hydrogen gas.
[0021]
The reduction potential adjusting device A of the third embodiment has a main water tank 1A and a sub water tank 1B.
In this embodiment, the description of the same parts as those in the above embodiment is omitted by attaching the same reference numerals.
The main water tank 1A is provided with the same ejection section 2 as in the above embodiment, and the sub water tank 1B is provided with the same sub ejection section 4 as in the above embodiment.
The recovery part 3 is piped over the main water tank 1A and the sub-spouting part 4.
The sub-water tank 1B is provided with an exhaust unit 6 for exhausting the released low-concentration undissolved hydrogen gas and dissolved gas in the liquid.
The main water tank 1A and the sub water tank 1B are connected by a connecting pipe 1C.
[0022]
Since the reduction potential adjusting device A of the fourth embodiment has basically the same configuration as that of the third embodiment, the description of the overlapping portions will be omitted by attaching the same reference numerals.
The reduction potential adjusting device A of the present embodiment includes a control unit 7 for controlling the operation of the device and performing unattended automatic operation.
The control unit 7 connects the dissolved hydrogen sensor 71, the electromagnetic valve 72, the exhaust gas concentration sensor 73, the exhaust fan 74, the diffusion fan 75, and the pump P to centrally control the operation thereof.
[0023]
As an example of the control of the control unit 7, the upper limit of the dissolved hydrogen concentration in the liquid in the main water tank 1A is set in advance, and when the dissolved hydrogen concentration is detected by the dissolved hydrogen sensor 71, the controller 7 It is possible to control to stop the supply of the hydrogen gas by closing the valve 72 and to stop the operation of the pump P.
In addition, an upper limit of the exhaust gas concentration in the exhaust unit is set in advance, and when the exhaust gas concentration sensor 73 detects the set exhaust gas concentration, the exhaust fan 74 is operated to blow outside air to the exhaust unit 6. It is possible to control to forcibly exhaust gas in a state where it is mixed with exhaust gas to reduce its concentration.
Further, it is possible to control the diffusion fan 75 to operate at the same time as the operation of the exhaust fan 74 to diffuse and exhaust the exhaust gas.
[0024]
It should be noted that the present invention is not limited to the structure in the illustrated embodiment, and other structures are optional within the scope described in the claims.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a first embodiment of a reduction potential adjusting device according to the present invention.
FIG. 2 is a schematic diagram showing a second embodiment.
FIG. 3 is a schematic diagram showing a third embodiment.
FIG. 4 is a schematic diagram showing a fourth embodiment.
[Explanation of symbols]
A: reduction potential adjusting device 1: water tank 1A: main water tank 1B: sub-water tank 1C: connecting pipe 2: ejection section 3: recovery section 4: sub-ejection section 6: exhaust section

Claims (5)

微細気泡化した水素ガスを液中に溶解する工程、
液中で分離した未溶解の水素ガスを回収する工程、
回収した水素ガスを微細気泡化して液中に溶解する工程を含む還元電位調整方法。
A step of dissolving the hydrogen gas that has been made into fine bubbles into the liquid,
Recovering undissolved hydrogen gas separated in the liquid,
A method for adjusting a reduction potential, comprising a step of forming the recovered hydrogen gas into fine bubbles and dissolving the same in a liquid.
一方の水槽において、微細気泡化した水素ガスを液中に溶解する工程、
液中で分離した未溶解の水素ガスを回収する工程、
他方の水槽において、前記回収した水素ガスを微細気泡化して液中に溶解する工程、
回収した一部の低濃度水素ガスおよび水素ガス以外の液中溶存ガスを排気する工程を含む還元電位調整方法。
In one water tank, a step of dissolving the microbubble hydrogen gas in the liquid,
Recovering undissolved hydrogen gas separated in the liquid,
In the other water tank, a step of dissolving the recovered hydrogen gas in liquid by forming the recovered hydrogen gas into fine bubbles,
A reduction potential adjusting method including a step of exhausting a part of the collected low-concentration hydrogen gas and dissolved gas in the liquid other than the hydrogen gas.
水槽内で水素ガスを微細気泡化して液中に噴出させる噴出部と、
液中で分離した未溶解の水素ガスを回収する回収部と、
回収部で回収された水素ガスを微細気泡化して液中に噴出させる副噴出部とを含む還元電位調整装置。
An ejection unit for forming hydrogen gas into fine bubbles in a water tank and ejecting the gas into a liquid;
A recovery unit that recovers undissolved hydrogen gas separated in the liquid,
A reduction potential adjusting device including: a sub-ejection unit for forming hydrogen gas collected in the collection unit into fine bubbles and ejecting the gas into the liquid.
少なくとも主水槽と副水槽を含み、
主水槽には、水槽内で水素ガスを微細気泡化して液中に噴出させる噴出部と、液中で分離した未溶解の水素ガスを回収する回収部とを含み、
副水槽には、回収部で回収された水素ガスを微細気泡化して液中に噴出させる副噴出部と、回収した一部の低濃度水素ガスおよび水素ガス以外の液中溶存ガスを排気する排気部とを含む還元電位調整装置。
Including at least a main tank and a sub tank,
The main water tank includes a jetting unit for forming hydrogen gas into fine bubbles in the water tank and jetting it into the liquid, and a collecting unit for collecting undissolved hydrogen gas separated in the liquid,
The sub-water tank has a sub-jet unit that forms hydrogen gas collected in the collection unit into fine bubbles and jets them into the liquid, and an exhaust that exhausts some of the collected low-concentration hydrogen gas and dissolved gas in the liquid other than hydrogen gas. And a reduction potential adjusting device.
請求項4に記載の還元電位調整装置であって、
主水槽と副水槽が連通されている還元電位調整装置。
The reduction potential adjusting device according to claim 4,
A reduction potential adjusting device in which the main water tank and the auxiliary water tank are connected.
JP2003088274A 2003-03-27 2003-03-27 Reduction potential adjusting process and apparatus for the same Pending JP2004290870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003088274A JP2004290870A (en) 2003-03-27 2003-03-27 Reduction potential adjusting process and apparatus for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003088274A JP2004290870A (en) 2003-03-27 2003-03-27 Reduction potential adjusting process and apparatus for the same

Publications (1)

Publication Number Publication Date
JP2004290870A true JP2004290870A (en) 2004-10-21

Family

ID=33402456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003088274A Pending JP2004290870A (en) 2003-03-27 2003-03-27 Reduction potential adjusting process and apparatus for the same

Country Status (1)

Country Link
JP (1) JP2004290870A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011056498A (en) * 2009-08-12 2011-03-24 Kyushu Institute Of Technology Apparatus and system for generating high-concentration dissolved water
JP5670530B1 (en) * 2013-09-18 2015-02-18 光明理化学工業株式会社 Test gas generator
JP5699232B1 (en) * 2014-02-12 2015-04-08 有限会社ジェニス・ホワイト Hydrogen water production apparatus and production method and storage method thereof
JP2018075560A (en) * 2016-10-28 2018-05-17 トスレック株式会社 Bubble-containing liquid production device and bubble-containing liquid production method
JP2020037067A (en) * 2018-09-03 2020-03-12 日本特殊陶業株式会社 Fine particle extraction device and method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011056498A (en) * 2009-08-12 2011-03-24 Kyushu Institute Of Technology Apparatus and system for generating high-concentration dissolved water
JP5670530B1 (en) * 2013-09-18 2015-02-18 光明理化学工業株式会社 Test gas generator
JP5699232B1 (en) * 2014-02-12 2015-04-08 有限会社ジェニス・ホワイト Hydrogen water production apparatus and production method and storage method thereof
JP2015150472A (en) * 2014-02-12 2015-08-24 有限会社ジェニス・ホワイト Manufacturing device for hydrogen water, and manufacturing method and storage method for hydrogen water
JP2018075560A (en) * 2016-10-28 2018-05-17 トスレック株式会社 Bubble-containing liquid production device and bubble-containing liquid production method
JP7121879B2 (en) 2016-10-28 2022-08-19 トスレック株式会社 Bubble-containing liquid manufacturing device and bubble-containing liquid manufacturing method
JP2020037067A (en) * 2018-09-03 2020-03-12 日本特殊陶業株式会社 Fine particle extraction device and method
JP7207910B2 (en) 2018-09-03 2023-01-18 日本特殊陶業株式会社 Particle extraction device, particle extraction method

Similar Documents

Publication Publication Date Title
JP5950790B2 (en) Wastewater treatment method and system
JP2010012399A (en) Liquid treatment apparatus
US10259731B2 (en) Sludge treatment system and sludge treatment method
KR20160062674A (en) Hydrogen water purifier having hydrogen water creating module
US11219868B2 (en) Device for cleaning and method for cleaning water treatment membrane, and water treatment system
JP2004290870A (en) Reduction potential adjusting process and apparatus for the same
CN106395750B (en) A kind of chlorine gas treatment process of acidic etching waste liquid copper recovery system
JPH05220480A (en) Pure water manufacturing apparatus
JP2008307118A (en) Apparatus for generating carbonated spring
CN211226612U (en) Integrated treatment device for removing hydrogen sulfide in landfill leachate
JP6197913B1 (en) Method and apparatus for treating wastewater containing organic matter
JP2005000882A (en) Apparatus for generating micro bubble
CN214936325U (en) Sewage treatment device adopting ozone purification
KR100788849B1 (en) Water treatment apparatus by ozone
JP2005161174A (en) Gas dissolving method and gas dissolving device
CN208362037U (en) The quality recovery device of acid seawater after a kind of flue gas desulfurization with seawater
CN112499749A (en) Sewage treatment equipment adopting ozone purification
JP2008119611A (en) Apparatus and method for manufacture of gas-dissolved cleaning water
JP3082430U (en) Ozone water generator
JP2004249277A (en) Water treating method and apparatus therefor
JP3156173B2 (en) Pressurized floating purification device
JP2000157854A (en) Method and apparatus for mixing gas and liquid
CN218810782U (en) Catalytic oxidation device for difficultly degraded wastewater
KR102229940B1 (en) Ozone water supplying system
CN219058598U (en) Treatment system for air floatation and ozone catalytic oxidation

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060227

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A02 Decision of refusal

Effective date: 20071225

Free format text: JAPANESE INTERMEDIATE CODE: A02