JP2020037067A - Fine particle extraction device and method - Google Patents
Fine particle extraction device and method Download PDFInfo
- Publication number
- JP2020037067A JP2020037067A JP2018164770A JP2018164770A JP2020037067A JP 2020037067 A JP2020037067 A JP 2020037067A JP 2018164770 A JP2018164770 A JP 2018164770A JP 2018164770 A JP2018164770 A JP 2018164770A JP 2020037067 A JP2020037067 A JP 2020037067A
- Authority
- JP
- Japan
- Prior art keywords
- fine
- liquid
- fine particles
- porous body
- diameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Degasification And Air Bubble Elimination (AREA)
Abstract
Description
本発明は、微細気泡及び固体微粒子を含む液体から固体微粒子を分離して抽出する微粒子抽出装置、及び、微粒子抽出方法に関するものである。 The present invention relates to a fine particle extracting apparatus for separating and extracting solid fine particles from a liquid containing fine bubbles and solid fine particles, and a method for extracting fine particles.
従来、直径1μm〜100μm程度の気泡であるマイクロバブルが知られているが、それよりもさらに細かい直径1μm以下の気泡に対して近年注目が集まっている。このような気泡はウルトラファインバブル(UFB:Ultrafine-Bubble)あるいはナノバブルと呼ばれており、例えば、洗浄、農業、水産業、医療等の様々な分野で利用が拡大しつつある。 Conventionally, microbubbles, which are bubbles having a diameter of about 1 μm to 100 μm, have been known. In recent years, attention has been paid to finer bubbles having a diameter of 1 μm or less. Such bubbles are called Ultrafine-Bubble (UFB) or nanobubbles, and their use is expanding in various fields such as cleaning, agriculture, fisheries, and medical care.
ところが、技術分野によっては、UFBと微粒子とを含む液体から微粒子を分離して抽出する場合などに、UFBの消泡が要求されることもある。しかしながら、UFBは、液体を加圧または減圧したり、沸騰させたりしても、消える訳ではないため、消泡が非常に困難である。そこで、近年、微細気泡を消泡させるための技術が種々提案されている(例えば、非特許文献1及び特許文献1参照)。非特許文献1では、UFBの分離(消泡)方法として、“緩慢凍結融解分離”が有効であることが紹介されている。また、特許文献1には、ナノインプリント用の液体材料中にナノバブル(UFB)等の不純物(パーティクル)が含まれないようにすることで、歩留まりを向上させる技術が開示されている。具体的には、粗液体材料の濾過を行って、UFBを含んだパーティクルをフィルタの一次側に残すことにより、パーティクルを含まない液体材料を得ることができる。
However, depending on the technical field, defoaming of UFB may be required, for example, when separating and extracting fine particles from a liquid containing UFB and fine particles. However, UFB is very difficult to defoam because it does not disappear even if the liquid is pressurized or depressurized or boiled. Therefore, in recent years, various techniques for defoaming fine bubbles have been proposed (for example, see Non-Patent
なお、本発明者らは、非特許文献1に記載の緩慢凍結融解分離を試験的に実施してみた。その結果、微細気泡と微粒子とを含む液体から微粒子を分離して抽出する場合には、微粒子が凝集してしまうことが確認された。さらに、非特許文献1に記載の従来技術は、凍結の速度を制御するための特殊な試験機や、電源を必要とし、連続的な処理が困難であるという問題がある。
In addition, the present inventors experimentally performed the slow freeze-thaw separation described in
また、特許文献1に記載の従来技術を用いて、微細気泡(UFB)と微粒子とを含む液体から微粒子を分離して抽出する場合、微粒子の直径がUFBの直径と大きく異なるときには、濾過によって微粒子を分離することができる。しかし、微粒子の直径がUFBの直径に近い場合(即ち、100nm程度の場合)には、微粒子の分離が困難であると推察される。
In addition, when fine particles are separated and extracted from a liquid containing fine bubbles (UFB) and fine particles by using the conventional technology described in
本発明は上記の課題に鑑みてなされたものであり、その目的は、微細気泡を確実に消泡しつつ固体微粒子を確実に分離して抽出することができる微粒子抽出装置、微粒子抽出方法を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a fine particle extracting apparatus and a fine particle extracting method capable of reliably separating and extracting solid fine particles while reliably eliminating fine bubbles. Is to do.
上記課題を解決するための手段(手段1)としては、微細気泡及び前記微細気泡と同程度の直径を有する固体微粒子を含む液体から前記固体微粒子を分離して抽出する装置であって、上流側面及び下流側面を連通しかつ孔径が前記微細気泡及び前記固体微粒子の直径よりも大きい多数の細孔を有し、前記細孔を介して前記上流側面から前記下流側面に向けて前記液体を通過させることにより、前記微細気泡を消泡する一方、前記固体微粒子を前記液体とともに通過させる多孔体を備えることを特徴とする微粒子抽出装置がある。 Means for solving the above problem (means 1) is an apparatus for separating and extracting the solid fine particles from a liquid containing fine bubbles and solid fine particles having a diameter similar to that of the fine bubbles. And a large number of pores communicating with the downstream side and having a pore size larger than the diameter of the fine bubbles and the solid fine particles, and allowing the liquid to pass from the upstream side to the downstream side through the pores. Accordingly, there is provided a fine particle extraction device comprising a porous body for eliminating the fine bubbles and passing the solid fine particles together with the liquid.
従って、上記手段1に記載の発明では、多孔体の細孔を介して上流側面から下流側面に向けて液体が通過する際に、液体に含まれる微細気泡は、細孔の内壁面に衝突して弾けたり、細孔の内壁面に付着するなどして消泡すると推定される。このため、微細気泡を確実に消泡することができる。また、細孔を介して上流側面から下流側面に向けて液体が通過する際に、微細気泡が消泡する一方、固体微粒子が液体とともに通過する。なお、固体微粒子は、“固体”であるため、“気体”の微粒子である微細気泡とは異なり、衝突したとしても潰れにくい。その結果、多孔体によって固体微粒子を確実に分離して抽出することができる。
Therefore, in the invention described in the
ところで、液体内に存在しうる気泡は、直径が100μmよりも大きい気泡であるミリバブル、直径が100μm以下であるものの1μmよりは大きい気泡であるマイクロバブル、直径が1μm以下の気泡であるウルトラファインバブル(UFB)に分類される。なお、本発明における「微細気泡」とは、上記の気泡のうちマイクロバブル及びウルトラファインバブルをいうものとする。また、液体は、微細気泡に加えて、微細気泡と同程度の直径を有する固体微粒子を含んでいる。ここで、「微細気泡と同程度の直径」とは、例えば、微細気泡の直径±50nm以内の直径をいう。 By the way, the bubbles that can exist in the liquid include a millibubble that is a bubble having a diameter larger than 100 μm, a microbubble that is a bubble having a diameter of 100 μm or less but larger than 1 μm, and an ultrafine bubble that is a bubble having a diameter of 1 μm or less. (UFB). In the present invention, “fine bubbles” refer to microbubbles and ultrafine bubbles among the above-mentioned bubbles. In addition, the liquid contains, in addition to the fine bubbles, solid fine particles having the same diameter as the fine bubbles. Here, the “diameter comparable to that of the fine bubbles” refers to, for example, a diameter of the fine bubbles within a diameter of ± 50 nm.
上記微粒子抽出装置は、上流側面及び下流側面を連通しかつ孔径が微細気泡及び固体微粒子の直径よりも大きい多数の細孔を有する多孔体を備える。なお、多孔体は、例えばセラミック材料からなることが好ましい。多孔体を構成するセラミック材料としては、例えば、アルミナ、窒化アルミニウム、窒化珪素、窒化ホウ素、ジルコニア、チタニア、ムライト、マグネシア、セリア、ドープセリア及びこれらの混合物などを挙げることができる。また、多孔体の形成材料としては、上記のようなセラミックのほか、例えばガラスや金属(ステンレス等)などを用いてもよく、導電性の有無を問わず材料を選択することができる。なお、これらのような無機材料だけではなく、例えば合成樹脂のような有機材料を用いることもできる。 The fine particle extraction device includes a porous body communicating with the upstream side surface and the downstream side surface and having a large number of pores having a pore diameter larger than the diameter of the fine bubbles and the solid fine particles. The porous body is preferably made of, for example, a ceramic material. Examples of the ceramic material constituting the porous body include alumina, aluminum nitride, silicon nitride, boron nitride, zirconia, titania, mullite, magnesia, ceria, doped ceria, and mixtures thereof. Further, as a material for forming the porous body, in addition to the above-described ceramics, for example, glass or metal (such as stainless steel) may be used, and a material can be selected irrespective of conductivity. In addition, not only such inorganic materials but also organic materials such as synthetic resins can be used.
また、上記微粒子抽出装置は、細孔を介して上流側面から下流側面に向けて液体を強制的に通過させる強制通過手段を備えることが好ましい。このようにすれば、液体が、多孔体の細孔を強制的に通過させられるため、細孔を詰まることなく通過する。従って、液体中に含まれる微細気泡を効率良く消泡できるとともに、液体中に含まれる固体微粒子を効率良く分離することができる。さらに、強制通過手段は、液体を多孔体側に圧送する圧送手段であることが好ましい。このようにすれば、液体が加圧した状態で多孔体側に供給されるため、液体が多孔体の細孔を詰まることなく通過する。従って、液体中に含まれる微細気泡をより効率良く消泡できるとともに、液体中に含まれる固体微粒子をより効率良く分離することができる。 Further, it is preferable that the fine particle extraction device includes a forced passage means for forcibly passing the liquid from the upstream side to the downstream side via the fine holes. With this configuration, the liquid is forcibly passed through the pores of the porous body, so that the liquid passes without clogging the pores. Therefore, fine bubbles contained in the liquid can be efficiently defoamed, and solid fine particles contained in the liquid can be efficiently separated. Further, it is preferable that the forced passage means is a pressure feeding means for pressure-feeding the liquid toward the porous body. With this configuration, the liquid is supplied to the porous body side in a pressurized state, so that the liquid passes through the pores of the porous body without clogging. Therefore, the fine bubbles contained in the liquid can be more efficiently defoamed, and the solid fine particles contained in the liquid can be separated more efficiently.
なお、細孔の孔径の大きさは特に限定されないが、例えば、細孔の孔径は、微細気泡及び固体微粒子の直径の2倍以上50倍以下、好ましくは10倍以上20倍以下であることが好ましい。細孔の孔径を微細気泡及び固体微粒子の直径の2倍以上にすることにより、液体が細孔を通過する際の抵抗が小さくなるため、微細気泡の消泡や固体微粒子の分離を素早く行うことができる。また、細孔の孔径を微細気泡及び固体微粒子の直径の50倍以下にすることにより、液体が細孔を通過する際に、液体に含まれる微細気泡が細孔の内壁面に衝突して弾けやすくなるため、微細気泡を確実に消泡することができる。 The size of the pores is not particularly limited. For example, the pore size of the pores is 2 to 50 times, preferably 10 to 20 times the diameter of the fine bubbles and solid fine particles. preferable. By making the pore diameter twice or more the diameter of fine bubbles and solid fine particles, the resistance of the liquid when passing through the pores is reduced, so that defoaming of fine bubbles and separation of solid fine particles can be performed quickly. Can be. Also, by setting the pore diameter of the pores to 50 times or less the diameter of the fine bubbles and solid fine particles, when the liquid passes through the pores, the fine bubbles contained in the liquid collide with the inner wall surface of the pores and pop. This facilitates the defoaming of fine bubbles.
なお、微粒子抽出装置は、液体を溜める処理槽を備え、処理槽内に多孔体が配置されることが好ましい。このようにすれば、処理槽に溜めた液体を処理槽に配置した多孔体に接触させることができるため、液体に含まれる微細気泡を効率良く消泡できるとともに、液体に含まれる固体微粒子を効率良く分離することができる。 In addition, it is preferable that the fine particle extraction device includes a processing tank for storing liquid, and a porous body is disposed in the processing tank. In this way, the liquid stored in the processing tank can be brought into contact with the porous body arranged in the processing tank, so that the fine bubbles contained in the liquid can be efficiently defoamed and the solid fine particles contained in the liquid can be efficiently removed. Can be separated well.
また、上記課題を解決するための別の手段(手段2)としては、微細気泡及び前記微細気泡と同程度の直径を有する固体微粒子を含む液体から前記固体微粒子を分離して抽出する方法であって、上流側面及び下流側面を連通しかつ孔径が前記微細気泡及び前記固体微粒子の直径よりも大きい多数の細孔を有する多孔体に対して、前記細孔を介して前記上流側面から前記下流側面に向けて前記液体を通過させることにより、前記微細気泡を消泡する一方、前記固体微粒子を前記液体とともに通過させる消泡工程を行うことを特徴とする微粒子抽出方法がある。 Another means (means 2) for solving the above-mentioned problem is a method of separating and extracting the solid fine particles from a liquid containing fine bubbles and solid fine particles having a diameter similar to that of the fine bubbles. The porous body having a large number of pores communicating with the upstream side face and the downstream side face and having a pore diameter larger than the diameters of the microbubbles and the solid fine particles, from the upstream side face to the downstream side face via the pores. A fine particle extraction method characterized by performing a defoaming step of defoaming the microbubbles by passing the liquid toward the liquid, while passing the solid fine particles together with the liquid.
従って、手段2に記載の発明によると、消泡工程において、多孔体の細孔を介して上流側面から下流側面に向けて液体を通過させる際に、液体に含まれる微細気泡は、細孔の内壁面に衝突して弾けたり、細孔の内壁面に付着するなどして消泡すると推定される。このため、微細気泡を確実に消泡することができる。また、消泡工程において、細孔を介して上流側面から下流側面に向けて液体が通過する際に、微細気泡が消泡する一方、固体微粒子が液体とともに通過する。なお、固体微粒子は、“固体”であるため、“気体”の微粒子である微細気泡とは異なり、衝突したとしても潰れにくい。その結果、多孔体によって固体微粒子を確実に分離して抽出することができる。
Therefore, according to the invention described in the
なお、消泡工程では、細孔を介して上流側面から下流側面に向けて液体を強制的に通過させることが好ましい。このようにすれば、液体が、多孔体の細孔を強制的に通過させられるため、細孔を詰まることなく通過する。従って、液体中に含まれる微細気泡を効率良く消泡できるとともに、液体中に含まれる固体微粒子を効率良く分離することができる。さらに、消泡工程では、液体を多孔体側に圧送することにより、液体を強制的に通過させることが好ましい。このようにすれば、液体が加圧した状態で多孔体側に供給されるため、液体が多孔体の細孔を詰まることなく通過する。従って、液体中に含まれる微細気泡をより効率良く消泡できるとともに、液体中に含まれる固体微粒子をより効率良く分離することができる。 In the defoaming step, it is preferable to force the liquid to pass from the upstream side to the downstream side via the fine holes. With this configuration, the liquid is forcibly passed through the pores of the porous body, so that the liquid passes without clogging the pores. Therefore, fine bubbles contained in the liquid can be efficiently defoamed, and solid fine particles contained in the liquid can be efficiently separated. Further, in the defoaming step, it is preferable to force the liquid to pass by forcing the liquid to the porous body side. With this configuration, the liquid is supplied to the porous body side in a pressurized state, so that the liquid passes through the pores of the porous body without clogging. Therefore, the fine bubbles contained in the liquid can be more efficiently defoamed, and the solid fine particles contained in the liquid can be separated more efficiently.
なお、消泡工程において消泡される微細気泡の直径、及び、消泡工程において多孔体を通過する固体微粒子の直径は、それぞれ1μm未満であることが好ましい。このようにすれば、消泡工程において、直径1μm未満のウルトラファインバブルを微細気泡として消泡させることができる。 In addition, it is preferable that the diameter of the fine bubbles to be defoamed in the defoaming step and the diameter of the solid fine particles passing through the porous body in the defoaming step are each less than 1 μm. In this way, in the defoaming step, ultrafine bubbles having a diameter of less than 1 μm can be defoamed as fine bubbles.
以下、本発明を具体化した一実施形態を図面に基づき詳細に説明する。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
図1に示されるように、本実施形態の微粒子抽出装置10は、微細気泡W1及び固体微粒子W2を含む純水W3(液体)から固体微粒子W2を分離して抽出する装置である。微細気泡W1は、純水W3内に収容された半導体を洗浄するためのものであり、直径が1μm以下(具体的には100nm)の気泡(UFB)である。一方、固体微粒子W2は、微細気泡W1と同一の直径(具体的には100nm)を有するポリスチレン粒子である。また、微粒子抽出装置10は、純水W3を溜める処理槽11を備えている。処理槽11は、ステンレス板を用いて略円筒状に形成されており、天井板12、底板13及び側板14を備えている。
As shown in FIG. 1, the fine
図1,図2に示されるように、微粒子抽出装置10は多孔体21を備えている。多孔体21は、第1端(図1では上端)及び第2端(図1では下端)のうち第2端のみにおいて開口し、長さ20mm、外径12mm、内径9mm、厚さ1.5mmの中空円筒状を成す部材である。詳述すると、多孔体21は、処理槽11内に配置されており、第2端側の端部に圧入された固定治具15を介して処理槽11の底板13に取り付けられている。なお、底板13には、同底板13の中央部を貫通する貫通孔16が設けられており、貫通孔16内には固定治具15が嵌め込まれている。よって、多孔体21の内部空間は処理槽11の外部に連通する。
As shown in FIGS. 1 and 2, the fine
また、多孔体21は、純水W3が接触する上流側面22(外側面)と、上流側面22の反対側に位置する下流側面23(内側面)とを有している。なお、多孔体21は、上流側面22と下流側面23との間で純水W3を透過しうる性質を有する多孔質のセラミック材料(本実施形態ではアルミナ(Al2O3))を用いて形成されている。
Further, the
図2に示されるように、多孔体21は、上流側面22及び下流側面23を連通する多数の細孔24を内部に有することから、好適な液体透過性を有している。多孔体21は、細孔24を介して上流側面22から下流側面23に向けて純水W3を通過させることにより、微細気泡W1を消泡する一方、固体微粒子W2を純水W3とともに通過させるようになっている。なお、多孔体21は、アルミナによって形成された微粒子25を含む部材である。また、細孔24の孔径A1は、微細気泡W1の直径(100nm)や固体微粒子W2の直径(100nm)よりも大きく、本実施形態では1500nmとなっている。即ち、孔径A1は、微細気泡W1及び固体微粒子W2の直径の15倍である。
As shown in FIG. 2, the
また、図4に示されるように、処理槽11には、純水W3を多孔体21側に圧送する圧送手段である気体供給源31(窒素ボンベ)が取付可能となっている。具体的に言うと、処理槽11の天井板12には、同天井板12の中央部を貫通する供給口17が設けられている。そして、処理槽11には、気体供給源31から供給口17を介して処理槽11内に気体W4(本実施形態では窒素)を供給する気体供給流路32が接続されている。そして、気体供給源31から処理槽11内に気体W4が供給されると、処理槽11内の純水W3は、多孔体21側に押されて、多孔体21の細孔24を通過するようになる。即ち、気体供給源31は、細孔24を介して上流側面22から下流側面23に向けて純水W3を強制的に通過させる強制通過手段としての機能を有している。
As shown in FIG. 4, a gas supply source 31 (nitrogen cylinder), which is a pumping means for pumping pure water W3 toward the
次に、純水W3から固体微粒子W2を分離して抽出する方法(微粒子抽出方法)を説明する。 Next, a method of separating and extracting the solid fine particles W2 from the pure water W3 (fine particle extracting method) will be described.
まず、微細気泡W1及び固体微粒子W2を含む純水W3を容器41内に入れる。次に、容器41内の純水W3を、供給口17を介して処理槽11内に注ぎ込む(図3参照)。そして、微細気泡W1を消泡する消泡工程を行う。具体的には、気体供給源31から気体供給流路32を介して処理槽11内に気体W4を供給する(図4参照)。これに伴い、処理槽11内の純水W3は、処理槽11内に供給された気体W4に押圧され、同じく処理槽11内にある多孔体21側に圧送される。なお、純水W3は、所定の圧力(本実施形態では0.3MPaG)に加圧した状態で多孔体21の上流側面22(外側面)に接触する。このとき、純水W3は、多孔体21が有する細孔24を介して上流側面22から下流側面23(内側面)に向けて通過する。その結果、純水W3に含まれる微細気泡W1が、細孔24の内壁面に衝突するなどして消泡する。一方、純水W3に含まれる固体微粒子W2は、純水W3とともに細孔24を通過する。そして、固体微粒子W2を含む純水W3は、細孔24の下流側面23側開口から多孔体21の内部空間に放出され、多孔体21の下方に配置された容器42内に溜められる。なお、この時点で、固体微粒子W2が分離されて抽出される。
First, pure water W3 containing fine bubbles W1 and solid fine particles W2 is put in the
次に、微粒子抽出装置10の製造方法を説明する。
Next, a method for manufacturing the fine
まず、多孔体21を押出成形により作製する。具体的には、平均粒径が5.5μmのアルミナ粉末に対して有機バインダーや水等を添加した後、ミキサーで混合、混錬することにより、粘土状の押出成形用秤土を得る。次に、押出成形機を用いて押出成形用秤土の成形を行い、多孔体21の前駆体を得る。そして、成形した前駆体を乾燥することにより、多孔体21の形状(即ち円筒状)と同じ形状の成形体を得る。その後、成形体を脱脂し、大気雰囲気下にて1500℃で焼成することにより、多孔体21を得る。
First, the
そして、多孔体21の第2端側の端部を固定治具15内に圧入する。次に、固定治具15を取り付けた多孔体21を処理槽11内に挿入し、処理槽11の底板13に設けられた貫通孔16に固定治具15を嵌め込む作業を行う。なお、この時点で、処理槽11内に多孔体21が取り付けられ、微粒子抽出装置10が完成する。
Then, the end on the second end side of the
次に、微粒子抽出装置の評価方法及びその結果を説明する。 Next, an evaluation method of the fine particle extraction device and the result thereof will be described.
まず、測定用サンプルを次のように準備した。多孔体の細孔の孔径が1500nmとなる微粒子抽出装置、即ち、本実施形態の微粒子抽出装置10と同じ微粒子抽出装置を準備し、これを実施例とした。一方、多孔体の細孔の孔径が110nmとなる微粒子抽出装置を準備し、これを比較例とした。
First, a measurement sample was prepared as follows. A fine particle extraction device in which the pore diameter of the porous body is 1500 nm, that is, the same fine particle extraction device as the fine
次に、各測定用サンプル(実施例、比較例)に対する液体(純水)の透過試験を行った。具体的には、まず、UFB(直径100nm)とポリスチレン粒子(直径100nm)とを0:1の割合で含む純水、即ち、ポリスチレン粒子のみを含み、UFBを含まない純水を準備した。次に、準備した純水を処理槽内に供給した後、純水を0.3MPaGに加圧した状態で多孔体の外側面に接触させ、多孔体の外側面から内側面に向けて純水を通過させる通過処理を行った。なお、通過処理は、一次側(多孔体の上流側)の純水の重量が半分になるまで継続した。その後、一次側に残った純水と、二次側(多孔体の下流側)の純水と、通過処理前の純水(供給水)とを採取した。さらに、Malvern Panalytical 社製 商品名 ナノサイト(NS−300)を用いて、採取した純水に含まれる粒子数を測定した。以上の結果を図5に示す。
Next, a liquid (pure water) permeation test was performed on each measurement sample (Example, Comparative Example). Specifically, first, pure water containing UFB (
その結果、多孔体の細孔の孔径が110nmとなる比較例では、二次側の粒子数が0%であるため、多孔体の二次側(下流側)にポリスチレン粒子が通過していないことが確認された。一方、多孔体の細孔の孔径が1500nmとなる実施例では、粒子数が20%程度であるため、多孔体の二次側にポリスチレン粒子が通過したことが確認された。以上のことから、細孔の孔径を粒子(ポリスチレン粒子)の直径よりもかなり大きくしなければ、粒子は細孔を通過しないことが証明された。 As a result, in the comparative example in which the pore diameter of the pores of the porous body is 110 nm, since the number of particles on the secondary side is 0%, no polystyrene particles pass through the secondary side (downstream side) of the porous body. Was confirmed. On the other hand, in Examples in which the pore diameter of the porous body was 1500 nm, since the number of particles was about 20%, it was confirmed that the polystyrene particles passed through the secondary side of the porous body. From the above, it was proved that the particles would not pass through the pores unless the pore diameter of the pores was significantly larger than the diameter of the particles (polystyrene particles).
また、測定用サンプルを次のように準備した。UFBとポリスチレン粒子とを1:0の割合で含む純水、即ち、UFBのみを含み、ポリスチレン粒子を含まない純水を準備し、これを試料1とした。また、UFBとポリスチレン粒子とを1:0.5の割合で含む純水を準備し、これを試料2とした。さらに、UFBとポリスチレン粒子とを1:1の割合で含む純水を試料3、UFBとポリスチレン粒子とを1:5の割合で含む純水を試料4とした。
In addition, a sample for measurement was prepared as follows. Pure water containing UFB and polystyrene particles at a ratio of 1: 0, that is, pure water containing only UFB but not containing polystyrene particles was prepared. Further, pure water containing UFB and polystyrene particles at a ratio of 1: 0.5 was prepared, and this was used as
次に、多孔体の細孔の孔径が1500nmとなる上記実施例の微粒子抽出装置に対して、各測定用サンプル(試料1〜4)の透過試験を行った。具体的には、まず、試料1〜4の純水を0.3MPaGに加圧した状態で多孔体の外側面に接触させ、多孔体の外側面から内側面に向けて純水を通過させる通過処理を行った。そして、一次側(多孔体の上流側)の純水の重量が半分になった後、一次側に残った純水、二次側(多孔体の下流側)の純水、通過処理前の純水(供給水)を採取し、ナノサイト(NS−300)を用いて、採取した純水に含まれる粒子数を測定した。以上の結果を図5に示す。
Next, the transmission test of each measurement sample (
その結果、ポリスチレン粒子を含まない試料1では、二次側の粒子数が0%であるため、多孔体の二次側にUFBが通過していないことが確認された。即ち、純水が多孔体を通過する際に、UFBが消泡しているものと推察される。また、UFBとポリスチレン粒子との割合を変化させて透過試験を行った場合(試料2〜4参照)、ポリスチレン粒子の割合が高くなるのに従って、二次側の粒子数も増加することが確認された。以上のことから、純水が多孔体を通過する際に、粒子(ポリスチレン粒子)が液体とともに通過することが証明されたため、上記実施例の微粒子抽出装置を用いれば、UFBと粒子とを含む純水から粒子を分離して抽出できることが確認された。
As a result, in
また、UFBとポリスチレン粒子とを1:1の割合で含む試験水を準備した。そして、本実施形態の多孔体21と同じ多孔体に試験水を透過させることにより、試験水に含まれるUFBを消泡する消泡試験を行った。また、試験水に対して、特許文献1に記載の緩慢冷凍(緩慢統括融解分離)を行うことにより、試験水に含まれるUFBを消泡する消泡試験を行った。さらに、ナノサイト(NS−300)を用いて、消泡試験後の試験水の粒子濃度(pc/ml:ここでは、ポリスチレン粒子の濃度)を測定するとともに、粒子(ポリスチレン粒子)の直径を測定した。以上の結果を図6に示す。
Test water containing UFB and polystyrene particles at a ratio of 1: 1 was prepared. Then, a defoaming test was performed in which the UFB contained in the test water was defoamed by allowing the test water to pass through the same porous body as the
その結果、緩慢冷凍による消泡試験では、直径が220nmとなる範囲まで粒子の存在が確認されたため、ポリスチレン粒子が凝集しているものと推察される。一方、透過による消泡試験では、直径が150nmなる範囲までしか粒子の存在が確認されなかったため、ポリスチレン粒子の凝集は確認されなかった。以上のことから、多孔体に液体を透過させてUFBの消泡を行えば、粒子の凝集を防止できることが証明された。 As a result, in the defoaming test by slow freezing, the presence of particles was confirmed to a range where the diameter was 220 nm, and it is presumed that polystyrene particles were aggregated. On the other hand, in the defoaming test by permeation, since the presence of particles was confirmed only up to the range where the diameter was 150 nm, aggregation of the polystyrene particles was not confirmed. From the above, it was proved that agglomeration of particles could be prevented by defoaming UFB by allowing liquid to pass through the porous body.
従って、本実施形態によれば以下の効果を得ることができる。 Therefore, according to the present embodiment, the following effects can be obtained.
(1)本実施形態の微粒子抽出装置10では、多孔体21の細孔24を介して上流側面22から下流側面23に向けて純水W3が通過する際に、純水W3に含まれる微細気泡W1は、細孔24の内壁面に衝突して弾けたり、細孔24の内壁面に付着するなどして消泡すると推定される。また、微細気泡W1は、多孔体21の表面(上流側面22や下流側面23)に付着することによっても消泡すると推測される。以上のことから、多孔体21に純水W3を通過させることにより、微細気泡W1を確実に消泡することができる。また、細孔24を介して上流側面22から下流側面23に向けて純水W3が通過する際に、微細気泡W1が消泡する一方、固体微粒子W2が純水W3とともに通過する。なお、固体微粒子W2は、“固体”であるため、“気体”の微粒子である微細気泡W1とは異なり、衝突したとしても潰れにくい。その結果、多孔体21によって固体微粒子W2を確実に分離して抽出することができる。
(1) In the fine
(2)本実施形態では、気体W4が加圧した状態で処理槽11内に供給されることに伴い、処理槽11内の純水W3が気体W4によって多孔体21側に押されるようになっている。その結果、純水W3が加圧した状態で多孔体21側に供給されるため、純水W3が多孔体21の細孔24を詰まることなく通過する。従って、純水W3中に含まれる微細気泡W1を効率良く消泡できるとともに、純水W3中に含まれる固体微粒子W2を効率良く分離することができる。また、処理槽11内は、純水W3によって加圧された状態にあるため、多孔体21内の空気が細孔24を通過して処理槽11内に侵入する等の問題を解消することができる。
(2) In the present embodiment, as the gas W4 is supplied into the
(3)非特許文献1に記載の従来技術では、緩慢凍結融解分離を実施することによって気泡を消泡しているが、凍結の速度を制御するための特殊な試験機や、電源を必要とし、連続的な処理が困難であるという問題がある。一方、本実施形態では、多孔体21の細孔24に対して純水W3を透過させるだけで、微細気泡W1を消泡することができる。このため、上記した特殊な試験機を設置する必要がない。しかも、本実施形態の微粒子抽出装置10は、純水W3を多孔体21側に圧送する機能を有している。よって、純水W3は多孔体21を連続的に通過するため、微細気泡W1を連続的に消泡することができる。
(3) In the conventional technology described in
(4)特許文献1に記載の従来技術では、比較的小さい孔径(数十nm)を有するフィルタで液体を濾過しているため、液体がフィルタを通過する際の抵抗が大きくなり、液体に含まれている粒子の分離に時間が掛かってしまうという問題がある。一方、本実施形態では、細孔24の孔径A1(1500nm)が微細気泡W1及び固体微粒子W2の直径(100nm)の15倍にもなる多孔体21を用いて、純水W3(液体)を通過させるようになっている。その結果、純水W3が細孔24を通過する際の抵抗が小さくなるため、微細気泡W1の消泡や固体微粒子W2の分離を素早く行うことができる。
(4) In the prior art described in
なお、上記実施形態を以下のように変更してもよい。 The above embodiment may be modified as follows.
・上記実施形態の多孔体21は、円筒状を成していたが、矩形筒状、楕円筒状、三角筒状等の他の筒状を成していてもよい。また、多孔体は、筒状に限定される訳ではなく、円板状や平板状等の他の形状を成していてもよい。
-Although the
・上記実施形態では、処理槽11内に気体W4を供給する気体供給源31が強制通過手段及び圧送手段として用いられていたが、気体供給源31とは別の構成を強制通過手段及び圧送手段として用いてもよい。例えば、処理槽11内において同処理槽11の軸方向(図1では上下方向)に沿って往復動可能に設けられたピストンなどを、強制通過手段及び圧送手段として用いてもよい。この場合、ピストンを下方に移動させることにより、純水W3が、ピストンに押されて多孔体21側に圧送され、細孔24を介して上流側面22から下流側面23に向けて通過するようになる。
In the above-described embodiment, the
・上記実施形態では、処理槽11内に供給される気体W4として窒素を用いたが、例えば、空気、酸素、アルゴン等の他の気体を用いてもよい。
-In the above-mentioned embodiment, nitrogen was used as gas W4 supplied into
・上記実施形態では、処理槽11内の液体として純水W3を用いたが、これに限定される訳ではなく、純度がそれほど高くない水、例えば水道水などを用いても勿論よい。
In the above embodiment, the pure water W3 is used as the liquid in the
・上記実施形態の固体微粒子W2はポリスチレン粒子であった。しかし、固体微粒子W2は、シリカ、酸化アルミニウム、アクリル樹脂、ホウケイ酸ガラス、石英、金、酸化鉄、白金、パラジウム等の他の材料からなる微粒子であってもよい。 -The solid fine particles W2 of the above embodiment were polystyrene particles. However, the solid fine particles W2 may be fine particles made of other materials such as silica, aluminum oxide, acrylic resin, borosilicate glass, quartz, gold, iron oxide, platinum, and palladium.
・上記実施形態の処理槽11は、ステンレス板を用いて略円筒状に形成されていた。しかし、処理槽11は、ガラス容器や、ポリ塩化ビニルからなるパイプ(塩ビパイプ)を用いて形成されていてもよい。
-The
・上記実施形態の微粒子抽出装置10は、半導体を洗浄するための微細気泡W1の消泡に用いられていたが、例えば、食品や医療器具等を洗浄する微細気泡の消泡に用いてもよい。また、微粒子抽出装置10は、微細気泡を消泡するものであればよく、洗浄用の微細気泡の消泡を行うものでなくてもよい。例えば、微粒子抽出装置10は、農作物の成長促進に用いられる微細気泡を消泡するものであってもよい。
-Although the
次に、特許請求の範囲に記載された技術的思想のほかに、前述した実施形態によって把握される技術的思想を以下に列挙する。 Next, in addition to the technical ideas described in the claims, technical ideas grasped by the above-described embodiments will be listed below.
(1)上記手段1において、前記液体は純水であることを特徴とする微粒子抽出装置。 (1) In the means (1), the liquid is pure water.
(2)上記手段1において、前記細孔の孔径は1000nm以上2000nm以下であることを特徴とする微粒子抽出装置。 (2) The fine particle extraction apparatus according to the above (1), wherein the pore diameter of the fine pores is 1000 nm or more and 2000 nm or less.
(3)上記手段1において、前記多孔体がセラミック材料からなることを特徴とする微粒子抽出装置。 (3) The fine particle extraction device according to the above (1), wherein the porous body is made of a ceramic material.
10…微粒子抽出装置
11…処理槽
21…多孔体
22…上流側面
23…下流側面
24…細孔
31…強制通過手段及び圧送手段としての気体供給源
A1…細孔の孔径
W1…微細気泡
W2…固体微粒子
W3…液体としての純水
DESCRIPTION OF
Claims (11)
上流側面及び下流側面を連通しかつ孔径が前記微細気泡及び前記固体微粒子の直径よりも大きい多数の細孔を有し、前記細孔を介して前記上流側面から前記下流側面に向けて前記液体を通過させることにより、前記微細気泡を消泡する一方、前記固体微粒子を前記液体とともに通過させる多孔体を備えることを特徴とする微粒子抽出装置。 A device for separating and extracting the solid fine particles from a liquid containing fine bubbles and solid fine particles having a diameter similar to the fine bubbles,
The upstream side and the downstream side communicate with each other, and the pore diameter has a large number of pores larger than the diameter of the fine bubbles and the solid fine particles, and the liquid flows from the upstream side to the downstream side through the pores. A fine particle extraction device comprising: a porous body that passes the solid fine particles together with the liquid while allowing the fine bubbles to disappear by passing the fine bubbles.
上流側面及び下流側面を連通しかつ孔径が前記微細気泡及び前記固体微粒子の直径よりも大きい多数の細孔を有する多孔体に対して、前記細孔を介して前記上流側面から前記下流側面に向けて前記液体を通過させることにより、前記微細気泡を消泡する一方、前記固体微粒子を前記液体とともに通過させる消泡工程を行うことを特徴とする微粒子抽出方法。 A method for separating and extracting the solid fine particles from a liquid containing fine particles and solid fine particles having a diameter similar to that of the fine bubbles,
For a porous body that communicates the upstream side surface and the downstream side surface and has a large number of pores whose diameters are larger than the diameters of the microbubbles and the solid fine particles, from the upstream side surface to the downstream side surface through the pores A fine bubble extraction step, wherein a fine bubble is defoamed by allowing the liquid to pass therethrough, while a defoaming step of passing the solid fine particles together with the liquid is performed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018164770A JP7207910B2 (en) | 2018-09-03 | 2018-09-03 | Particle extraction device, particle extraction method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018164770A JP7207910B2 (en) | 2018-09-03 | 2018-09-03 | Particle extraction device, particle extraction method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020037067A true JP2020037067A (en) | 2020-03-12 |
JP7207910B2 JP7207910B2 (en) | 2023-01-18 |
Family
ID=69737203
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018164770A Active JP7207910B2 (en) | 2018-09-03 | 2018-09-03 | Particle extraction device, particle extraction method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7207910B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111504759A (en) * | 2020-04-24 | 2020-08-07 | 大庆油田有限责任公司 | Method and device for dissolving consolidated and deposited fine particles, control method and control device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5916508A (en) * | 1982-07-19 | 1984-01-27 | Oval Eng Co Ltd | Phase separating system |
JPS59207139A (en) * | 1983-04-08 | 1984-11-24 | シレイ・インコ−ポレ−テツド | Defoaming/filtering/resorvoir apparatus |
US5015398A (en) * | 1989-05-09 | 1991-05-14 | Eastman Kodak Company | Method and apparatus for filtration of photographic emulsions |
JPH04901U (en) * | 1990-04-19 | 1992-01-07 | ||
JP2004290870A (en) * | 2003-03-27 | 2004-10-21 | Mori Kikai Seisakusho:Kk | Reduction potential adjusting process and apparatus for the same |
JP2012161710A (en) * | 2011-02-03 | 2012-08-30 | Penta Ocean Construction Co Ltd | Defoaming device |
-
2018
- 2018-09-03 JP JP2018164770A patent/JP7207910B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5916508A (en) * | 1982-07-19 | 1984-01-27 | Oval Eng Co Ltd | Phase separating system |
JPS59207139A (en) * | 1983-04-08 | 1984-11-24 | シレイ・インコ−ポレ−テツド | Defoaming/filtering/resorvoir apparatus |
US5015398A (en) * | 1989-05-09 | 1991-05-14 | Eastman Kodak Company | Method and apparatus for filtration of photographic emulsions |
JPH04901U (en) * | 1990-04-19 | 1992-01-07 | ||
JP2004290870A (en) * | 2003-03-27 | 2004-10-21 | Mori Kikai Seisakusho:Kk | Reduction potential adjusting process and apparatus for the same |
JP2012161710A (en) * | 2011-02-03 | 2012-08-30 | Penta Ocean Construction Co Ltd | Defoaming device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111504759A (en) * | 2020-04-24 | 2020-08-07 | 大庆油田有限责任公司 | Method and device for dissolving consolidated and deposited fine particles, control method and control device |
Also Published As
Publication number | Publication date |
---|---|
JP7207910B2 (en) | 2023-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8567769B2 (en) | Apparatus and method of dissolving a gas into a liquid | |
JP7464390B2 (en) | Fine bubble generator and method for generating fine bubbles | |
JP2013521112A (en) | Apparatus and method for generating foam | |
WO2020054679A1 (en) | Reaction device and reaction method using fine bubbles | |
JP7207910B2 (en) | Particle extraction device, particle extraction method | |
JP7219048B2 (en) | Apparatus for Determining the Presence or Absence of Microbubbles, Method for Determining the Presence or Absence of Microbubbles | |
CN106277150B (en) | Air flotation microbubble aerating device for petroleum water treatment and using method thereof | |
JP7243972B2 (en) | Fine bubble manufacturing device and fine bubble manufacturing method | |
Barmala et al. | Applying Taguchi method for optimization of the synthesis condition of nano-porous alumina membrane by slip casting method | |
CN106115834B (en) | Multi-stage aeration generator and sewage treatment method | |
JP7249110B2 (en) | Microbubble generator, method for generating microbubbles | |
JP2020025912A (en) | Apparatus, method and system for generating fine bubble | |
JP2021154262A (en) | Fine bubble liquid generation device | |
CN215233379U (en) | Venturi type multiphase fluid mixer | |
Janknecht et al. | Membrane ozonation in wastewater treatment | |
JP2018069220A (en) | Gas phase and liquid phase mixture method and device of the same | |
CN113845372A (en) | Ceramic bubble generator and processing method | |
Yamamoto et al. | Small Type Hydrocyclone with a Perforated Inner Cylinder | |
JP2024009637A (en) | Fine bubble generation device and fine bubble generation method | |
Sen Gupta et al. | Numerical simulation of separation factor of NaCl in surface force pore flow model | |
JPH01123604A (en) | Light liquid-heavy liquid countercurrent extractor | |
Jena et al. | A Novel Technique for Pore Structure Characterization without the Use of Any Toxic Material | |
CN105536671A (en) | Preparation of microreactor with multiple holes conducting feeding simultaneously and application of microreactor to preparation of micron nanomaterials | |
Vladisavljevic et al. | Factors influencing droplet size distribution in SPG membrane emulsification | |
HU206999B (en) | Apparatus for gas-dispersing carrying out into fluid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210827 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220721 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220802 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220927 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20221213 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230105 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7207910 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |