JP7207910B2 - Particle extraction device, particle extraction method - Google Patents

Particle extraction device, particle extraction method Download PDF

Info

Publication number
JP7207910B2
JP7207910B2 JP2018164770A JP2018164770A JP7207910B2 JP 7207910 B2 JP7207910 B2 JP 7207910B2 JP 2018164770 A JP2018164770 A JP 2018164770A JP 2018164770 A JP2018164770 A JP 2018164770A JP 7207910 B2 JP7207910 B2 JP 7207910B2
Authority
JP
Japan
Prior art keywords
porous body
liquid
pores
fine particles
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018164770A
Other languages
Japanese (ja)
Other versions
JP2020037067A (en
Inventor
翔太 ▲高▼橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2018164770A priority Critical patent/JP7207910B2/en
Publication of JP2020037067A publication Critical patent/JP2020037067A/en
Application granted granted Critical
Publication of JP7207910B2 publication Critical patent/JP7207910B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Degasification And Air Bubble Elimination (AREA)

Description

本発明は、微細気泡及び固体微粒子を含む液体から固体微粒子を分離して抽出する微粒子抽出装置、及び、微粒子抽出方法に関するものである。 TECHNICAL FIELD The present invention relates to a particle extraction apparatus and a particle extraction method for separating and extracting solid particles from a liquid containing fine bubbles and solid particles.

従来、直径1μm~100μm程度の気泡であるマイクロバブルが知られているが、それよりもさらに細かい直径1μm以下の気泡に対して近年注目が集まっている。このような気泡はウルトラファインバブル(UFB:Ultrafine-Bubble)あるいはナノバブルと呼ばれており、例えば、洗浄、農業、水産業、医療等の様々な分野で利用が拡大しつつある。 Conventionally, microbubbles, which are bubbles with a diameter of about 1 μm to 100 μm, have been known, but in recent years attention has focused on even finer bubbles with a diameter of 1 μm or less. Such bubbles are called ultrafine-bubbles (UFB) or nanobubbles, and their use is expanding in various fields such as cleaning, agriculture, fisheries, and medicine.

ところが、技術分野によっては、UFBと微粒子とを含む液体から微粒子を分離して抽出する場合などに、UFBの消泡が要求されることもある。しかしながら、UFBは、液体を加圧または減圧したり、沸騰させたりしても、消える訳ではないため、消泡が非常に困難である。そこで、近年、微細気泡を消泡させるための技術が種々提案されている(例えば、非特許文献1及び特許文献1参照)。非特許文献1では、UFBの分離(消泡)方法として、“緩慢凍結融解分離”が有効であることが紹介されている。また、特許文献1には、ナノインプリント用の液体材料中にナノバブル(UFB)等の不純物(パーティクル)が含まれないようにすることで、歩留まりを向上させる技術が開示されている。具体的には、粗液体材料の濾過を行って、UFBを含んだパーティクルをフィルタの一次側に残すことにより、パーティクルを含まない液体材料を得ることができる。 However, depending on the technical field, defoaming of UFB may be required when separating and extracting fine particles from a liquid containing UFB and fine particles. However, UFB does not disappear even if the liquid is pressurized, depressurized, or boiled, so it is very difficult to eliminate the foam. Therefore, in recent years, various techniques for defoaming microbubbles have been proposed (see, for example, Non-Patent Document 1 and Patent Document 1). Non-Patent Document 1 introduces that "slow freeze-thaw separation" is effective as a method for separating (defoaming) UFB. Further, Patent Literature 1 discloses a technique for improving yield by preventing impurities (particles) such as nanobubbles (UFB) from being contained in a liquid material for nanoimprinting. Specifically, a particle-free liquid material can be obtained by filtering the crude liquid material and leaving the UFB-laden particles on the primary side of the filter.

特開2016-164977号公報([0149]~[0151]等)JP 2016-164977 A ([0149] to [0151] etc.)

第8回ファインバブル国際シンポジウム(一般社団法人ファインバブル産業会主催)資料、2016年Materials from the 8th Fine Bubble International Symposium (sponsored by the Fine Bubble Industry Association), 2016

なお、本発明者らは、非特許文献1に記載の緩慢凍結融解分離を試験的に実施してみた。その結果、微細気泡と微粒子とを含む液体から微粒子を分離して抽出する場合には、微粒子が凝集してしまうことが確認された。さらに、非特許文献1に記載の従来技術は、凍結の速度を制御するための特殊な試験機や、電源を必要とし、連続的な処理が困難であるという問題がある。 In addition, the present inventors have tried the slow freeze-thaw separation described in Non-Patent Document 1 on a trial basis. As a result, it was confirmed that when the fine particles were separated and extracted from the liquid containing fine bubbles and fine particles, the fine particles aggregated. Furthermore, the conventional technique described in Non-Patent Document 1 requires a special testing machine for controlling the freezing speed and a power supply, and has the problem that continuous processing is difficult.

また、特許文献1に記載の従来技術を用いて、微細気泡(UFB)と微粒子とを含む液体から微粒子を分離して抽出する場合、微粒子の直径がUFBの直径と大きく異なるときには、濾過によって微粒子を分離することができる。しかし、微粒子の直径がUFBの直径に近い場合(即ち、100nm程度の場合)には、微粒子の分離が困難であると推察される。 In addition, when separating and extracting fine particles from a liquid containing fine bubbles (UFB) and fine particles using the conventional technology described in Patent Document 1, when the diameter of the fine particles is greatly different from the diameter of the UFB, the fine particles are filtered. can be separated. However, if the diameter of the microparticles is close to the diameter of the UFB (that is, about 100 nm), separation of the microparticles would be difficult.

本発明は上記の課題に鑑みてなされたものであり、その目的は、微細気泡を確実に消泡しつつ固体微粒子を確実に分離して抽出することができる微粒子抽出装置、微粒子抽出方法を提供することにある。 The present invention has been made in view of the above problems, and its object is to provide a particle extraction device and a particle extraction method that can reliably eliminate fine bubbles and reliably separate and extract solid particles. to do.

上記課題を解決するための手段(手段1)としては、微細気泡及び前記微細気泡と同程度の直径を有する固体微粒子を含む液体から前記固体微粒子を分離して抽出する装置であって、上流側面及び下流側面を連通しかつ孔径が前記微細気泡及び前記固体微粒子の直径の2倍以上50倍以下である多数の細孔を有し、前記細孔を介して前記上流側面から前記下流側面に向けて前記液体を通過させることにより、前記微細気泡を消泡する一方、前記固体微粒子を前記液体とともに通過させる多孔体を備えることを特徴とする微粒子抽出装置がある。 As a means (means 1) for solving the above problems, there is provided an apparatus for separating and extracting the solid fine particles from a liquid containing fine bubbles and solid fine particles having a diameter similar to that of the fine bubbles, comprising: and a large number of pores communicating with the downstream side and having a pore size of 2 to 50 times the diameters of the microbubbles and the solid fine particles, and directed from the upstream side to the downstream side through the pores There is a fine particle extractor characterized by comprising a porous body that allows the solid fine particles to pass through together with the liquid while defoaming the fine air bubbles by allowing the liquid to pass through the porous body.

従って、上記手段1に記載の発明では、多孔体の細孔を介して上流側面から下流側面に向けて液体が通過する際に、液体に含まれる微細気泡は、細孔の内壁面に衝突して弾けたり、細孔の内壁面に付着するなどして消泡すると推定される。このため、微細気泡を確実に消泡することができる。また、細孔を介して上流側面から下流側面に向けて液体が通過する際に、微細気泡が消泡する一方、固体微粒子が液体とともに通過する。なお、固体微粒子は、“固体”であるため、“気体”の微粒子である微細気泡とは異なり、衝突したとしても潰れにくい。その結果、多孔体によって固体微粒子を確実に分離して抽出することができる。 Therefore, in the invention described in the above means 1, when the liquid passes through the pores of the porous body from the upstream side toward the downstream side, the microbubbles contained in the liquid collide with the inner wall surfaces of the pores. It is presumed that the foam disappears when it pops or adheres to the inner wall surface of the pores. Therefore, fine air bubbles can be defoamed with certainty. Further, when the liquid passes through the fine pores from the upstream side toward the downstream side, the fine bubbles disappear, while the solid fine particles pass together with the liquid. Since the solid fine particles are "solid", unlike microbubbles which are "gas" fine particles, even if they collide with each other, they are unlikely to be crushed. As a result, solid fine particles can be reliably separated and extracted by the porous body.

ところで、液体内に存在しうる気泡は、直径が100μmよりも大きい気泡であるミリバブル、直径が100μm以下であるものの1μmよりは大きい気泡であるマイクロバブル、直径が1μm以下の気泡であるウルトラファインバブル(UFB)に分類される。なお、本発明における「微細気泡」とは、上記の気泡のうちマイクロバブル及びウルトラファインバブルをいうものとする。また、液体は、微細気泡に加えて、微細気泡と同程度の直径を有する固体微粒子を含んでいる。ここで、「微細気泡と同程度の直径」とは、例えば、微細気泡の直径±50nm以内の直径をいう。 By the way, the bubbles that can exist in the liquid are millibubbles with a diameter larger than 100 μm, microbubbles with a diameter of 100 μm or less but larger than 1 μm, and ultra-fine bubbles with a diameter of 1 μm or less. (UFB). In addition, the "microbubbles" in this invention shall mean a microbubble and an ultra-fine bubble among said bubbles. In addition to microbubbles, the liquid also contains solid microparticles having a diameter similar to that of the microbubbles. Here, "the same diameter as the microbubbles" means, for example, a diameter within ±50 nm of the diameter of the microbubbles.

上記微粒子抽出装置は、上流側面及び下流側面を連通しかつ孔径が微細気泡及び固体微粒子の直径よりも大きい多数の細孔を有する多孔体を備える。なお、多孔体は、例えばセラミック材料からなることが好ましい。多孔体を構成するセラミック材料としては、例えば、アルミナ、窒化アルミニウム、窒化珪素、窒化ホウ素、ジルコニア、チタニア、ムライト、マグネシア、セリア、ドープセリア及びこれらの混合物などを挙げることができる。また、多孔体の形成材料としては、上記のようなセラミックのほか、例えばガラスや金属(ステンレス等)などを用いてもよく、導電性の有無を問わず材料を選択することができる。なお、これらのような無機材料だけではなく、例えば合成樹脂のような有機材料を用いることもできる。 The fine particle extracting device has a porous body having a large number of pores communicating between the upstream side and the downstream side and having a pore size larger than the diameters of the microbubbles and the solid fine particles. In addition, it is preferable that the porous body is made of, for example, a ceramic material. Examples of ceramic materials forming the porous body include alumina, aluminum nitride, silicon nitride, boron nitride, zirconia, titania, mullite, magnesia, ceria, doped ceria and mixtures thereof. As the material for forming the porous body, in addition to the ceramics described above, for example, glass or metal (stainless steel, etc.) may be used, and the material can be selected regardless of the presence or absence of conductivity. In addition to these inorganic materials, organic materials such as synthetic resins can also be used.

また、上記微粒子抽出装置は、細孔を介して上流側面から下流側面に向けて液体を強制的に通過させる強制通過手段を備えることが好ましい。このようにすれば、液体が、多孔体の細孔を強制的に通過させられるため、細孔を詰まることなく通過する。従って、液体中に含まれる微細気泡を効率良く消泡できるとともに、液体中に含まれる固体微粒子を効率良く分離することができる。さらに、強制通過手段は、液体を多孔体側に圧送する圧送手段であることが好ましい。このようにすれば、液体が加圧した状態で多孔体側に供給されるため、液体が多孔体の細孔を詰まることなく通過する。従って、液体中に含まれる微細気泡をより効率良く消泡できるとともに、液体中に含まれる固体微粒子をより効率良く分離することができる。 Moreover, it is preferable that the fine particle extracting device includes forced passage means for forcibly passing the liquid from the upstream side toward the downstream side through the pores. In this way, the liquid is forced to pass through the pores of the porous body, and therefore passes through the pores without clogging. Accordingly, fine bubbles contained in the liquid can be efficiently defoamed, and solid fine particles contained in the liquid can be efficiently separated. Furthermore, it is preferable that the forced passage means is pressure-feeding means for pressure-feeding the liquid to the porous body side. In this way, the liquid is supplied to the porous body side in a pressurized state, so that the liquid passes through the pores of the porous body without clogging. Therefore, fine bubbles contained in the liquid can be defoamed more efficiently, and solid fine particles contained in the liquid can be separated more efficiently.

孔の孔径は、微細気泡及び固体微粒子の直径の2倍以上50倍以下であり、10倍以上20倍以下であることが好ましい。細孔の孔径を微細気泡及び固体微粒子の直径の2倍以上にすることにより、液体が細孔を通過する際の抵抗が小さくなるため、微細気泡の消泡や固体微粒子の分離を素早く行うことができる。また、細孔の孔径を微細気泡及び固体微粒子の直径の50倍以下にすることにより、液体が細孔を通過する際に、液体に含まれる微細気泡が細孔の内壁面に衝突して弾けやすくなるため、微細気泡を確実に消泡することができる。 The pore diameter of the pores is 2 to 50 times , preferably 10 to 20 times, the diameters of the microbubbles and solid fine particles. By making the pore diameter of the pores twice or more the diameter of the microbubbles and the solid fine particles, the resistance when the liquid passes through the pores becomes small. can be done. In addition, by setting the pore diameter of the pores to be 50 times or less the diameter of the microbubbles and the solid fine particles, when the liquid passes through the pores, the microbubbles contained in the liquid collide with the inner walls of the pores and burst. Therefore, fine air bubbles can be defoamed with certainty.

なお、微粒子抽出装置は、液体を溜める処理槽を備え、処理槽内に多孔体が配置されることが好ましい。このようにすれば、処理槽に溜めた液体を処理槽に配置した多孔体に接触させることができるため、液体に含まれる微細気泡を効率良く消泡できるとともに、液体に含まれる固体微粒子を効率良く分離することができる。 In addition, it is preferable that the microparticle extraction device includes a processing tank for storing liquid, and the porous body is arranged in the processing tank. In this way, the liquid stored in the processing tank can be brought into contact with the porous body arranged in the processing tank, so that fine bubbles contained in the liquid can be efficiently eliminated, and solid fine particles contained in the liquid can be efficiently removed. can be separated well.

また、上記課題を解決するための別の手段(手段2)としては、微細気泡及び前記微細気泡と同程度の直径を有する固体微粒子を含む液体から前記固体微粒子を分離して抽出する方法であって、上流側面及び下流側面を連通しかつ孔径が前記微細気泡及び前記固体微粒子の直径の2倍以上50倍以下である多数の細孔を有する多孔体に対して、前記細孔を介して前記上流側面から前記下流側面に向けて前記液体を通過させることにより、前記微細気泡を消泡する一方、前記固体微粒子を前記液体とともに通過させる消泡工程を行うことを特徴とする微粒子抽出方法がある。 Another means (means 2) for solving the above problem is a method of separating and extracting the solid fine particles from a liquid containing fine bubbles and solid fine particles having a diameter similar to that of the fine bubbles. to a porous body having a large number of pores that communicate with the upstream side and the downstream side and have a pore diameter that is 2 to 50 times the diameter of the fine bubbles and the solid fine particles, through the pores. There is a fine particle extraction method characterized by performing a defoaming step in which the fine bubbles are eliminated by passing the liquid from the upstream side toward the downstream side, and the solid fine particles are passed along with the liquid. .

従って、手段2に記載の発明によると、消泡工程において、多孔体の細孔を介して上流側面から下流側面に向けて液体を通過させる際に、液体に含まれる微細気泡は、細孔の内壁面に衝突して弾けたり、細孔の内壁面に付着するなどして消泡すると推定される。このため、微細気泡を確実に消泡することができる。また、消泡工程において、細孔を介して上流側面から下流側面に向けて液体が通過する際に、微細気泡が消泡する一方、固体微粒子が液体とともに通過する。なお、固体微粒子は、“固体”であるため、“気体”の微粒子である微細気泡とは異なり、衝突したとしても潰れにくい。その結果、多孔体によって固体微粒子を確実に分離して抽出することができる。 Therefore, according to the invention described in means 2, in the defoaming step, when the liquid is passed through the pores of the porous body from the upstream side toward the downstream side, the microbubbles contained in the liquid are removed from the pores. It is presumed that the foam collides with the inner wall surface and bursts, or adheres to the inner wall surface of the pore and disappears. Therefore, fine air bubbles can be defoamed with certainty. Further, in the defoaming step, when the liquid passes through the fine pores from the upstream side toward the downstream side, the microbubbles are defoamed while the solid fine particles pass together with the liquid. Since the solid fine particles are "solid", unlike microbubbles which are "gas" fine particles, even if they collide with each other, they are unlikely to be crushed. As a result, solid fine particles can be reliably separated and extracted by the porous body.

なお、消泡工程では、細孔を介して上流側面から下流側面に向けて液体を強制的に通過させることが好ましい。このようにすれば、液体が、多孔体の細孔を強制的に通過させられるため、細孔を詰まることなく通過する。従って、液体中に含まれる微細気泡を効率良く消泡できるとともに、液体中に含まれる固体微粒子を効率良く分離することができる。さらに、消泡工程では、液体を多孔体側に圧送することにより、液体を強制的に通過させることが好ましい。このようにすれば、液体が加圧した状態で多孔体側に供給されるため、液体が多孔体の細孔を詰まることなく通過する。従って、液体中に含まれる微細気泡をより効率良く消泡できるとともに、液体中に含まれる固体微粒子をより効率良く分離することができる。 In addition, in the defoaming step, it is preferable to force the liquid to pass through the pores from the upstream side toward the downstream side. In this way, the liquid is forced to pass through the pores of the porous body, and therefore passes through the pores without clogging. Accordingly, fine bubbles contained in the liquid can be efficiently defoamed, and solid fine particles contained in the liquid can be efficiently separated. Furthermore, in the defoaming step, it is preferable to forcibly pass the liquid by pumping the liquid to the porous body side. In this way, the liquid is supplied to the porous body side in a pressurized state, so that the liquid passes through the pores of the porous body without clogging. Therefore, fine bubbles contained in the liquid can be defoamed more efficiently, and solid fine particles contained in the liquid can be separated more efficiently.

なお、消泡工程において消泡される微細気泡の直径、及び、消泡工程において多孔体を通過する固体微粒子の直径は、それぞれ1μm未満であることが好ましい。このようにすれば、消泡工程において、直径1μm未満のウルトラファインバブルを微細気泡として消泡させることができる。 It is preferable that the diameter of the microbubbles to be defoamed in the defoaming step and the diameter of the solid fine particles passing through the porous body in the defoaming step are each less than 1 μm. In this way, in the defoaming step, ultra-fine bubbles having a diameter of less than 1 μm can be defoamed as fine bubbles.

本実施形態における微粒子抽出装置を示す概略断面図。1 is a schematic cross-sectional view showing a particle extraction device according to this embodiment; FIG. 多孔体を示す拡大断面図。FIG. 2 is an enlarged cross-sectional view showing a porous body; 消泡工程前の状態を示す説明図。Explanatory drawing which shows the state before a defoaming process. 消泡工程を示す説明図。Explanatory drawing which shows a defoaming process. 供給水に含まれる粒子数を100%とした場合における、一次側及び二次側の純水に含まれる粒子数を示すグラフ。4 is a graph showing the number of particles contained in pure water on the primary side and the secondary side when the number of particles contained in supply water is taken as 100%. 粒子の直径と粒子濃度との関係を示すグラフ。Graph showing the relationship between particle diameter and particle concentration.

以下、本発明を具体化した一実施形態を図面に基づき詳細に説明する。 An embodiment embodying the present invention will be described in detail below with reference to the drawings.

図1に示されるように、本実施形態の微粒子抽出装置10は、微細気泡W1及び固体微粒子W2を含む純水W3(液体)から固体微粒子W2を分離して抽出する装置である。微細気泡W1は、純水W3内に収容された半導体を洗浄するためのものであり、直径が1μm以下(具体的には100nm)の気泡(UFB)である。一方、固体微粒子W2は、微細気泡W1と同一の直径(具体的には100nm)を有するポリスチレン粒子である。また、微粒子抽出装置10は、純水W3を溜める処理槽11を備えている。処理槽11は、ステンレス板を用いて略円筒状に形成されており、天井板12、底板13及び側板14を備えている。 As shown in FIG. 1, the particle extraction apparatus 10 of the present embodiment is an apparatus for separating and extracting solid particles W2 from pure water W3 (liquid) containing fine bubbles W1 and solid particles W2. The fine bubbles W1 are for cleaning the semiconductor contained in the pure water W3, and are bubbles (UFB) with a diameter of 1 μm or less (specifically, 100 nm). On the other hand, the solid fine particles W2 are polystyrene particles having the same diameter (specifically, 100 nm) as the microbubbles W1. In addition, the particle extraction device 10 includes a processing tank 11 that stores pure water W3. The processing bath 11 is formed in a substantially cylindrical shape using a stainless steel plate, and includes a ceiling plate 12, a bottom plate 13 and side plates .

図1,図2に示されるように、微粒子抽出装置10は多孔体21を備えている。多孔体21は、第1端(図1では上端)及び第2端(図1では下端)のうち第2端のみにおいて開口し、長さ20mm、外径12mm、内径9mm、厚さ1.5mmの中空円筒状を成す部材である。詳述すると、多孔体21は、処理槽11内に配置されており、第2端側の端部に圧入された固定治具15を介して処理槽11の底板13に取り付けられている。なお、底板13には、同底板13の中央部を貫通する貫通孔16が設けられており、貫通孔16内には固定治具15が嵌め込まれている。よって、多孔体21の内部空間は処理槽11の外部に連通する。 As shown in FIGS. 1 and 2, the particle extraction device 10 has a porous body 21. As shown in FIG. The porous body 21 has a first end (upper end in FIG. 1) and a second end (lower end in FIG. 1) that is open only at the second end, and has a length of 20 mm, an outer diameter of 12 mm, an inner diameter of 9 mm, and a thickness of 1.5 mm. is a hollow cylindrical member. More specifically, the porous body 21 is placed in the processing bath 11 and attached to the bottom plate 13 of the processing bath 11 via a fixing jig 15 press-fitted into the end on the second end side. The bottom plate 13 is provided with a through hole 16 passing through the central portion of the bottom plate 13 , and a fixing jig 15 is fitted in the through hole 16 . Therefore, the internal space of the porous body 21 communicates with the outside of the processing bath 11 .

また、多孔体21は、純水W3が接触する上流側面22(外側面)と、上流側面22の反対側に位置する下流側面23(内側面)とを有している。なお、多孔体21は、上流側面22と下流側面23との間で純水W3を透過しうる性質を有する多孔質のセラミック材料(本実施形態ではアルミナ(Al))を用いて形成されている。 The porous body 21 also has an upstream side surface 22 (outer side surface) with which the pure water W3 contacts, and a downstream side surface 23 (inner side surface) located on the opposite side of the upstream side surface 22 . The porous body 21 is formed using a porous ceramic material (alumina (Al 2 O 3 ) in this embodiment) having a property of allowing the pure water W3 to pass between the upstream side 22 and the downstream side 23. It is

図2に示されるように、多孔体21は、上流側面22及び下流側面23を連通する多数の細孔24を内部に有することから、好適な液体透過性を有している。多孔体21は、細孔24を介して上流側面22から下流側面23に向けて純水W3を通過させることにより、微細気泡W1を消泡する一方、固体微粒子W2を純水W3とともに通過させるようになっている。なお、多孔体21は、アルミナによって形成された微粒子25を含む部材である。また、細孔24の孔径A1は、微細気泡W1の直径(100nm)や固体微粒子W2の直径(100nm)よりも大きく、本実施形態では1500nmとなっている。即ち、孔径A1は、微細気泡W1及び固体微粒子W2の直径の15倍である。 As shown in FIG. 2, the porous body 21 has inside a large number of pores 24 communicating the upstream side 22 and the downstream side 23, and thus has suitable liquid permeability. The porous body 21 allows the pure water W3 to pass through the pores 24 from the upstream side 22 toward the downstream side 23, thereby defoaming the fine bubbles W1 and allowing the solid fine particles W2 to pass therethrough together with the pure water W3. It has become. The porous body 21 is a member containing fine particles 25 made of alumina. The diameter A1 of the pores 24 is larger than the diameter (100 nm) of the fine bubbles W1 and the diameter (100 nm) of the solid fine particles W2, and is 1500 nm in this embodiment. That is, the pore diameter A1 is 15 times the diameters of the microbubbles W1 and solid fine particles W2.

また、図4に示されるように、処理槽11には、純水W3を多孔体21側に圧送する圧送手段である気体供給源31(窒素ボンベ)が取付可能となっている。具体的に言うと、処理槽11の天井板12には、同天井板12の中央部を貫通する供給口17が設けられている。そして、処理槽11には、気体供給源31から供給口17を介して処理槽11内に気体W4(本実施形態では窒素)を供給する気体供給流路32が接続されている。そして、気体供給源31から処理槽11内に気体W4が供給されると、処理槽11内の純水W3は、多孔体21側に押されて、多孔体21の細孔24を通過するようになる。即ち、気体供給源31は、細孔24を介して上流側面22から下流側面23に向けて純水W3を強制的に通過させる強制通過手段としての機能を有している。 Further, as shown in FIG. 4, the processing tank 11 can be equipped with a gas supply source 31 (nitrogen cylinder), which is a pumping means for pumping the pure water W3 to the porous body 21 side. Specifically, the ceiling plate 12 of the processing bath 11 is provided with a supply port 17 penetrating through the central portion of the ceiling plate 12 . A gas supply channel 32 is connected to the processing bath 11 to supply gas W4 (nitrogen in this embodiment) from the gas supply source 31 through the supply port 17 into the processing bath 11 . When the gas W4 is supplied from the gas supply source 31 into the processing bath 11, the pure water W3 in the processing bath 11 is pushed toward the porous body 21 and passes through the pores 24 of the porous body 21. become. That is, the gas supply source 31 functions as forced passage means for forcibly passing the pure water W3 from the upstream side 22 toward the downstream side 23 through the pores 24 .

次に、純水W3から固体微粒子W2を分離して抽出する方法(微粒子抽出方法)を説明する。 Next, a method for separating and extracting solid fine particles W2 from pure water W3 (fine particle extraction method) will be described.

まず、微細気泡W1及び固体微粒子W2を含む純水W3を容器41内に入れる。次に、容器41内の純水W3を、供給口17を介して処理槽11内に注ぎ込む(図3参照)。そして、微細気泡W1を消泡する消泡工程を行う。具体的には、気体供給源31から気体供給流路32を介して処理槽11内に気体W4を供給する(図4参照)。これに伴い、処理槽11内の純水W3は、処理槽11内に供給された気体W4に押圧され、同じく処理槽11内にある多孔体21側に圧送される。なお、純水W3は、所定の圧力(本実施形態では0.3MPaG)に加圧した状態で多孔体21の上流側面22(外側面)に接触する。このとき、純水W3は、多孔体21が有する細孔24を介して上流側面22から下流側面23(内側面)に向けて通過する。その結果、純水W3に含まれる微細気泡W1が、細孔24の内壁面に衝突するなどして消泡する。一方、純水W3に含まれる固体微粒子W2は、純水W3とともに細孔24を通過する。そして、固体微粒子W2を含む純水W3は、細孔24の下流側面23側開口から多孔体21の内部空間に放出され、多孔体21の下方に配置された容器42内に溜められる。なお、この時点で、固体微粒子W2が分離されて抽出される。 First, pure water W3 containing fine bubbles W1 and solid fine particles W2 is put into the container 41. As shown in FIG. Next, the pure water W3 in the container 41 is poured into the processing bath 11 through the supply port 17 (see FIG. 3). Then, a defoaming step for defoaming the microbubbles W1 is performed. Specifically, the gas W4 is supplied from the gas supply source 31 into the processing tank 11 through the gas supply channel 32 (see FIG. 4). Along with this, the pure water W3 in the processing bath 11 is pressed by the gas W4 supplied into the processing bath 11 and is pressure-fed toward the porous body 21 also in the processing bath 11 . The pure water W3 contacts the upstream side surface 22 (outer side surface) of the porous body 21 while being pressurized to a predetermined pressure (0.3 MPaG in this embodiment). At this time, the pure water W3 passes through the pores 24 of the porous body 21 from the upstream side 22 toward the downstream side 23 (inner side). As a result, the fine bubbles W1 contained in the pure water W3 collide with the inner wall surfaces of the pores 24 and disappear. On the other hand, the solid fine particles W2 contained in the pure water W3 pass through the pores 24 together with the pure water W3. The pure water W3 containing the solid fine particles W2 is discharged into the internal space of the porous body 21 from the openings of the pores 24 on the side of the downstream side 23 and is stored in the container 42 arranged below the porous body 21 . At this point, the solid fine particles W2 are separated and extracted.

次に、微粒子抽出装置10の製造方法を説明する。 Next, a method for manufacturing the particle extraction device 10 will be described.

まず、多孔体21を押出成形により作製する。具体的には、平均粒径が5.5μmのアルミナ粉末に対して有機バインダーや水等を添加した後、ミキサーで混合、混錬することにより、粘土状の押出成形用秤土を得る。次に、押出成形機を用いて押出成形用秤土の成形を行い、多孔体21の前駆体を得る。そして、成形した前駆体を乾燥することにより、多孔体21の形状(即ち円筒状)と同じ形状の成形体を得る。その後、成形体を脱脂し、大気雰囲気下にて1500℃で焼成することにより、多孔体21を得る。 First, the porous body 21 is produced by extrusion molding. Specifically, after adding an organic binder, water, etc. to alumina powder having an average particle size of 5.5 μm, the mixture is mixed and kneaded in a mixer to obtain a clay-like extrusion molding clay. Next, an extruder is used to form a weighed clay for extrusion molding to obtain a precursor of the porous body 21 . By drying the molded precursor, a molded body having the same shape as the porous body 21 (that is, cylindrical) is obtained. After that, the compact is degreased and fired at 1500° C. in an air atmosphere to obtain the porous body 21 .

そして、多孔体21の第2端側の端部を固定治具15内に圧入する。次に、固定治具15を取り付けた多孔体21を処理槽11内に挿入し、処理槽11の底板13に設けられた貫通孔16に固定治具15を嵌め込む作業を行う。なお、この時点で、処理槽11内に多孔体21が取り付けられ、微粒子抽出装置10が完成する。 Then, the end of the porous body 21 on the second end side is press-fitted into the fixing jig 15 . Next, the porous body 21 to which the fixing jig 15 is attached is inserted into the processing tank 11 and the fixing jig 15 is fitted into the through hole 16 provided in the bottom plate 13 of the processing tank 11 . At this point, the porous body 21 is attached in the processing bath 11, and the fine particle extraction apparatus 10 is completed.

次に、微粒子抽出装置の評価方法及びその結果を説明する。 Next, the method for evaluating the particulate extractor and the results thereof will be described.

まず、測定用サンプルを次のように準備した。多孔体の細孔の孔径が1500nmとなる微粒子抽出装置、即ち、本実施形態の微粒子抽出装置10と同じ微粒子抽出装置を準備し、これを実施例とした。一方、多孔体の細孔の孔径が110nmとなる微粒子抽出装置を準備し、これを比較例とした。 First, a sample for measurement was prepared as follows. A microparticle extraction device having pores of a porous body with a pore diameter of 1500 nm, that is, a microparticle extraction device that is the same as the microparticle extraction device 10 of the present embodiment was prepared and used as an example. On the other hand, a microparticle extractor having a pore diameter of 110 nm in the porous body was prepared and used as a comparative example.

次に、各測定用サンプル(実施例、比較例)に対する液体(純水)の透過試験を行った。具体的には、まず、UFB(直径100nm)とポリスチレン粒子(直径100nm)とを0:1の割合で含む純水、即ち、ポリスチレン粒子のみを含み、UFBを含まない純水を準備した。次に、準備した純水を処理槽内に供給した後、純水を0.3MPaGに加圧した状態で多孔体の外側面に接触させ、多孔体の外側面から内側面に向けて純水を通過させる通過処理を行った。なお、通過処理は、一次側(多孔体の上流側)の純水の重量が半分になるまで継続した。その後、一次側に残った純水と、二次側(多孔体の下流側)の純水と、通過処理前の純水(供給水)とを採取した。さらに、Malvern Panalytical 社製 商品名 ナノサイト(NS-300)を用いて、採取した純水に含まれる粒子数を測定した。以上の結果を図5に示す。 Next, a liquid (pure water) permeation test was performed on each measurement sample (Example and Comparative Example). Specifically, first, pure water containing UFB (100 nm diameter) and polystyrene particles (100 nm diameter) at a ratio of 0:1, that is, pure water containing only polystyrene particles and not containing UFB was prepared. Next, after supplying the prepared pure water into the treatment tank, the pure water is brought into contact with the outer surface of the porous body while being pressurized to 0.3 MPaG, and the pure water is applied from the outer surface to the inner surface of the porous body. was passed through. The passing treatment was continued until the weight of pure water on the primary side (upstream side of the porous body) was halved. After that, the pure water remaining on the primary side, the pure water on the secondary side (downstream side of the porous body), and the pure water (supply water) before passing treatment were collected. Furthermore, the number of particles contained in the sampled pure water was measured using Nanosite (trade name, NS-300) manufactured by Malvern Panalytical. The above results are shown in FIG.

その結果、多孔体の細孔の孔径が110nmとなる比較例では、二次側の粒子数が0%であるため、多孔体の二次側(下流側)にポリスチレン粒子が通過していないことが確認された。一方、多孔体の細孔の孔径が1500nmとなる実施例では、粒子数が20%程度であるため、多孔体の二次側にポリスチレン粒子が通過したことが確認された。以上のことから、細孔の孔径を粒子(ポリスチレン粒子)の直径よりもかなり大きくしなければ、粒子は細孔を通過しないことが証明された。 As a result, in the comparative example in which the pore diameter of the pores of the porous body is 110 nm, the number of particles on the secondary side is 0%, so the polystyrene particles do not pass through the secondary side (downstream side) of the porous body. was confirmed. On the other hand, in the example in which the pores of the porous body had a pore diameter of 1500 nm, the number of particles was about 20%, so it was confirmed that the polystyrene particles passed through the secondary side of the porous body. From the above, it was proved that the particles do not pass through the pores unless the pore diameter of the pores is considerably larger than the diameter of the particles (polystyrene particles).

また、測定用サンプルを次のように準備した。UFBとポリスチレン粒子とを1:0の割合で含む純水、即ち、UFBのみを含み、ポリスチレン粒子を含まない純水を準備し、これを試料1とした。また、UFBとポリスチレン粒子とを1:0.5の割合で含む純水を準備し、これを試料2とした。さらに、UFBとポリスチレン粒子とを1:1の割合で含む純水を試料3、UFBとポリスチレン粒子とを1:5の割合で含む純水を試料4とした。 Also, a sample for measurement was prepared as follows. Pure water containing UFB and polystyrene particles at a ratio of 1:0, that is, pure water containing only UFB and no polystyrene particles was prepared. Also, pure water containing UFB and polystyrene particles at a ratio of 1:0.5 was prepared and used as Sample 2. Further, sample 3 was pure water containing UFB and polystyrene particles at a ratio of 1:1, and sample 4 was pure water containing UFB and polystyrene particles at a ratio of 1:5.

次に、多孔体の細孔の孔径が1500nmとなる上記実施例の微粒子抽出装置に対して、各測定用サンプル(試料1~4)の透過試験を行った。具体的には、まず、試料1~4の純水を0.3MPaGに加圧した状態で多孔体の外側面に接触させ、多孔体の外側面から内側面に向けて純水を通過させる通過処理を行った。そして、一次側(多孔体の上流側)の純水の重量が半分になった後、一次側に残った純水、二次側(多孔体の下流側)の純水、通過処理前の純水(供給水)を採取し、ナノサイト(NS-300)を用いて、採取した純水に含まれる粒子数を測定した。以上の結果を図5に示す。 Next, each measurement sample (Samples 1 to 4) was subjected to a permeation test with respect to the fine particle extraction apparatus of the above-described example in which the pore size of the pores of the porous body was 1500 nm. Specifically, first, the pure water of samples 1 to 4 is brought into contact with the outer surface of the porous body in a state of being pressurized to 0.3 MPaG, and the pure water is passed through from the outer surface to the inner surface of the porous body. processed. After the weight of the pure water on the primary side (upstream side of the porous body) is halved, the pure water remaining on the primary side, the pure water on the secondary side (downstream side of the porous body), and the pure water before passing treatment Water (supply water) was sampled, and the number of particles contained in the sampled pure water was measured using Nanosite (NS-300). The above results are shown in FIG.

その結果、ポリスチレン粒子を含まない試料1では、二次側の粒子数が0%であるため、多孔体の二次側にUFBが通過していないことが確認された。即ち、純水が多孔体を通過する際に、UFBが消泡しているものと推察される。また、UFBとポリスチレン粒子との割合を変化させて透過試験を行った場合(試料2~4参照)、ポリスチレン粒子の割合が高くなるのに従って、二次側の粒子数も増加することが確認された。以上のことから、純水が多孔体を通過する際に、粒子(ポリスチレン粒子)が液体とともに通過することが証明されたため、上記実施例の微粒子抽出装置を用いれば、UFBと粒子とを含む純水から粒子を分離して抽出できることが確認された。 As a result, since the number of particles on the secondary side was 0% in sample 1 containing no polystyrene particles, it was confirmed that the UFB did not pass through the secondary side of the porous body. That is, it is presumed that the UFB is defoamed when the pure water passes through the porous body. In addition, when a permeation test was conducted by changing the ratio of UFB and polystyrene particles (see Samples 2 to 4), it was confirmed that the number of particles on the secondary side increased as the ratio of polystyrene particles increased. rice field. From the above, it was proved that particles (polystyrene particles) pass together with the liquid when pure water passes through the porous body. It was confirmed that the particles could be separated and extracted from water.

また、UFBとポリスチレン粒子とを1:1の割合で含む試験水を準備した。そして、本実施形態の多孔体21と同じ多孔体に試験水を透過させることにより、試験水に含まれるUFBを消泡する消泡試験を行った。また、試験水に対して、特許文献1に記載の緩慢冷凍(緩慢統括融解分離)を行うことにより、試験水に含まれるUFBを消泡する消泡試験を行った。さらに、ナノサイト(NS-300)を用いて、消泡試験後の試験水の粒子濃度(pc/ml:ここでは、ポリスチレン粒子の濃度)を測定するとともに、粒子(ポリスチレン粒子)の直径を測定した。以上の結果を図6に示す。 Also, test water containing UFB and polystyrene particles at a ratio of 1:1 was prepared. Then, a defoaming test for defoaming the UFB contained in the test water was performed by passing the test water through the same porous body as the porous body 21 of the present embodiment. In addition, a defoaming test was conducted to defoam UFB contained in the test water by subjecting the test water to slow freezing (slow integrated melting separation) described in Patent Document 1. Furthermore, using Nanosite (NS-300), the particle concentration (pc/ml: here, the concentration of polystyrene particles) in the test water after the defoaming test is measured, and the diameter of the particles (polystyrene particles) is measured. bottom. The above results are shown in FIG.

その結果、緩慢冷凍による消泡試験では、直径が220nmとなる範囲まで粒子の存在が確認されたため、ポリスチレン粒子が凝集しているものと推察される。一方、透過による消泡試験では、直径が150nmなる範囲までしか粒子の存在が確認されなかったため、ポリスチレン粒子の凝集は確認されなかった。以上のことから、多孔体に液体を透過させてUFBの消泡を行えば、粒子の凝集を防止できることが証明された。 As a result, the presence of particles up to a diameter of 220 nm was confirmed in the defoaming test by slow freezing, so it is presumed that the polystyrene particles aggregated. On the other hand, in the antifoaming test by permeation, the existence of particles was confirmed only up to a diameter of 150 nm, so aggregation of polystyrene particles was not confirmed. From the above, it was proved that the agglomeration of the particles can be prevented by defoaming the UFB by permeating the liquid through the porous body.

従って、本実施形態によれば以下の効果を得ることができる。 Therefore, according to this embodiment, the following effects can be obtained.

(1)本実施形態の微粒子抽出装置10では、多孔体21の細孔24を介して上流側面22から下流側面23に向けて純水W3が通過する際に、純水W3に含まれる微細気泡W1は、細孔24の内壁面に衝突して弾けたり、細孔24の内壁面に付着するなどして消泡すると推定される。また、微細気泡W1は、多孔体21の表面(上流側面22や下流側面23)に付着することによっても消泡すると推測される。以上のことから、多孔体21に純水W3を通過させることにより、微細気泡W1を確実に消泡することができる。また、細孔24を介して上流側面22から下流側面23に向けて純水W3が通過する際に、微細気泡W1が消泡する一方、固体微粒子W2が純水W3とともに通過する。なお、固体微粒子W2は、“固体”であるため、“気体”の微粒子である微細気泡W1とは異なり、衝突したとしても潰れにくい。その結果、多孔体21によって固体微粒子W2を確実に分離して抽出することができる。 (1) In the particle extraction device 10 of the present embodiment, when the pure water W3 passes through the pores 24 of the porous body 21 from the upstream side 22 toward the downstream side 23, fine bubbles contained in the pure water W3 It is presumed that W1 collides with the inner wall surface of the pore 24 and bursts, or adheres to the inner wall surface of the pore 24, thereby defoaming. In addition, it is presumed that the microbubbles W1 also disappear when they adhere to the surface of the porous body 21 (the upstream side surface 22 and the downstream side surface 23). As described above, by allowing the pure water W3 to pass through the porous body 21, the microbubbles W1 can be reliably eliminated. Further, when the pure water W3 passes through the pores 24 from the upstream side 22 toward the downstream side 23, the microbubbles W1 disappear, while the solid fine particles W2 pass together with the pure water W3. Since the solid fine particles W2 are "solid", unlike the fine bubbles W1 which are "gas" fine particles, they are unlikely to be crushed even if they collide. As a result, the porous body 21 can reliably separate and extract the solid fine particles W2.

(2)本実施形態では、気体W4が加圧した状態で処理槽11内に供給されることに伴い、処理槽11内の純水W3が気体W4によって多孔体21側に押されるようになっている。その結果、純水W3が加圧した状態で多孔体21側に供給されるため、純水W3が多孔体21の細孔24を詰まることなく通過する。従って、純水W3中に含まれる微細気泡W1を効率良く消泡できるとともに、純水W3中に含まれる固体微粒子W2を効率良く分離することができる。また、処理槽11内は、純水W3によって加圧された状態にあるため、多孔体21内の空気が細孔24を通過して処理槽11内に侵入する等の問題を解消することができる。 (2) In this embodiment, as the gas W4 is supplied into the processing tank 11 in a pressurized state, the pure water W3 in the processing tank 11 is pushed toward the porous body 21 by the gas W4. ing. As a result, since the pure water W3 is supplied to the porous body 21 side under pressure, the pure water W3 passes through the pores 24 of the porous body 21 without clogging. Therefore, the fine bubbles W1 contained in the pure water W3 can be efficiently defoamed, and the solid fine particles W2 contained in the pure water W3 can be efficiently separated. Further, since the inside of the processing tank 11 is in a state of being pressurized by the pure water W3, it is possible to solve the problem that the air in the porous body 21 enters the processing tank 11 through the pores 24. can.

(3)非特許文献1に記載の従来技術では、緩慢凍結融解分離を実施することによって気泡を消泡しているが、凍結の速度を制御するための特殊な試験機や、電源を必要とし、連続的な処理が困難であるという問題がある。一方、本実施形態では、多孔体21の細孔24に対して純水W3を透過させるだけで、微細気泡W1を消泡することができる。このため、上記した特殊な試験機を設置する必要がない。しかも、本実施形態の微粒子抽出装置10は、純水W3を多孔体21側に圧送する機能を有している。よって、純水W3は多孔体21を連続的に通過するため、微細気泡W1を連続的に消泡することができる。 (3) In the prior art described in Non-Patent Document 1, air bubbles are eliminated by performing slow freeze-thaw separation, but a special tester for controlling the freezing speed and a power supply are required. , there is a problem that continuous processing is difficult. On the other hand, in the present embodiment, the microbubbles W1 can be eliminated simply by passing the pure water W3 through the pores 24 of the porous body 21. FIG. Therefore, there is no need to install the special testing machine described above. Moreover, the particle extraction device 10 of this embodiment has a function of pumping the pure water W3 to the porous body 21 side. Therefore, since the pure water W3 continuously passes through the porous body 21, the fine bubbles W1 can be continuously eliminated.

(4)特許文献1に記載の従来技術では、比較的小さい孔径(数十nm)を有するフィルタで液体を濾過しているため、液体がフィルタを通過する際の抵抗が大きくなり、液体に含まれている粒子の分離に時間が掛かってしまうという問題がある。一方、本実施形態では、細孔24の孔径A1(1500nm)が微細気泡W1及び固体微粒子W2の直径(100nm)の15倍にもなる多孔体21を用いて、純水W3(液体)を通過させるようになっている。その結果、純水W3が細孔24を通過する際の抵抗が小さくなるため、微細気泡W1の消泡や固体微粒子W2の分離を素早く行うことができる。 (4) In the prior art described in Patent Document 1, since the liquid is filtered through a filter having a relatively small pore size (several tens of nanometers), resistance increases when the liquid passes through the filter, and the liquid contains There is a problem that it takes a long time to separate the particles contained in the particles. On the other hand, in the present embodiment, pure water W3 (liquid) is passed through the porous body 21 in which the pore diameter A1 (1500 nm) of the pores 24 is 15 times the diameter (100 nm) of the microbubbles W1 and the solid fine particles W2. It is designed to let As a result, the pure water W3 has less resistance when it passes through the pores 24, so that the defoaming of the fine bubbles W1 and the separation of the solid fine particles W2 can be performed quickly.

なお、上記実施形態を以下のように変更してもよい。 In addition, you may change the said embodiment as follows.

・上記実施形態の多孔体21は、円筒状を成していたが、矩形筒状、楕円筒状、三角筒状等の他の筒状を成していてもよい。また、多孔体は、筒状に限定される訳ではなく、円板状や平板状等の他の形状を成していてもよい。 - Although the porous body 21 of the above-described embodiment has a cylindrical shape, it may have another cylindrical shape such as a rectangular cylindrical shape, an elliptical cylindrical shape, or a triangular cylindrical shape. Moreover, the porous body is not limited to a cylindrical shape, and may have other shapes such as a disk shape or a flat plate shape.

・上記実施形態では、処理槽11内に気体W4を供給する気体供給源31が強制通過手段及び圧送手段として用いられていたが、気体供給源31とは別の構成を強制通過手段及び圧送手段として用いてもよい。例えば、処理槽11内において同処理槽11の軸方向(図1では上下方向)に沿って往復動可能に設けられたピストンなどを、強制通過手段及び圧送手段として用いてもよい。この場合、ピストンを下方に移動させることにより、純水W3が、ピストンに押されて多孔体21側に圧送され、細孔24を介して上流側面22から下流側面23に向けて通過するようになる。 In the above-described embodiment, the gas supply source 31 for supplying the gas W4 into the processing tank 11 is used as forced passage means and pressure feeding means. may be used as For example, a piston or the like reciprocatingly provided in the processing tank 11 along the axial direction (vertical direction in FIG. 1) of the processing tank 11 may be used as the forced passage means and pressure feeding means. In this case, by moving the piston downward, the pure water W3 is pushed by the piston and pressure-fed toward the porous body 21, and passes through the pores 24 from the upstream side 22 toward the downstream side 23. Become.

・上記実施形態では、処理槽11内に供給される気体W4として窒素を用いたが、例えば、空気、酸素、アルゴン等の他の気体を用いてもよい。 - In the above embodiment, nitrogen is used as the gas W4 supplied into the processing tank 11, but other gases such as air, oxygen, and argon may be used.

・上記実施形態では、処理槽11内の液体として純水W3を用いたが、これに限定される訳ではなく、純度がそれほど高くない水、例えば水道水などを用いても勿論よい。 - In the above embodiment, the pure water W3 is used as the liquid in the processing bath 11, but the liquid is not limited to this, and water of not so high purity, such as tap water, may of course be used.

・上記実施形態の固体微粒子W2はポリスチレン粒子であった。しかし、固体微粒子W2は、シリカ、酸化アルミニウム、アクリル樹脂、ホウケイ酸ガラス、石英、金、酸化鉄、白金、パラジウム等の他の材料からなる微粒子であってもよい。 - The solid fine particles W2 in the above embodiment were polystyrene particles. However, the solid fine particles W2 may be fine particles made of other materials such as silica, aluminum oxide, acrylic resin, borosilicate glass, quartz, gold, iron oxide, platinum, and palladium.

・上記実施形態の処理槽11は、ステンレス板を用いて略円筒状に形成されていた。しかし、処理槽11は、ガラス容器や、ポリ塩化ビニルからなるパイプ(塩ビパイプ)を用いて形成されていてもよい。 - The processing tank 11 of the above-described embodiment was formed in a substantially cylindrical shape using a stainless steel plate. However, the processing bath 11 may be formed using a glass container or a pipe made of polyvinyl chloride (vinyl chloride pipe).

・上記実施形態の微粒子抽出装置10は、半導体を洗浄するための微細気泡W1の消泡に用いられていたが、例えば、食品や医療器具等を洗浄する微細気泡の消泡に用いてもよい。また、微粒子抽出装置10は、微細気泡を消泡するものであればよく、洗浄用の微細気泡の消泡を行うものでなくてもよい。例えば、微粒子抽出装置10は、農作物の成長促進に用いられる微細気泡を消泡するものであってもよい。 The fine particle extracting apparatus 10 of the above-described embodiment is used for defoaming the microbubbles W1 for cleaning semiconductors, but may be used for defoaming microbubbles for cleaning foods, medical instruments, and the like. . Further, the fine particle extracting device 10 may be a device that eliminates microbubbles, and may not be a device that eliminates microbubbles for cleaning. For example, the particulate extractor 10 may be used for defoaming microbubbles used to promote the growth of crops.

次に、特許請求の範囲に記載された技術的思想のほかに、前述した実施形態によって把握される技術的思想を以下に列挙する。 Next, in addition to the technical ideas described in the claims, technical ideas grasped by the above-described embodiments are listed below.

(1)上記手段1において、前記液体は純水であることを特徴とする微粒子抽出装置。 (1) The fine particle extracting apparatus according to the above means 1, wherein the liquid is pure water.

(2)上記手段1において、前記細孔の孔径は1000nm以上2000nm以下であることを特徴とする微粒子抽出装置。 (2) The fine particle extraction apparatus according to the above means 1, wherein the diameter of the pores is 1000 nm or more and 2000 nm or less.

(3)上記手段1において、前記多孔体がセラミック材料からなることを特徴とする微粒子抽出装置。 (3) The fine particle extracting apparatus according to the above means 1, wherein the porous body is made of a ceramic material.

10…微粒子抽出装置
11…処理槽
21…多孔体
22…上流側面
23…下流側面
24…細孔
31…強制通過手段及び圧送手段としての気体供給源
A1…細孔の孔径
W1…微細気泡
W2…固体微粒子
W3…液体としての純水
REFERENCE SIGNS LIST 10 Fine particle extraction device 11 Treatment tank 21 Porous body 22 Upstream side 23 Downstream side 24 Pore 31 Gas supply source A1 as forced passage means and pressure feed means Pore diameter W1 Fine bubbles W2 Solid fine particles W3: pure water as a liquid

Claims (11)

微細気泡及び前記微細気泡と同程度の直径を有する固体微粒子を含む液体から前記固体微粒子を分離して抽出する装置であって、
上流側面及び下流側面を連通しかつ孔径が前記微細気泡及び前記固体微粒子の直径の2倍以上50倍以下である多数の細孔を有し、前記細孔を介して前記上流側面から前記下流側面に向けて前記液体を通過させることにより、前記微細気泡を消泡する一方、前記固体微粒子を前記液体とともに通過させる多孔体を備えることを特徴とする微粒子抽出装置。
A device for separating and extracting solid fine particles from a liquid containing fine bubbles and solid fine particles having a diameter similar to that of the fine bubbles,
Having a large number of pores communicating the upstream side and the downstream side and having a pore diameter of 2 to 50 times the diameters of the microbubbles and the solid fine particles, and passing through the pores from the upstream side to the downstream side A fine particle extracting device, comprising: a porous body that eliminates the fine bubbles by allowing the liquid to pass through toward the porous body and allows the solid fine particles to pass through together with the liquid.
前記微細気泡及び前記固体微粒子の直径は1μm未満であることを特徴とする請求項1に記載の微粒子抽出装置。 2. The particle extraction device according to claim 1, wherein the fine bubbles and the solid particles have a diameter of less than 1 [mu]m. 前記細孔の孔径は、前記微細気泡及び前記固体微粒子の直径の10倍以上20倍以下であることを特徴とする請求項1または2に記載の微粒子抽出装置。 3. The fine particle extracting device according to claim 1, wherein the diameter of the fine pores is 10 to 20 times the diameters of the microbubbles and the solid fine particles. 前記細孔を介して前記上流側面から前記下流側面に向けて前記液体を強制的に通過させる強制通過手段を備えることを特徴とする請求項1乃至3のいずれか1項に記載の微粒子抽出装置。 4. The particulate extractor according to any one of claims 1 to 3, further comprising forced passage means for forcibly passing said liquid from said upstream side toward said downstream side through said pores. . 前記強制通過手段は、前記液体を前記多孔体側に圧送する圧送手段であることを特徴とする請求項4に記載の微粒子抽出装置。 5. The fine particle extracting apparatus according to claim 4, wherein the forced passage means is pressure-feeding means for pressure-feeding the liquid to the porous body side. 前記液体を溜める処理槽を備え、前記処理槽内に前記多孔体が配置されることを特徴とする請求項1乃至5のいずれか1項に記載の微粒子抽出装置。 6. The fine particle extraction apparatus according to claim 1, further comprising a processing tank for storing the liquid, wherein the porous body is arranged in the processing tank. 微細気泡及び前記微細気泡と同程度の直径を有する固体微粒子を含む液体から前記固体微粒子を分離して抽出する方法であって、
上流側面及び下流側面を連通しかつ孔径が前記微細気泡及び前記固体微粒子の直径の2倍以上50倍以下である多数の細孔を有する多孔体に対して、前記細孔を介して前記上流側面から前記下流側面に向けて前記液体を通過させることにより、前記微細気泡を消泡する一方、前記固体微粒子を前記液体とともに通過させる消泡工程を行うことを特徴とする微粒子抽出方法。
A method for separating and extracting the solid fine particles from a liquid containing fine bubbles and solid fine particles having a diameter similar to that of the fine bubbles,
For a porous body having a large number of pores that communicate with the upstream side and the downstream side and have a pore size that is 2 to 50 times the diameter of the fine bubbles and the solid fine particles, the upstream side is connected through the pores. A method for extracting fine particles, characterized in that a defoaming step is performed in which the fine bubbles are eliminated by passing the liquid from the outlet toward the downstream side, and the solid fine particles are passed along with the liquid.
前記消泡工程において消泡される前記微細気泡の直径、及び、前記消泡工程において前記多孔体を通過する前記固体微粒子の直径は、それぞれ1μm未満であることを特徴とする請求項7に記載の微粒子抽出方法。 8. The method according to claim 7, wherein the diameter of the microbubbles defoamed in the defoaming step and the diameter of the solid fine particles passing through the porous body in the defoaming step are each less than 1 μm. particulate extraction method. 前記細孔の孔径は、前記微細気泡及び前記固体微粒子の直径の10倍以上20倍以下であることを特徴とする請求項7または8に記載の微粒子抽出方法。 9. The fine particle extraction method according to claim 7 or 8, wherein the diameter of the pores is 10 to 20 times the diameters of the microbubbles and the solid fine particles. 前記消泡工程では、前記細孔を介して前記上流側面から前記下流側面に向けて前記液体を強制的に通過させることを特徴とする請求項7乃至9のいずれか1項に記載の微粒子抽出方法。 10. The fine particle extraction according to any one of claims 7 to 9, wherein in the defoaming step, the liquid is forced to pass through the pores from the upstream side toward the downstream side. Method. 前記消泡工程では、前記液体を前記多孔体側に圧送することにより、前記液体を強制的に通過させることを特徴とする請求項10に記載の微粒子抽出方法。 11. The fine particle extraction method according to claim 10, wherein in the defoaming step, the liquid is forcibly passed through the porous body by pumping the liquid toward the porous body.
JP2018164770A 2018-09-03 2018-09-03 Particle extraction device, particle extraction method Active JP7207910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018164770A JP7207910B2 (en) 2018-09-03 2018-09-03 Particle extraction device, particle extraction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018164770A JP7207910B2 (en) 2018-09-03 2018-09-03 Particle extraction device, particle extraction method

Publications (2)

Publication Number Publication Date
JP2020037067A JP2020037067A (en) 2020-03-12
JP7207910B2 true JP7207910B2 (en) 2023-01-18

Family

ID=69737203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018164770A Active JP7207910B2 (en) 2018-09-03 2018-09-03 Particle extraction device, particle extraction method

Country Status (1)

Country Link
JP (1) JP7207910B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111504759A (en) * 2020-04-24 2020-08-07 大庆油田有限责任公司 Method and device for dissolving consolidated and deposited fine particles, control method and control device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004290870A (en) 2003-03-27 2004-10-21 Mori Kikai Seisakusho:Kk Reduction potential adjusting process and apparatus for the same
JP2012161710A (en) 2011-02-03 2012-08-30 Penta Ocean Construction Co Ltd Defoaming device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5916508A (en) * 1982-07-19 1984-01-27 Oval Eng Co Ltd Phase separating system
DE3468170D1 (en) * 1983-04-08 1988-02-04 Shiley Inc Blood filter
US5015398A (en) * 1989-05-09 1991-05-14 Eastman Kodak Company Method and apparatus for filtration of photographic emulsions
JPH04901U (en) * 1990-04-19 1992-01-07

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004290870A (en) 2003-03-27 2004-10-21 Mori Kikai Seisakusho:Kk Reduction potential adjusting process and apparatus for the same
JP2012161710A (en) 2011-02-03 2012-08-30 Penta Ocean Construction Co Ltd Defoaming device

Also Published As

Publication number Publication date
JP2020037067A (en) 2020-03-12

Similar Documents

Publication Publication Date Title
US8567769B2 (en) Apparatus and method of dissolving a gas into a liquid
CN105792918B (en) Ceramic filter
CN101678281B (en) Method for preparing a porous inorganic coating on a porous support using certain pore formers
WO2020054679A1 (en) Reaction device and reaction method using fine bubbles
JPH04240288A (en) Device for separating hydrocyclone and liquid slurry component
JP7207910B2 (en) Particle extraction device, particle extraction method
JP7464390B2 (en) Fine bubble generator and method for generating fine bubbles
JPWO2015141612A1 (en) Separation apparatus, fluid device, separation method and mixing method
JP7219048B2 (en) Apparatus for Determining the Presence or Absence of Microbubbles, Method for Determining the Presence or Absence of Microbubbles
JP7243972B2 (en) Fine bubble manufacturing device and fine bubble manufacturing method
JP2015158197A (en) Exhaust gas purification filter and exhaust gas purification filter manufacturing method
CN106277150B (en) Air flotation microbubble aerating device for petroleum water treatment and using method thereof
JP6199700B2 (en) Organic-inorganic composite and structure
TW201711754A (en) Flow pipe, and jet nozzle pipe and aerosol valve pipe using said flow pipe
JP7249110B2 (en) Microbubble generator, method for generating microbubbles
Boulkrinat et al. Elaboration of tubular titania microfiltration membranes for wastewater treatment
JP2021154262A (en) Fine bubble liquid generation device
Janknecht et al. Membrane ozonation in wastewater treatment
JP2018069220A (en) Gas phase and liquid phase mixture method and device of the same
CN113845372A (en) Ceramic bubble generator and processing method
Yamamoto et al. Small Type Hydrocyclone with a Perforated Inner Cylinder
JPH01123604A (en) Light liquid-heavy liquid countercurrent extractor
Sen Gupta et al. Numerical simulation of separation factor of NaCl in surface force pore flow model
CN109676776A (en) A kind of ceramic membrane and preparation method thereof of aperture distribution gradient
JP2008289964A (en) Apparatus and method for manufacturing catalyst for cleaning exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230105

R150 Certificate of patent or registration of utility model

Ref document number: 7207910

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150