JP2002018253A - Hydrogen dissolving apparatus - Google Patents

Hydrogen dissolving apparatus

Info

Publication number
JP2002018253A
JP2002018253A JP2000205264A JP2000205264A JP2002018253A JP 2002018253 A JP2002018253 A JP 2002018253A JP 2000205264 A JP2000205264 A JP 2000205264A JP 2000205264 A JP2000205264 A JP 2000205264A JP 2002018253 A JP2002018253 A JP 2002018253A
Authority
JP
Japan
Prior art keywords
hydrogen
water
dissolving
gas
raw water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000205264A
Other languages
Japanese (ja)
Other versions
JP4637329B2 (en
Inventor
Junji Mizutani
淳二 水谷
Tomohiro Inoue
智裕 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasakura Engineering Co Ltd
Original Assignee
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co Ltd filed Critical Sasakura Engineering Co Ltd
Priority to JP2000205264A priority Critical patent/JP4637329B2/en
Publication of JP2002018253A publication Critical patent/JP2002018253A/en
Application granted granted Critical
Publication of JP4637329B2 publication Critical patent/JP4637329B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prepare hydrogen dissolved water having necessary concentration by simple constitution. SOLUTION: This hydrogen dissolving apparatus is constituted of a dissolving tank 1 formed so that ultrapure water is supplied to a gas-liquid contact bed 13 filled with a filling material 13a from a water sprinkling nozzle 12 to be stored in a stagnation part 11, a circulating system 2 for circulating water in the tank 1 and feeding prepared hydrogen-containing water, an ejector 3 provided to this system to mix and supply hydrogen, and a supply system 4 for supplying ultrapure water as raw material water. The constitution of the apparatus is simple and highly concentrated hydrogen-containing water with a concentration of about 1 ppm sufficient for the high-degree surface treatment of a semiconductor related product can be prepared.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、供給される原料水
に供給される水素を溶解させて水素含有水にする水素溶
解装置に関し、特に半導体関連製品の高度表面処理分野
に好都合に利用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen dissolving apparatus for dissolving hydrogen supplied to raw water to be supplied into hydrogen-containing water, and is particularly advantageously used in the field of advanced surface treatment of semiconductor-related products. .

【0002】[0002]

【従来の技術】水素含有水の製造装置としては、超純水
を脱気膜モジュールに供給すると共にその中を真空ポン
プによって高度の負圧にして供給された超純水中に溶解
しているガスの飽和度を大幅に低下させ、脱気された超
純水を水素ガス溶解膜モジュールに入れると共に水素ガ
ス供給器でその中に水素ガスを供給し、水素ガスを溶解
させた超純水を製造する水素含有超純水の製造方法が提
案されている(特開平11−77023号公報参照)。
この方法によれば、少ない水素ガス供給量で超純水中に
溶解させる水素濃度を高くすることができる。
2. Description of the Related Art As an apparatus for producing hydrogen-containing water, ultrapure water is supplied to a degassing membrane module, and the inside of the module is dissolved in ultrapure water supplied at a high negative pressure by a vacuum pump. The degree of saturation of the gas is significantly reduced, and the degassed ultrapure water is put into the hydrogen gas dissolving membrane module, and hydrogen gas is supplied into the hydrogen gas dispenser using the hydrogen gas supply device. A method for producing hydrogen-containing ultrapure water to be produced has been proposed (see JP-A-11-77023).
According to this method, the concentration of hydrogen dissolved in ultrapure water can be increased with a small amount of supplied hydrogen gas.

【0003】しかしながら、このような方法では、真空
ポンプや脱気モジュール等が必要になり、装置構成が複
雑化してコスト高になると共に運転操作も面倒である。
又、真空脱気式によって供給水素ガス量を減らしその溶
存効率を高くするためには、水素を溶解させるための膜
モジュールを使用する必要がある。即ち、同公報の実施
例及び比較例を示す表1によれば、水素ガス溶解膜モジ
ュールに代えてインラインミキサーを使用するときに
は、実施例8に示す如く、水素ガス注入量を飽和度換算
で10倍にしても、処理水の溶存水素ガス濃度を0.8
mg/lまでしか上げることができない。
However, such a method requires a vacuum pump, a degassing module, and the like, which complicates the configuration of the apparatus, increases the cost, and complicates the operation.
Further, in order to reduce the amount of supplied hydrogen gas and increase the dissolving efficiency by a vacuum degassing method, it is necessary to use a membrane module for dissolving hydrogen. That is, according to Table 1 showing Examples and Comparative Examples of the publication, when an in-line mixer is used instead of the hydrogen gas dissolving membrane module, as shown in Example 8, the hydrogen gas injection amount is 10% in terms of saturation. Even if it is doubled, the dissolved hydrogen gas concentration of the treated water is 0.8
It can only be increased to mg / l.

【0004】なおこのときには、水素ガス供給量を多く
して溶解効率を5%まで下げているが、水素ガス注入量
を飽和度換算で1.5倍ま減らして水素ガス溶解効率を
29%まで上げた実施例9でも、処理水の溶存水素ガス
濃度が0.7mg/lまで上がっていることから、上記
濃度0.8mg/lはインラインミキサ使用時の上げ得
る濃度の限界に近く、前記10倍の水素ガス注入量をこ
れ以上多くしても溶存水素濃度は余り上昇しないものと
推定される。又、比較例1及び2では、前記10倍の水
素ガス注入量にしても、溶存水素濃度が0.5及び0.
6mg/lになっていて、同様にこの濃度がほぼ限界で
あり、水素量を増加させても溶存水素濃度は高くならな
いものと推定される。
At this time, the dissolving efficiency is reduced to 5% by increasing the supply amount of hydrogen gas. However, the hydrogen gas dissolving efficiency is reduced to 1.5% in terms of saturation, and the dissolution efficiency is reduced to 29%. Also in the ninth embodiment, the concentration of dissolved hydrogen gas in the treated water was increased to 0.7 mg / l. Therefore, the above-mentioned concentration of 0.8 mg / l was close to the limit of the concentration that could be increased when using the inline mixer. It is estimated that the dissolved hydrogen concentration does not increase much even if the double hydrogen gas injection amount is further increased. In Comparative Examples 1 and 2, even when the hydrogen gas injection amount was ten times as large as the above, the dissolved hydrogen concentration was 0.5 and 0.1.
It is 6 mg / l, and this concentration is almost the same limit, and it is estimated that the dissolved hydrogen concentration does not increase even if the amount of hydrogen is increased.

【0005】又、図4にも示す如く、水素を含有した電
子材料用洗浄水の製造方法として、上記と同様に、真空
ポンプ100、脱気膜モジュール101、水素ガス溶解
膜モジュール102等で構成された装置を用いて水素含
有超純水を製造する方法において、薬液貯槽103及び
薬注ポンプ104を設け、希薄アンモニア水を水素含有
超純水に加えてそのPHを調整するようにした方法が提
案されている(特開平11−29794号公報参照)。
As shown in FIG. 4, a method for producing hydrogen-containing cleaning water for electronic materials comprises a vacuum pump 100, a degassing membrane module 101, a hydrogen gas dissolving membrane module 102, and the like, as described above. In the method for producing hydrogen-containing ultrapure water using the prepared apparatus, there is a method in which a chemical solution storage tank 103 and a chemical injection pump 104 are provided, and the pH is adjusted by adding diluted ammonia water to the hydrogen-containing ultrapure water. It has been proposed (see JP-A-11-29794).

【0006】この方法では、PHを8〜11に調整する
ために、極微量のアンモニア水を注入できるように、希
釈したアンモニア水を調整するための前記薬液貯槽10
3を設けると共に、通常濃度のアンモニア水のタンク1
05及び補給ポンプ106を設けることになる。なお、
前記公報ではタンク105及び補給ポンプ106が省略
されている。ところが、このようなシステムでは、希釈
アンモニア水を調整する際に、タンク内圧の関係でアン
モニアが周囲に漏洩し、作業が困難になるという問題が
ある。
In this method, in order to adjust the pH to 8 to 11, the chemical solution storage tank 10 for adjusting diluted ammonia water so that a very small amount of ammonia water can be injected.
3 and a tank 1 of normal concentration of ammonia water.
05 and the supply pump 106 are provided. In addition,
In the publication, the tank 105 and the supply pump 106 are omitted. However, in such a system, when adjusting the diluted ammonia water, there is a problem that ammonia leaks to the surroundings due to the tank internal pressure, which makes the operation difficult.

【0007】[0007]

【発明が解決しようとする課題】本発明は従来技術に於
ける上記問題を解決し、簡単な構成で運転操作が容易で
低コストの下に必要な濃度の水素溶解水を製造できると
共に、アンモニアの漏洩の防止された水素溶解装置を提
供することを課題とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems in the prior art, and is capable of producing a required concentration of hydrogen-dissolved water at a low cost at a low cost with a simple structure and easy operation. It is an object of the present invention to provide a hydrogen dissolving apparatus in which leakage of hydrogen is prevented.

【0008】[0008]

【課題を解決するための手段】本発明は上記課題を解決
するために、請求項1の発明は、供給される原料水に供
給される水素を溶解させて水素含有水にする水素溶解装
置において、前記原料水が入れられ前記水素含有水が取
り出されるように形成された縦長形状の容器であって前
記水素を前記原料水と向流接触させて前記原料水に溶存
している酸素を含む気体を脱気すると共に前記水素を溶
解させる容器を有することを特徴とする。
In order to solve the above-mentioned problems, the present invention provides a hydrogen dissolving apparatus for dissolving hydrogen supplied to raw water supplied to hydrogen-containing water. A vertically-elongated container formed so that the raw water is put therein and the hydrogen-containing water is taken out therefrom, wherein a gas containing oxygen dissolved in the raw water by bringing the hydrogen into countercurrent contact with the raw water; And a container for dissolving the hydrogen.

【0009】請求項2の発明は、上記に加えて、前記容
器は入れられた前記原料水が滞留するように設けられた
滞留部と入れられた前記原料水と前記水素との接触面積
を拡大するように設けられた接触面積拡大手段とを備え
ていて、前記滞留部の水を循環させるように設けられた
循環系と、該循環系に前記水素を混入させるように設け
られた水素供給手段と、を有することを特徴とする。
In addition to the above, the invention according to claim 2 is characterized in that the container enlarges a contact area between the stored raw water and the hydrogen and a retaining section provided so that the stored raw water is retained. A circulating system provided to circulate the water in the stagnation section, and a hydrogen supply means provided to mix the hydrogen into the circulating system. And the following.

【0010】請求項3の発明は、上記に加えて、前記接
触面積拡大手段は、入れられた前記原料水を分散させて
放出するように設けられた水分散供給部と、前記原料水
と前記水素とが接触しつつ対向して流れるように多数の
充填材で形成された気液接触層とを有することを特徴と
する。
According to a third aspect of the present invention, in addition to the above, the contact area enlarging means is provided with a water dispersion supply section provided so as to disperse and discharge the entered raw material water, A gas-liquid contact layer formed of a large number of fillers so that hydrogen flows in contact with and in contact with the hydrogen.

【0011】請求項4の発明は、請求項1乃至3の発明
の特徴に加えて、前記原料水が前記容器に入れられる前
に前記原料水を分流可能なように設けられた分岐系と、
前記分岐系に設けられ透過性材料を備えたガス溶解装置
であって前記透過性材料の一方側に前記原料水が流され
他方側にアンモニア水が流されるように構成されたガス
溶解装置と、前記他方側に前記アンモニア水を供給可能
な薬液注入ユニットと、を有することを特徴とする。
[0011] The invention according to claim 4 is characterized in that, in addition to the features of the invention according to claims 1 to 3, a branch system provided so that the raw water can be divided before the raw water is put into the container;
A gas dissolving apparatus provided with the permeable material provided in the branch system, wherein the raw material water is flowed to one side of the permeable material, and the ammonia dissolving apparatus is configured to flow ammonia water to the other side, A chemical solution injection unit capable of supplying the ammonia water to the other side.

【0012】[0012]

【発明の実施の形態】図1は本発明を適用した水素溶解
装置の全体構造の一例を示す。水素溶解装置は、供給さ
れる原料水としての超純水に供給される水素を溶解させ
て水素含有水にする装置であり、縦長な形状の容器とし
ての溶解槽1、循環系2、水素供給手段としてのエゼク
タ3、等によって構成されている。符号4、5、6はそ
れぞれ、超純水供給系、ガス排出用のフロート弁及びエ
アドレン弁である。
FIG. 1 shows an example of the overall structure of a hydrogen dissolving apparatus to which the present invention is applied. The hydrogen dissolving apparatus is an apparatus for dissolving hydrogen supplied to ultrapure water as supplied raw water into hydrogen-containing water, and includes a dissolving tank 1 as a vertically long container, a circulation system 2, and a hydrogen supply. It is constituted by an ejector 3 as means. Reference numerals 4, 5, and 6 denote an ultrapure water supply system, a float valve for discharging gas, and an air drain valve, respectively.

【0013】溶解槽1は、上方から超純水が入れられ下
方から水素含有水が取り出されるように形成されてい
て、超純水が滞留するように設けられた滞留部11、入
れられた超純水と水素との接触面積を拡大するように設
けられた接触面積拡大手段としての散水ノズル12及び
気液接触層13、等で構成されていて、これらが胴体1
4内に入れられている。散水ノズル12は、気液接触を
良くするために、入れられた超純水を気液接触層13の
上方に全面的に分散させて放出するように設けられてい
る。
The dissolving tank 1 is formed so that ultrapure water is introduced from above and hydrogen-containing water is taken out from below, and a stagnation section 11 provided so as to retain ultrapure water. It is composed of a watering nozzle 12 and a gas-liquid contact layer 13 as a contact area enlarging means provided so as to enlarge the contact area between pure water and hydrogen, and these are the body 1
4 inside. The watering nozzle 12 is provided so that the ultrapure water contained therein is completely dispersed and discharged above the gas-liquid contact layer 13 in order to improve gas-liquid contact.

【0014】気液接触層13は、超純水と水素とが接触
しつつ対向して流れるように多数の充填材13aで形成
されている。充填材13aは、セラミックや樹脂等の材
料から成り、球状、粒状、柱状等の適当な形状のもので
ある。又、その材料の表面は、ラシヒリングのように内
部空間のある筒状のものよりも、凹凸面を含む程度で一
様な面になっているものが望ましい。内部に空洞がある
と、水素の流速が遅いために空洞部の水素が出にくいの
で、これを防止し、水素の置換性を良くして気液接触効
率を上げるためである。同様の理由から、滞留部11と
気液接触層13との間に空間部をなくし、滞留部11の
水面が気液接触層13の中に形成されるようにすること
が望ましい。
The gas-liquid contact layer 13 is formed of a large number of fillers 13a so that ultrapure water and hydrogen flow while contacting each other. The filler 13a is made of a material such as ceramic or resin, and has an appropriate shape such as a sphere, a particle, and a column. Further, it is desirable that the surface of the material has a uniform surface including an uneven surface rather than a cylindrical one having an internal space such as a Raschig ring. If there is a cavity inside, the flow rate of hydrogen is low, so that hydrogen in the cavity is difficult to come out. This is to prevent this, improve the hydrogen substitution property, and increase the gas-liquid contact efficiency. For the same reason, it is desirable to eliminate the space between the stagnation portion 11 and the gas-liquid contact layer 13 so that the water surface of the stagnation portion 11 is formed in the gas-liquid contact layer 13.

【0015】以上のような溶解槽1は、例えば胴体とし
てステンレス製パイプを使用しこれにセラミックボール
を充填したものを主要構造とする極めて低コストの装置
として製造される。
The melting tank 1 as described above is manufactured as an extremely low-cost apparatus having, as a main structure, a stainless steel pipe as a body and a ceramic ball filled therein.

【0016】循環系2は、循環ポンプ21によって滞留
部11の水を循環させるように設けられている。この循
環系2には前記エゼクタ3を設け、循環系2から滞留部
11の内管11a及び放出口11bを介して水素水を製
造するための水素を供給するようにしている。循環ポン
プ21は、本例では、本装置の製品である水素の溶解し
た水素水を取り出す目的にも兼用されている。このよう
にすれば、ポンプ台数を最小にして装置構成を簡略化す
ることができる。
The circulation system 2 is provided so as to circulate the water in the retaining section 11 by a circulation pump 21. The ejector 3 is provided in the circulating system 2, and hydrogen for producing hydrogen water is supplied from the circulating system 2 through the inner pipe 11 a and the discharge port 11 b of the retaining section 11. In this example, the circulation pump 21 is also used for the purpose of extracting hydrogen water in which hydrogen, which is a product of the present apparatus, is dissolved. By doing so, the number of pumps can be minimized and the device configuration can be simplified.

【0017】以上のような水素溶解装置は次のように運
転され目的とする作用効果を発揮する。超純水は図示し
ない製造装置で製造され超純水供給系4から溶解槽1に
供給され、散水ノズル12によって気液接触層13の上
部の全面に均一的に放水される。この超純水は、気液接
触層13に多数設けられた充填材13aの表面を流れ落
ち、滞留部11に到達してその中で一定時間滞留する。
水素を溶解した滞留部11内の超純水は、その底部から
循環ポンプ21で取り出され、その一部分が製造された
水素含有水として必要先に送水されると共に、残部の水
は、循環系2によって再び滞留部11内に戻される。
The hydrogen dissolving apparatus as described above is operated as follows and exhibits the intended operation and effect. Ultrapure water is produced by a production apparatus (not shown), supplied from the ultrapure water supply system 4 to the dissolution tank 1, and uniformly discharged over the entire upper surface of the gas-liquid contact layer 13 by the watering nozzle 12. The ultrapure water flows down the surface of the filler 13 a provided in the gas-liquid contact layer 13, reaches the retaining portion 11, and stays there for a certain time.
The ultrapure water in the stagnation section 11 in which hydrogen has been dissolved is taken out from the bottom by a circulation pump 21, a part of which is sent to a required destination as produced hydrogen-containing water, and the remaining water is supplied to the circulation system 2. Is returned to the stagnation section 11 again.

【0018】水素は図示しない水素製造装置によって製
造され、循環系2のエゼクタ3に吸入されるように供給
され、循環水中に一部分溶解すると共に他の大部分が均
一的に混合し、これらが滞留部11内に入れられ、内管
11aを通って放出口11bから滞留部11内に放出さ
れる。水素を溶解し溶解度の上がった水は再び循環さ
れ、このような循環を繰り返す間に必要な溶解度に到達
すると共に水素水使用系に送水される。
Hydrogen is produced by a hydrogen production device (not shown) and supplied to the ejector 3 of the circulation system 2 so as to be sucked into the circulating system. It is put into the part 11 and is discharged into the retaining part 11 from the discharge port 11b through the inner pipe 11a. The water having dissolved hydrogen and having increased solubility is circulated again, and while repeating such circulation, the water reaches the required solubility and is sent to the hydrogen water use system.

【0019】一方、循環水中に混合した水素は、気泡と
なって上昇し、気液接触層13内において多数の充填材
13aの隙間を通過する。そしてこの間に、前記のよう
に充填材13aの表面を流れ落ちて来る超純水と接触す
る。このときには、充填材13aによって流下する超純
水の表面積が著しく拡大されているので、超純水中に溶
解している酸素等のガスが放出されやすくなっていて、
一方、水の表面を覆い水と接触している水素は超純水中
に溶解し易くなっている。その結果、超純水中の酸素等
の既溶解ガスが放出され、その溶解度の低下によって水
素が容易に溶解する。そして、このようにして水素を多
量に溶解させた超純水は、前記の如く循環されることに
よって更に高濃度になり、目的とする濃度の水素含有水
となって使用先に供給されることになる。
On the other hand, the hydrogen mixed in the circulating water rises as bubbles and passes through the gaps between the many fillers 13 a in the gas-liquid contact layer 13. During this time, as described above, it comes into contact with the ultrapure water flowing down the surface of the filler 13a. At this time, since the surface area of the ultrapure water flowing down by the filler 13a is remarkably enlarged, a gas such as oxygen dissolved in the ultrapure water is easily released,
On the other hand, hydrogen that covers the surface of water and is in contact with water is easily dissolved in ultrapure water. As a result, dissolved gases such as oxygen in the ultrapure water are released, and hydrogen is easily dissolved due to a decrease in the solubility. Then, the ultrapure water in which a large amount of hydrogen is dissolved in this way becomes even higher in concentration by being circulated as described above, and becomes hydrogen-containing water of a desired concentration and is supplied to the place of use. become.

【0020】ところで、このような方法で水素を溶解さ
せるためには、ある程度多量に過剰水素を供給する必要
があるので、酸素等の既含有ガスと共に余剰水素が発生
し、このような余剰ガスは気液接触層13の頂部からフ
ロート弁5によって自動的に排出される。
By the way, in order to dissolve hydrogen by such a method, it is necessary to supply a large amount of excess hydrogen, so that excess hydrogen is generated together with the already contained gas such as oxygen. The gas is automatically discharged from the top of the gas-liquid contact layer 13 by the float valve 5.

【0021】以上のような装置は、充填層を持つ単一の
溶解槽1と生成水素含有水送水用として兼用可能な循環
ポンプ21を備えた循環系2とを主要部分として構成さ
れるので、従来の装置のように、高価な脱気モジュール
や溶解モジュールが不要になり、真空ポンプも不要にな
り、全体として従来の装置よりも大幅に簡単な構成の安
価な装置になる。又、真空ポンプの運転やこれに関連し
た圧力調整等も不要になり、本発明の装置では運転操作
も容易である。
Since the above-described apparatus is constituted mainly by a single dissolving tank 1 having a packed bed and a circulating system 2 having a circulating pump 21 which can also be used for feeding the hydrogen-containing water, Unlike a conventional apparatus, an expensive degassing module and a melting module are not required, and a vacuum pump is not required. Further, the operation of the vacuum pump and the related pressure adjustment are not required, and the operation of the apparatus of the present invention is easy.

【0022】発明者等は、実施例1として本発明を適用
した水素溶解装置を製作し、これを実際に運転して次の
ような結果を得た。 〔水素溶解装置の仕様〕 溶解槽 寸法及び材質 : 口径100mm×1.6m高さのステンレス管 気液接触層高さ : 1m 充填材 : 直径10mmのセラミックボール 循環ポンプ容量 : 20リットル/分 〔実施例1の運転結果〕 超純水供給量 : 10リットル/分 水素供給量 : 約4.5リットル/分 供給超純水に対する量−約40ppm 循環水量 : 20リットル/分 水の性状測定結果 : 原料の超純水 生成した水素含有水 酸化還元電位(SHE)(V) ; +0.16 −0.10 溶存酸素濃度(mg/l) ; 8.09 1.90 溶存水素濃度(ppm) ; 0.0 1.1 水素溶解効率 : 約2.8% (1.1ppm /40ppm) 以上の運転結果によれば、本発明を用いた簡単な構成で
低コストで運転操作の容易な装置により、シリコンウエ
ハやLCDガラス基板等の半導体関連製品の高度表面処
理分野で使用する場合に通常必要とされる水素濃度であ
る0.7ppm 程度を十分越えて、より高濃度に水素を溶
解させた水素含有水を製造することができる。
The inventors manufactured a hydrogen dissolving apparatus to which the present invention was applied as Example 1, and actually operated the apparatus to obtain the following results. [Specifications of hydrogen dissolution equipment] Dissolution tank Dimensions and materials: Stainless steel tube with a diameter of 100 mm x 1.6 m Height of gas-liquid contact layer: 1 m Filler: Ceramic ball with a diameter of 10 mm Circulation pump capacity: 20 liters / min Operation result of Example 1] Ultrapure water supply: 10 L / min Hydrogen supply: about 4.5 L / min Amount to supply ultrapure water-about 40 ppm Circulating water flow: 20 L / min Water property measurement result: Raw material Ultrapure water produced Hydrogen-containing water Redox potential (SHE) (V); + 0.16-0.10 Dissolved oxygen concentration (mg / l); 8.09 1.90 Dissolved hydrogen concentration (ppm); 0 1.1 Hydrogen dissolution efficiency: Approximately 2.8% (1.1 ppm / 40 ppm) According to the above operation results, silicon wafers and silicon wafers can be easily manufactured with a simple configuration using the present invention at low cost. Semiconductor-related products such as LCD glass substrates The approximately 0.7ppm hydrogen concentration normally required when using advanced surface treatment field beyond enough, it is possible to produce a higher concentration in the hydrogen-containing water dissolving hydrogen.

【0023】図2は本発明を適用した水素溶解装置の他
の構成例を示す。本例の装置は、図1のものに対して、
超純水が供給系4から溶解槽1に入れられる前にこれを
分流可能なように設けられた分岐系7、この系に設けら
れた溶解装置であるガス溶解モジュール8、薬液注入ユ
ニット9、等が追加装備された装置である。ガス溶解モ
ジュール8は、透過性材料としてフッ素樹脂等から成る
多孔質の中空糸81を多本数備えていて、その一方側で
ある中空内に超純水が流され他方側である外側の胴体8
2側にアンモニア水が流されるように構成されている。
なお、この装置は、超純水に極微量のアンモニアを溶解
させるだけのものであるから、小形で安価なものであ
る。薬液注入ユニット9は、前記胴体側にアンモニア水
を供給可能な装置であり、貯蔵タンク91、薬注ポンプ
92、薬液供給系93、戻り系94、等によって構成さ
れている。
FIG. 2 shows another example of the structure of the hydrogen dissolving apparatus to which the present invention is applied. The device of this example is different from that of FIG.
Before the ultrapure water is supplied from the supply system 4 to the dissolving tank 1, the branching system 7 is provided so as to be able to divide the ultrapure water, the gas dissolving module 8 which is a dissolving device provided in this system, the chemical solution injection unit 9, Etc. are additional equipment. The gas dissolving module 8 is provided with a large number of porous hollow fibers 81 made of fluororesin or the like as a permeable material, and ultrapure water is flowed into the hollow on one side, and the outer body 8 on the other side.
It is configured such that ammonia water is flown to the two sides.
This apparatus is small and inexpensive because it only dissolves a trace amount of ammonia in ultrapure water. The chemical liquid injection unit 9 is a device capable of supplying ammonia water to the body side, and includes a storage tank 91, a chemical injection pump 92, a chemical liquid supply system 93, a return system 94, and the like.

【0024】この追加装置部分は、製造される水素含有
水のPHを一定範囲に維持するためのものであり、一度
運転条件が調整されれば、相当期間その状態で運転可能
である。従って、人が運転操作を行う装置にすることが
できる。しかし、供給される超純水の性状や水素供給量
が変化したり、運転時間の経過と共に貯蔵タンク91内
のアンモニア濃度が低下する等のため、適当な時期に運
転条件を調整する必要がある。そのため、本例の装置で
はPHを自動制御するようにしている。即ち、水素含有
水供給ラインにPHメーター10を設けると共に分岐系
7に流量制御弁71を設けて、水素含有水のPHが一定
範囲の値になるように、分岐系7を流れる水量を制御す
るようにしている。符号72は流量計である。
This additional device is for maintaining the pH of the hydrogen-containing water to be produced within a certain range, and can be operated in that state for a considerable period of time once the operating conditions are adjusted. Therefore, it is possible to provide a device in which a person performs a driving operation. However, it is necessary to adjust the operation conditions at an appropriate time because the properties of the ultrapure water to be supplied and the amount of hydrogen supply change, and the ammonia concentration in the storage tank 91 decreases with the elapse of the operation time. . For this reason, in the apparatus of this example, the PH is automatically controlled. That is, the PH meter 10 is provided in the hydrogen-containing water supply line and the flow control valve 71 is provided in the branch system 7 to control the amount of water flowing through the branch system 7 so that the PH of the hydrogen-containing water falls within a certain range. Like that. Reference numeral 72 is a flow meter.

【0025】この装置は次のように運転される。貯蔵タ
ンク91にはアンモニア水が貯蔵される。このアンモニ
ア水は例えば28ppm 程度の通常の濃度のものでよい。
このようなアンモニア水がガス溶解モジュール8に供給
されると、分流された中空糸81内の超純水に中空糸の
外面でアンモニア水として溶解しているアンモニアが超
純水中に透過し、超純水が適当な濃度のアンモニア溶解
水となる。そして、本例の装置ではPHメーター10に
より、流量制御弁71によってこのような分流アンモニ
ア溶解水の水量が調整され、この水が超純水供給系4に
供給され、生成される水素含有水のPHを例えば9〜10
に調整することができる。この場合の実施例2の運転結
果は以下のとおりである。なお、特に明示しない部分は
図1の装置の実施例と同じである。 〔実施例2の運転結果〕 超純水供給量 : 10リットル/分 分流水量 : 0.05リットル/分 水の性状測定結果 : 生成した水素含有水 PH ; 9.4 酸化還元電位(SHE)(V) ; −0.45 溶存酸素濃度(mg/l) ; 1.7 溶存水素濃度(ppm) ; 1.2 水素溶解効率 : 約3% (1.2ppm /40ppm) 上記結果によれば、本例の装置で精度良くPH調整する
ことにより、実施例1の装置よりも更に酸化還元電位を
下げることができた。水素濃度を上げることができた。
This device operates as follows. The storage tank 91 stores ammonia water. The aqueous ammonia may have a normal concentration of, for example, about 28 ppm.
When such ammonia water is supplied to the gas dissolving module 8, the ammonia dissolved as ammonia water on the outer surface of the hollow fiber in the ultrapure water in the separated hollow fiber 81 permeates into the ultrapure water, Ultrapure water becomes ammonia-dissolved water at an appropriate concentration. In the apparatus of the present embodiment, the amount of such diverted ammonia-dissolved water is adjusted by the flow rate control valve 71 by the PH meter 10, and this water is supplied to the ultrapure water supply system 4 to generate the hydrogen-containing water. PH for example 9-10
Can be adjusted. The operation result of Example 2 in this case is as follows. The parts that are not particularly described are the same as those in the embodiment of the apparatus shown in FIG. [Operation result of Example 2] Ultrapure water supply amount: 10 L / min Separated water flow amount: 0.05 L / min Water property measurement result: Generated hydrogen-containing water PH; 9.4 Redox potential (SHE) ( V); -0.45 dissolved oxygen concentration (mg / l); 1.7 dissolved hydrogen concentration (ppm); 1.2 hydrogen dissolving efficiency: about 3% (1.2 ppm / 40 ppm) By precisely adjusting the pH with the device of Example 1, the oxidation-reduction potential could be further reduced as compared with the device of Example 1. The hydrogen concentration could be increased.

【0026】このようなPH調整装置によれば、従来設
けられていたアンモニア水を更に希釈する装置及びその
ための運転操作が不要になる。その結果、周囲にアンモ
ニアが漏洩することがなくなり、作業環境を良好に維持
することができる。この場合、本例の装置のように生成
水のPHを自動制御するように構成すれば、発停時以外
の通常の運転操作を不要にすることができる。又、従来
の装置に較べてアンモニア用のタンクやポンプが半減す
るので、分岐系7を設けても、特に装置が複雑になると
いうこともない。又、貯蔵タンク91には上記のように
希釈されていないアンモニア水を貯蔵するため、水素含
有水に微量のアンモニアを注入する場合、アンモニア消
費量が極微量になるので、アンモニアを補給することな
く適当なアンモニア濃度を長期間にわたって維持するこ
とができる。
According to such a pH adjusting device, the conventionally provided device for further diluting the ammonia water and the operation for the device are not required. As a result, ammonia does not leak to the surroundings, and the working environment can be favorably maintained. In this case, if the configuration is such that the PH of the generated water is automatically controlled as in the apparatus of the present embodiment, it is possible to eliminate the need for a normal operation other than when starting and stopping. Further, since the number of tanks and pumps for ammonia is reduced by half as compared with the conventional apparatus, the provision of the branch system 7 does not particularly complicate the apparatus. In addition, since the storage tank 91 stores the ammonia water which is not diluted as described above, when injecting a small amount of ammonia into the hydrogen-containing water, the amount of consumed ammonia becomes extremely small. Appropriate ammonia concentration can be maintained over a long period of time.

【0027】図3は本発明を適用した水素溶解装置の更
に他の例を示す。本例の装置は、図1の装置に較べて、
溶解槽1の接触面積拡大手段が気泡塔部14として構成
されている。従って、気泡塔部14が図1の装置の滞留
部11も兼ねている。原料水である超純水は上方又は下
方の何れかから入れられるが、本例の装置では下方から
入れられている。そして、上部には生成した水素含有水
の出口室15が設けられていて、循環系2は、図1と同
様の循環ポンプ21を介して、上部の出口室15の水を
下方に循環させつつ水素を供給すると共に、水素含有水
を使用先に送水する。本例の装置によっても、気泡塔部
と循環系との組合せにより、図1の装置と同様の水素溶
解性能を得ることができる。
FIG. 3 shows still another example of the hydrogen dissolving apparatus to which the present invention is applied. The device of this example is different from the device of FIG.
The contact area enlarging means of the dissolving tank 1 is configured as a bubble column section 14. Therefore, the bubble column section 14 also serves as the retaining section 11 of the apparatus of FIG. The ultrapure water, which is the raw water, is introduced from either above or below, but in the apparatus of this example, it is introduced from below. An outlet chamber 15 of the generated hydrogen-containing water is provided in the upper part, and the circulation system 2 circulates the water in the upper outlet chamber 15 downward through a circulation pump 21 similar to that in FIG. Hydrogen is supplied and hydrogen-containing water is sent to the user. Also in the apparatus of this example, the same hydrogen dissolving performance as the apparatus of FIG. 1 can be obtained by the combination of the bubble column section and the circulation system.

【0028】[0028]

【発明の効果】以上の如く本発明によれば、請求項1の
発明においては、原料水が入れられ水素含有水が取り出
されるように形成された縦長形状の容器を設け、この容
器で水素を原料水と向流接触させて原料水に溶存してい
る酸素を含む気体を脱気すると共に水素を溶解させるよ
うにするので、原料水と水素との接触性を良くし、各種
半導体関連製品の高度表面処理のための高濃度の水素含
有水を製造することが可能になる。
As described above, according to the present invention, according to the first aspect of the present invention, there is provided a vertically long container formed so as to contain raw water and take out hydrogen-containing water. Since the gas containing oxygen dissolved in the raw water is degassed and hydrogen is dissolved by bringing it into countercurrent contact with the raw water, the contact between the raw water and hydrogen is improved, and various semiconductor-related products are improved. It becomes possible to produce high-concentration hydrogen-containing water for advanced surface treatment.

【0029】請求項2の発明においては、上記に加え
て、水素溶解装置を所定の構成要件を備えた容器と循環
系と水素供給手段とを有する構成にするので、縦長形状
の容器に原料水と水素とを入れてこれらを対向流又は平
行流に流し、流量が少ない状態でも両者を均一的にある
程度長い時間接触させることができる。この容器には、
充填塔方式や気泡塔方式によって原料水と水素との接触
面積を拡大するように接触面積拡手段を設けているの
で、原料水への水素の溶解度を向上させることができ
る。
According to the second aspect of the present invention, in addition to the above, the hydrogen dissolving apparatus is configured to include a vessel having predetermined components, a circulation system, and hydrogen supply means. And hydrogen are introduced and flowed in a counterflow or a parallel flow, and even when the flow rates are small, the two can be uniformly contacted for a certain long time. In this container,
Since the contact area expanding means is provided so as to expand the contact area between the raw water and the hydrogen by the packed tower system or the bubble column system, the solubility of hydrogen in the raw water can be improved.

【0030】又、容器に原料水が滞留するように滞留部
を設け、その中の水を循環系で循環させると共に、水素
供給手段でこの循環系に水素を混入させるように供給し
ているので、既に十分に水素を溶解した滞留部の原料水
に更に水素を混入させ、水素溶解度を上昇させると共
に、原料水と水素との混合状態を均一にして滞留部に戻
すことができる。その結果、滞留部の水を取り出すこと
によって製造される水素含有水中の水素濃度を一層高く
すると共に、均一混合状態の水素を容器内で縦方向に上
昇させ、原料水と水素との接触性を良くすることができ
る。
[0030] In addition, a stagnant portion is provided in the container so that the raw material water stagnates, and the water in the stagnant portion is circulated by the circulating system, and the hydrogen is supplied to the circulating system by the hydrogen supply means so that hydrogen is mixed therein. In addition, hydrogen can be further mixed into the raw material water in the retaining section in which hydrogen has already been sufficiently dissolved to increase the hydrogen solubility, and the mixed state of the raw water and hydrogen can be made uniform and returned to the retaining section. As a result, the hydrogen concentration in the hydrogen-containing water produced by removing the water in the stagnation section is further increased, and the hydrogen in a homogeneous mixed state is raised vertically in the vessel, thereby improving the contact between the raw water and the hydrogen. Can be better.

【0031】このような水素溶解装置は、上記の如く容
器と循環系と水素供給手段とを備えるだけの構成である
から、簡単で低コストの装置になると共に運転操作も容
易になる。そして、ある程度多く水素を供給するだけ
で、各種半導体関連製品の高度表面処理に十分な高濃度
の水素含有水を製造することができる。
Since such a hydrogen dissolving apparatus only has a container, a circulation system, and a hydrogen supply means as described above, the apparatus becomes simple and inexpensive, and the operation is easy. By supplying a certain amount of hydrogen, high-concentration hydrogen-containing water sufficient for advanced surface treatment of various semiconductor-related products can be produced.

【0032】請求項3の発明においては、接触面積拡大
手段を、入れられた原料水を分散させて放出するように
設けられた水分散供給部と、原料水と水素とが接触しつ
つ対向して流れるように多数の充填材で形成された気液
接触層とを有するように構成するので、原料水を分散さ
せて均一的に気液接触層の上部に放出し、多数の充填材
の表面で水素と対向接触させることができる。その結
果、全体として十分広くなった接触面積上で原料水と水
素とを均一接触させ、水素を原料水中に溶解しやすくし
て水素濃度を十分高くすることができる。
According to the third aspect of the present invention, the contact area enlarging means is provided in such a manner that the raw water and the hydrogen are opposed to each other while the raw water and the hydrogen are in contact with each other. And a gas-liquid contact layer formed of a large number of fillers so as to flow, so that the raw water is dispersed and uniformly discharged to the upper portion of the gas-liquid contact layer, and the surface of the large number of fillers is dispersed. Can be brought into opposed contact with hydrogen. As a result, the raw water and the hydrogen are brought into uniform contact on the contact area that is sufficiently large as a whole, and the hydrogen can be easily dissolved in the raw water, so that the hydrogen concentration can be sufficiently increased.

【0033】請求項4の発明においては、所定の構成要
件を備えた分岐系とガス溶解装置と薬液注入ユニットと
を設けるので、希釈しない通常濃度の薬液をガス溶解装
置で分岐系を流れる原料水中に溶解させることができ
る。その結果、分岐系の原料水の流量を調整することに
より、容器に供給される原料水中に極微量のアンモニア
を精度良く供給し、原料水のPHを目的とする値に精度
良く調整することができる。
According to the fourth aspect of the present invention, since a branching system having predetermined constitutional requirements, a gas dissolving device, and a chemical liquid injection unit are provided, a chemical solution having a normal concentration which is not diluted is supplied to the raw water flowing through the branching system by the gas dissolving device. Can be dissolved. As a result, by adjusting the flow rate of the raw material water in the branch system, it is possible to accurately supply a trace amount of ammonia to the raw water supplied to the container, and accurately adjust the PH of the raw water to a target value. it can.

【0034】この場合、原料水を容器に供給する前の位
置に分岐系を設けるので、容器内でアンモニア水を均一
分散させ、水素含有水のPH値を安定させることができ
ると共に、PH値上昇の効果により、容器内において原
料水への水素の溶解度を上げることができる。
In this case, since the branching system is provided at a position before the raw water is supplied to the container, ammonia water can be uniformly dispersed in the container to stabilize the PH value of the hydrogen-containing water and increase the PH value. Can increase the solubility of hydrogen in the raw water in the container.

【0035】又、このような装置によれば、アンモニア
を希釈する必要がないので、その漏洩を防止し、周囲の
作業環境の悪化を防止することができる。
Further, according to such an apparatus, since it is not necessary to dilute ammonia, it is possible to prevent the leakage of ammonia and to prevent the surrounding working environment from deteriorating.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用した水素溶解装置の全体構成の一
例を示す説明図である。
FIG. 1 is an explanatory diagram showing an example of the overall configuration of a hydrogen dissolution apparatus to which the present invention has been applied.

【図2】本発明を適用した水素溶解装置の全体構成の他
の例の説明図である。
FIG. 2 is an explanatory diagram of another example of the overall configuration of the hydrogen dissolving apparatus to which the present invention is applied.

【図3】本発明を適用した水素溶解装置の全体構成の更
に他の例の説明図である。
FIG. 3 is an explanatory view of still another example of the overall configuration of the hydrogen dissolving apparatus to which the present invention is applied.

【図4】従来の水素溶解装置の全体構成の一例を示す説
明図である。
FIG. 4 is an explanatory diagram showing an example of the overall configuration of a conventional hydrogen dissolving apparatus.

【符号の説明】[Explanation of symbols]

1 溶解槽(容器) 2 循環系 3 エゼクタ(水素供給手段) 7 分岐系 8 ガス溶解モジュール(ガス溶解装置) 9 薬液注入ユニット 11 滞留部 12 散水ノズル(水分散供給部、接触面積
拡大手段) 13 気液接触層(接触面積拡大手段) 13a 充填材(接触面積拡大手段) 81 中空糸(透過性材料)
DESCRIPTION OF SYMBOLS 1 Dissolution tank (vessel) 2 Circulation system 3 Ejector (hydrogen supply means) 7 Branch system 8 Gas dissolution module (gas dissolution apparatus) 9 Chemical liquid injection unit 11 Retention part 12 Watering nozzle (water dispersion supply part, contact area expansion means) 13 Gas-liquid contact layer (contact area enlarging means) 13a Filler (contact area enlarging means) 81 Hollow fiber (permeable material)

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D011 AA15 4D020 AA01 BA23 BC01 CB01 CB08 CB25 4G035 AA02 AB15 AB28 AC30 AC37 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4D011 AA15 4D020 AA01 BA23 BC01 CB01 CB08 CB25 4G035 AA02 AB15 AB28 AC30 AC37

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 供給される原料水に供給される水素を溶
解させて水素含有水にする水素溶解装置において、 前記原料水が入れられ前記水素含有水が取り出されるよ
うに形成された縦長形状の容器であって前記水素を前記
原料水と向流接触させて前記原料水に溶存している酸素
を含む気体を脱気すると共に前記水素を溶解させる容器
を有することを特徴とする水素溶解装置。
1. A hydrogen dissolving apparatus for dissolving hydrogen supplied to raw water to be supplied into hydrogen-containing water, comprising: a vertically elongated shape formed so that the raw water is charged and the hydrogen-containing water is taken out. A hydrogen dissolving apparatus, comprising: a container for degassing a gas containing oxygen dissolved in the raw material water by bringing the hydrogen into countercurrent contact with the raw water and dissolving the hydrogen.
【請求項2】 前記容器は入れられた前記原料水が滞留
するように設けられた滞留部と入れられた前記原料水と
前記水素との接触面積を拡大するように設けられた接触
面積拡大手段とを備えていて、前記滞留部の水を循環さ
せるように設けられた循環系と、該循環系に前記水素を
混入させるように設けられた水素供給手段と、を有する
ことを特徴とする請求項1に記載の水素溶解装置。
2. A contact area enlarging means provided to enlarge a contact area between the stored water and the stored raw water and the hydrogen, wherein the container is provided so as to store the raw water therein. And a circulating system provided to circulate the water in the stagnation section, and a hydrogen supply means provided to mix the hydrogen into the circulating system. Item 6. A hydrogen dissolving apparatus according to item 1.
【請求項3】 前記接触面積拡大手段は、入れられた前
記原料水を分散させて放出するように設けられた水分散
供給部と、前記原料水と前記水素とが接触しつつ対向し
て流れるように多数の充填材で形成された気液接触層と
を有することを特徴とする請求項2に記載の水素溶解装
置。
3. The contact area enlarging means, wherein the raw water and the hydrogen flow in opposition to each other while being in contact with a water dispersion supply unit provided to disperse and discharge the raw water contained therein. The hydrogen dissolving apparatus according to claim 2, further comprising a gas-liquid contact layer formed of a large number of fillers.
【請求項4】 前記原料水が前記容器に入れられる前に
前記原料水を分流可能なように設けられた分岐系と、前
記分岐系に設けられ透過性材料を備えたガス溶解装置で
あって前記透過性材料の一方側に前記原料水が流され他
方側にアンモニア水が流されるように構成されたガス溶
解装置と、前記他方側に前記アンモニア水を供給可能な
薬液注入ユニットと、を有することを特徴とする請求項
1乃至3の何れか1に記載の水素溶解装置。
4. A gas dissolving apparatus comprising: a branch system provided so that the raw water can be divided before the raw water is put into the container; and a gas dissolving device provided in the branch system and having a permeable material. A gas dissolving device configured such that the raw material water flows on one side of the permeable material and ammonia water flows on the other side, and a chemical solution injection unit capable of supplying the ammonia water on the other side. The hydrogen dissolving apparatus according to any one of claims 1 to 3, wherein:
JP2000205264A 2000-07-06 2000-07-06 Hydrogen dissolver Expired - Fee Related JP4637329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000205264A JP4637329B2 (en) 2000-07-06 2000-07-06 Hydrogen dissolver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000205264A JP4637329B2 (en) 2000-07-06 2000-07-06 Hydrogen dissolver

Publications (2)

Publication Number Publication Date
JP2002018253A true JP2002018253A (en) 2002-01-22
JP4637329B2 JP4637329B2 (en) 2011-02-23

Family

ID=18702384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000205264A Expired - Fee Related JP4637329B2 (en) 2000-07-06 2000-07-06 Hydrogen dissolver

Country Status (1)

Country Link
JP (1) JP4637329B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007075800A (en) * 2005-09-16 2007-03-29 Fuchino:Kk Exhaust gas cleaning equipment and exhaust gas cleaning method used for exhaust gas cleaning equipment
JP2008104938A (en) * 2006-10-25 2008-05-08 Yasuhiko Ichise Oxygen-dissolved water producer and oxygen-dissolved water producing apparatus
JP2011056498A (en) * 2009-08-12 2011-03-24 Kyushu Institute Of Technology Apparatus and system for generating high-concentration dissolved water
WO2014199525A1 (en) * 2013-06-13 2014-12-18 シグマテクノロジー有限会社 Micro and nano bubble generating method, generating nozzle, and generating device
JP2016179468A (en) * 2015-03-09 2016-10-13 リン, シン−ユンLin, Hsin−Yung Hydrogen-rich water generator
CN106995233A (en) * 2017-05-09 2017-08-01 胡巍 It is a kind of to be conducive to the device that gas fully dissolves

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103691339A (en) * 2013-12-31 2014-04-02 昆明特康科技有限公司 Solid-liquid mixing equipment

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05269305A (en) * 1992-03-24 1993-10-19 Kurita Water Ind Ltd Deoxygenation method and device
JPH07268357A (en) * 1994-03-31 1995-10-17 Sekiyu Sangyo Kasseika Center Method for treating hydrogen sulfide-containing gas
JPH08290007A (en) * 1995-04-20 1996-11-05 Kurita Water Ind Ltd Removing method for dissolved oxygen
JPH1080627A (en) * 1996-09-06 1998-03-31 Hisao Kojima Gas-liquid treating device
JPH1177023A (en) * 1997-09-02 1999-03-23 Kurita Water Ind Ltd Preparation of hydrogen-containing ultrapure water
JPH11197678A (en) * 1998-01-08 1999-07-27 Kurita Water Ind Ltd Cleaning liquid for electronic material
JPH11217591A (en) * 1998-02-02 1999-08-10 Kurita Water Ind Ltd Cleaning water for electronic material
JPH11277007A (en) * 1998-03-31 1999-10-12 Kurita Water Ind Ltd Method for washing electronic material
JP2000354696A (en) * 1999-06-15 2000-12-26 Joho Kagaku Kenkyusho:Kk Equipment for continuous supply of hydrogen saturated water in great quantity to washing water, bath water, etc.

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05269305A (en) * 1992-03-24 1993-10-19 Kurita Water Ind Ltd Deoxygenation method and device
JPH07268357A (en) * 1994-03-31 1995-10-17 Sekiyu Sangyo Kasseika Center Method for treating hydrogen sulfide-containing gas
JPH08290007A (en) * 1995-04-20 1996-11-05 Kurita Water Ind Ltd Removing method for dissolved oxygen
JPH1080627A (en) * 1996-09-06 1998-03-31 Hisao Kojima Gas-liquid treating device
JPH1177023A (en) * 1997-09-02 1999-03-23 Kurita Water Ind Ltd Preparation of hydrogen-containing ultrapure water
JPH11197678A (en) * 1998-01-08 1999-07-27 Kurita Water Ind Ltd Cleaning liquid for electronic material
JPH11217591A (en) * 1998-02-02 1999-08-10 Kurita Water Ind Ltd Cleaning water for electronic material
JPH11277007A (en) * 1998-03-31 1999-10-12 Kurita Water Ind Ltd Method for washing electronic material
JP2000354696A (en) * 1999-06-15 2000-12-26 Joho Kagaku Kenkyusho:Kk Equipment for continuous supply of hydrogen saturated water in great quantity to washing water, bath water, etc.

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007075800A (en) * 2005-09-16 2007-03-29 Fuchino:Kk Exhaust gas cleaning equipment and exhaust gas cleaning method used for exhaust gas cleaning equipment
JP2008104938A (en) * 2006-10-25 2008-05-08 Yasuhiko Ichise Oxygen-dissolved water producer and oxygen-dissolved water producing apparatus
JP2011056498A (en) * 2009-08-12 2011-03-24 Kyushu Institute Of Technology Apparatus and system for generating high-concentration dissolved water
WO2014199525A1 (en) * 2013-06-13 2014-12-18 シグマテクノロジー有限会社 Micro and nano bubble generating method, generating nozzle, and generating device
US10293309B2 (en) 2013-06-13 2019-05-21 Sigma-Technology Inc. Method, a bubble generating nozzle, and an apparatus for generating micro-nano bubbles
JP2016179468A (en) * 2015-03-09 2016-10-13 リン, シン−ユンLin, Hsin−Yung Hydrogen-rich water generator
CN106995233A (en) * 2017-05-09 2017-08-01 胡巍 It is a kind of to be conducive to the device that gas fully dissolves

Also Published As

Publication number Publication date
JP4637329B2 (en) 2011-02-23

Similar Documents

Publication Publication Date Title
CN103426795B (en) The medicinal liquid of processing substrate generates method, generates unit and base plate processing system
TWI277443B (en) Continuous dissolution apparatus, process for continuous dissolution and apparatus for supplying water in which gas is dissolved
JP3139460U (en) Mass production equipment for gas-dissolved liquid by continuous pressurized flow system
US6955341B2 (en) Apparatus for dissolving gas into liquid
KR102441362B1 (en) Water quality-adjusted water production equipment
KR20080015405A (en) Method and apparatus producing oxygen-containing reducing aqueous beverage
JP2002018253A (en) Hydrogen dissolving apparatus
JP2017131839A (en) Fine hydrogen bubble generator
JP2009112979A (en) Apparatus and method for producing ozone water
JP5412135B2 (en) Ozone water supply device
JP2014117628A (en) Circulation type method and apparatus for supplying ozone water
JP2007296486A (en) Liquid injecting nozzle and liquid injecting/mixing device using the same
CN112934015B (en) Gas-liquid mixing and filling device and method
KR100819875B1 (en) A carbonated water making device which has a carbonated water making module which uses spg membrane
JP2009178702A (en) Gas-liquid mixing equipment
JP2017131822A (en) Hydrogen water generator and hydrogen water generation method
JP2008133534A (en) Composition control device and composition control method for copper plating liquid
JPH0356091B2 (en)
KR101954170B1 (en) Apparatus of dissolving gas into liquid and Apparatus for supplying water containing gas
JP2011092893A (en) Gas-dissolved liquid manufacturing system
JP2015077570A (en) Structure of nozzle to be used in gas dissolution liquid manufacturing system
JP7365751B2 (en) Dissolved gas replacement device and dissolved gas replacement method
KR20160104770A (en) Hydrogen Recirculation Type Hydrogen Dissolved Water Producing Device
EP1466661B1 (en) Apparatus for dissolving gas into liquid
JP4334755B2 (en) Gas-liquid mixing method using dissolution diffusion method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070208

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081014

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20081027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees