JPH11197678A - Cleaning liquid for electronic material - Google Patents

Cleaning liquid for electronic material

Info

Publication number
JPH11197678A
JPH11197678A JP228498A JP228498A JPH11197678A JP H11197678 A JPH11197678 A JP H11197678A JP 228498 A JP228498 A JP 228498A JP 228498 A JP228498 A JP 228498A JP H11197678 A JPH11197678 A JP H11197678A
Authority
JP
Japan
Prior art keywords
gas
water
cleaning liquid
pure water
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP228498A
Other languages
Japanese (ja)
Other versions
JP4203776B2 (en
Inventor
Hiroshi Morita
博志 森田
Junichi Ida
純一 井田
Tetsuo Mizuniwa
哲夫 水庭
Kiminobu Osawa
公伸 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP00228498A priority Critical patent/JP4203776B2/en
Publication of JPH11197678A publication Critical patent/JPH11197678A/en
Application granted granted Critical
Publication of JP4203776B2 publication Critical patent/JP4203776B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cleaning By Liquid Or Steam (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce soluble impurities and to produce simply and economically by dissolving a gas purified by being contacted with pure water in advance into a cleaning liquid. SOLUTION: A gas purified by being contacted with pure water in advance is dissolved into a cleaning liquid. Besides pure water and ultrapure water, an acidic cleaning liquid in which hydrochloric acid and others are added into pure water or ultrapure water, an alkaline cleaning water containing added with ammonia and others, an oxidizing cleaning liquid added with hydrogen peroxide and others, and a reducing cleaning liquid added with a hydrogen sulfate and others are used as the cleaning liquid. Ozone, hydrogen, oxygen, carbon dioxide, chlorine, argon, and others is used as the gas to be dissolved. The gas is led to a porous plate 3 installed in the bottom part of a water bath container 2 through raw material gas piping 1 and released into pure water as bubbles. The gas in which impurities are dissolution-removed is sent through a purifying gas piping 4. A pure water inlet 5 and water outlet 6 are formed in the container 2 for the renewal of water.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子材料用洗浄液
に関する。さらに詳しくは、本発明は、半導体用シリコ
ン基板、液晶用ガラス基板、フォトマスク用石英基板な
どの電子材料のウェット洗浄に用いられる、気体を溶解
し、かつ溶存不純物量の極めて少ない電子材料用洗浄液
に関する。
The present invention relates to a cleaning liquid for electronic materials. More specifically, the present invention relates to a cleaning solution for electronic materials that dissolves gas and has a very small amount of dissolved impurities, which is used for wet cleaning of electronic materials such as silicon substrates for semiconductors, glass substrates for liquid crystals, and quartz substrates for photomasks. About.

【0002】[0002]

【従来の技術】従来より、半導体用シリコン基板、液晶
用ガラス基板、フォトマスク用石英基板などは、RCA
洗浄と呼ばれる、硫酸と過酸化水素水の混合液、塩酸と
過酸化水素水と水の混合液、アンモニア水と過酸化水素
水と水の混合液など、過酸化水素をベースとする濃厚薬
液を用いた高温洗浄により清浄化されていた。この洗浄
法を採用した場合の多大な薬液コスト、リンス用の超純
水コスト、廃液処理コスト、薬品蒸気を排気し新たに清
浄空気を作る空調コストを低減し、さらに水の大量使
用、薬物の大量廃棄、排ガスの放出といった環境への負
荷を低減するために、近年ウェット洗浄工程の見直しが
進められている。本発明者らは、先に洗浄対象物及び洗
浄目的に応じて、超純水若しくは超純水に塩酸、アンモ
ニア、過酸化水素、重亜硫酸塩などを溶解した洗浄用液
体に、水素ガス、酸素ガス、炭酸ガス、塩素ガス、窒素
ガス、希ガスなどの気体を溶解した電子材料用洗浄液を
開発した。このような特定の気体を溶解した電子材料用
洗浄液は、不純物の含有量が少ないことが要求され、溶
解する気体も高純度である必要がある。気体中に含まれ
る固形の不純物は、市販されているガス用フィルターに
よって容易に除去することができるが、気体中に含まれ
る可溶性金属成分や有機物成分は、気体に同伴されて電
子材料用洗浄液に混入しやすい。市販されている高純度
の気体を購入して使用する手段も考えられるが、高純度
の気体が常に適用できる状況で入手し得るとは限らず、
また、高純度品の入手が不可能な気体もある。例えば、
オゾンは、オゾンガス単体としてはもちろん、オゾンを
含有する高純度の気体としても、ボンベなどで入手でき
るものではなく、水の電気分解や、空気又は酸素ガスを
原料とする無声放電によって使用前に製造され、その純
度は製造条件に依存している。オゾンは、一般的に無声
放電方式の方が生産性がよいが、電極材質の混入などを
起こしやすく、純度の面で劣る。また、水の電解方式に
しても、オゾンの純度は、接液材料の材質や表面状態に
依存し、高純度なオゾンを得ることは容易ではない。こ
のために、オゾン、水素ガス、酸素ガス、炭酸ガス、塩
素ガス、窒素ガス、希ガスなどを溶解し、簡便かつ経済
的に製造することができる高純度電子材料用洗浄液が求
められていた。
2. Description of the Related Art Conventionally, silicon substrates for semiconductors, glass substrates for liquid crystals, quartz substrates for photomasks, etc.
A concentrated chemical solution based on hydrogen peroxide, such as a mixture of sulfuric acid and hydrogen peroxide, a mixture of hydrochloric acid, hydrogen peroxide and water, and a mixture of ammonia water, hydrogen peroxide and water, called cleaning. It had been cleaned by the high temperature cleaning used. If this cleaning method is adopted, the cost of chemicals, the cost of ultrapure water for rinsing, the cost of waste liquid treatment, and the cost of air conditioning that exhausts chemical vapors and creates clean air will be reduced. In order to reduce the burden on the environment such as mass disposal and emission of exhaust gas, the wet cleaning process has recently been reviewed. According to the present inventors, depending on the object to be cleaned and the purpose of cleaning, hydrogen gas, oxygen, and the like are added to a cleaning liquid in which hydrochloric acid, ammonia, hydrogen peroxide, bisulfite, or the like is dissolved in ultrapure water or ultrapure water. We have developed a cleaning solution for electronic materials in which gases such as gas, carbon dioxide, chlorine gas, nitrogen gas, and rare gas are dissolved. The cleaning liquid for electronic materials in which such a specific gas is dissolved is required to have a small content of impurities, and the dissolved gas also needs to be of high purity. Solid impurities contained in the gas can be easily removed by a commercially available gas filter, but soluble metal components and organic components contained in the gas are entrained by the gas into the cleaning solution for electronic materials. Easy to mix. Means of purchasing and using commercially available high-purity gas can be considered, but high-purity gas is not always available in a situation where it can be applied,
There are also gases for which it is not possible to obtain high-purity products. For example,
Ozone is not available as a single gas or high-purity gas containing ozone in a cylinder or the like, but is produced before use by electrolysis of water or silent discharge using air or oxygen gas as a raw material. And its purity depends on the manufacturing conditions. Ozone generally has higher productivity in the silent discharge method, but is more liable to be mixed with the electrode material and is inferior in purity. Further, even in the water electrolysis method, the purity of ozone depends on the material and surface condition of the liquid contact material, and it is not easy to obtain high-purity ozone. For this reason, there has been a demand for a high-purity cleaning solution for electronic materials that can be easily and economically produced by dissolving ozone, hydrogen gas, oxygen gas, carbon dioxide gas, chlorine gas, nitrogen gas, rare gas and the like.

【0003】[0003]

【発明が解決しようとする課題】本発明は、半導体用シ
リコン基板、液晶用ガラス基板、フォトマスク用石英基
板などの電子材料のウェット洗浄に用いられる、気体を
溶解し、溶存不純物量が極めて少なく、簡便かつ経済的
に製造することができる電子材料用洗浄液を提供するこ
とを目的としてなされたものである。
DISCLOSURE OF THE INVENTION The present invention is directed to a wet cleaning of electronic materials such as a silicon substrate for a semiconductor, a glass substrate for a liquid crystal, and a quartz substrate for a photomask. An object of the present invention is to provide a cleaning solution for electronic materials that can be easily and economically manufactured.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記の課
題を解決すべく鋭意研究を重ねた結果、洗浄用液体に溶
解する気体を、あらかじめ純水と接触させて清浄化する
ことにより、不純物の少ない高純度の電子材料用洗浄液
を容易に得ることができることを見いだし、この知見に
基づいて本発明を完成するに至った。すなわち、本発明
は、(1)あらかじめ純水と接触させて清浄化した気体
を、洗浄用液体に溶解してなることを特徴とする電子材
料用洗浄液、を提供するものである。さらに、本発明の
好ましい態様として、(2)気体が、オゾンを含有する
気体である第(1)項記載の電子材料用洗浄液、及び、
(3)気体中の水に可溶性の無機物成分又は有機物成分
を除去して清浄化する第(1)項又は第(2)項記載の電子
材料用洗浄液、を挙げることができる。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, the gas dissolved in the cleaning liquid has been contacted with pure water in advance to purify the gas. It has been found that a high-purity cleaning solution for electronic materials with few impurities can be easily obtained, and the present invention has been completed based on this finding. That is, the present invention provides (1) a cleaning liquid for an electronic material, which is obtained by dissolving in a cleaning liquid a gas that has been previously cleaned by contacting with pure water. Further, as a preferred embodiment of the present invention, (2) the cleaning liquid for electronic materials according to (1), wherein the gas is a gas containing ozone, and
(3) The cleaning liquid for an electronic material according to the above item (1) or (2), which removes and cleans an inorganic component or an organic component soluble in water in a gas.

【0005】[0005]

【発明の実施の形態】本発明の電子材料用洗浄液は、あ
らかじめ純水と接触させて清浄化した気体を、洗浄用液
体に溶解してなるものである。洗浄用液体には特に制限
はなく、例えば、純水、超純水、純水又は超純水に塩
酸、硫酸、フッ化水素酸、硝酸などを溶解した酸性洗浄
液、純水又は超純水にアンモニア、水酸化ナトリウムな
どを溶解したアルカリ性洗浄液、純水又は超純水に過酸
化水素、酸化性塩素などを溶解した酸化性洗浄液、純水
又は超純水に重亜硫酸塩などを溶解した還元性洗浄液な
どを挙げることができる。本発明において、洗浄用液体
に溶解する気体には特に制限はなく、例えば、オゾン、
水素ガス、酸素ガス、炭酸ガス、塩素ガス、窒素ガス、
アルゴンなどの希ガスなどを挙げることができる。オゾ
ンを溶解した電子材料用洗浄液は、溶存オゾンが低い濃
度であっても非常に強い酸化力を示し、電子材料の表面
に付着した有機物汚染や金属汚染の除去に効果を発揮す
る。電子材料用洗浄液中のオゾン濃度は、室温で0.1
〜20mg/リットルであることが好ましい。水素ガスを
溶解した電子材料用洗浄液は、電子材料の表面に付着し
た微粒子を極めて効果的に除去することができる。電子
材料用洗浄液中の水素ガス濃度は、室温で0.7〜1.5
mg/リットルであることが好ましい。酸素ガスを溶解し
た電子材料用洗浄液は、電子材料表面の金属汚染や微粒
子などの洗浄に使用することができ、かつ、酸素ガスに
は自己分解性がないので、安定性が良好で取り扱いが容
易である。電子材料用洗浄液中の酸素ガスの濃度は、室
温で10〜40mg/リットルであることが好ましい。炭
酸ガスを溶解した電子材料用洗浄水は、薬品洗浄後のリ
ンス水として使用することができる。超純水に炭酸ガス
を溶解して比抵抗を低下させることにより、電子材料表
面の帯電を防止することができる。塩素ガスを溶解した
電子材料用洗浄液は、電子材料表面の金属汚染などの洗
浄に使用することができる。窒素ガスを溶解した電子材
料用洗浄水は、メガソニックと併用すると、窒素ガスの
一部がイオン化して超純水の比抵抗が下がるので、炭酸
ガスを溶解した電子材料用洗浄水と同様に、リンス水と
して使用することができる。アルゴンなどの希ガスを溶
解した電子材料用洗浄液は、メガソニックと併用するこ
とによりラジカルの発生が促進されるので、電子材料表
面の洗浄液として使用することができる。
BEST MODE FOR CARRYING OUT THE INVENTION The cleaning liquid for electronic materials of the present invention is obtained by dissolving a gas, which has been previously cleaned by contacting with pure water, in the cleaning liquid. There is no particular limitation on the cleaning liquid, for example, pure water, ultrapure water, acidic cleaning liquid obtained by dissolving hydrochloric acid, sulfuric acid, hydrofluoric acid, nitric acid and the like in pure water or ultrapure water, pure water or ultrapure water. Alkaline cleaning solution in which ammonia, sodium hydroxide, etc. are dissolved, oxidizing cleaning solution in which hydrogen peroxide, oxidizing chlorine, etc. are dissolved in pure water or ultrapure water, and reducing property, in which bisulfite is dissolved in pure water or ultrapure water Washing liquids and the like can be mentioned. In the present invention, the gas dissolved in the cleaning liquid is not particularly limited, for example, ozone,
Hydrogen gas, oxygen gas, carbon dioxide gas, chlorine gas, nitrogen gas,
A rare gas such as argon can be used. The cleaning liquid for electronic material in which ozone is dissolved exhibits a very strong oxidizing power even at a low concentration of dissolved ozone, and is effective in removing organic matter contamination and metal contamination attached to the surface of the electronic material. The ozone concentration in the cleaning solution for electronic materials is 0.1 at room temperature.
Preferably it is 2020 mg / l. The cleaning solution for electronic materials in which hydrogen gas is dissolved can remove particles adhering to the surface of the electronic material very effectively. The concentration of hydrogen gas in the cleaning liquid for electronic materials is 0.7 to 1.5 at room temperature.
It is preferably mg / liter. The cleaning solution for electronic materials in which oxygen gas is dissolved can be used for cleaning metal contamination and fine particles on the surface of electronic materials, and because oxygen gas has no self-decomposition property, it has good stability and is easy to handle. It is. The concentration of oxygen gas in the cleaning liquid for electronic materials is preferably 10 to 40 mg / liter at room temperature. The electronic material cleaning water in which carbon dioxide is dissolved can be used as rinse water after chemical cleaning. By dissolving carbon dioxide gas in ultrapure water to lower the specific resistance, charging of the electronic material surface can be prevented. The cleaning liquid for electronic materials in which chlorine gas is dissolved can be used for cleaning metal contamination on the surface of electronic materials. When used together with Megasonic, the electronic material cleaning water in which nitrogen gas is dissolved is partially ionized in nitrogen gas and the specific resistance of ultrapure water is reduced. , Can be used as rinse water. The cleaning liquid for electronic materials in which a rare gas such as argon is dissolved can be used as a cleaning liquid for the surface of the electronic material because the generation of radicals is promoted by using it together with Megasonic.

【0006】本発明の電子材料用洗浄液は、溶解すべき
気体をあらかじめ純水と接触させて清浄化したのち、洗
浄用液体に溶解してなるものである。溶解すべき気体を
接触させる純水は、純水から溶解すべき気体中へ不純物
が移行しない水質のものであれば特に制限はないが、通
常は気体を溶解する洗浄用液体の調製に用いたものと同
じ純水を使用することが管理面からは好都合である。例
えば、洗浄用液体が超純水である場合には、気体を接触
させる純水として同じ超純水を用い、洗浄用液体が超純
水に過酸化水素を溶解した酸化性洗浄液である場合は、
気体を接触させる純水として、酸化性洗浄液の調製に用
いたものと同じ超純水を用いることが好ましい。気体を
接触させる純水と、洗浄用液体の調製に用いた純水を同
じ純度の純水とすることにより、気体と純水の接触によ
り、純水から気体へ不純物が移行するおそれがなく、気
体を清浄化することができる。本発明において、溶解す
べき気体を純水と接触させる方法には特に制限はなく、
例えば、気泡式気液接触法、液滴式気液接触法、充填塔
を用いる気液接触法などを挙げることができる。気泡式
気液接触法は、気体を多数の小気泡とすることにより純
水との接触面積を大にするものである。図1は、気泡式
気液接触装置の一態様の説明図である。気体は、原料気
体配管1を通じて、密閉式の水槽容器2の底部に設けら
れた多孔板3に導かれ、多数の小気泡となって純水中に
放出される。小気泡は、含有する不純物を純水に溶解し
て清浄化されつつ純水中を浮上し、水槽容器上部におい
て気液分離する。清浄化された気体は、清浄化気体配管
4を経由して、洗浄用液体への溶解のために移送され
る。水槽容器には、純水入口5及び気体清浄化後の水出
口6を設け、連続的又は間歇的に水槽容器内の水を更新
することが好ましい。気泡式気液接触法としては、この
他に、泡鐘塔、多孔板塔などのプレート塔などを挙げる
ことができる。液滴式気液接触法は、純水を噴霧又は雨
滴状とすることにより、気体との接触面積を大にするも
のであり、例えば、フェルド型気体洗浄器などを挙げる
ことができる。充填塔を用いる気液接触法は、充填物を
満たした塔の上部から純水を充填物の表面に沿って薄層
状に流下させ、気体は塔の下部から充填物の間隙を上昇
して純水と向流的に接触させるものである。これらの中
で、気泡式気液接触法は、装置が簡単で所要動力も少な
いので好適に使用することができる。気体を純水と接触
させて清浄化するための条件は、気体の汚染の程度、供
給し得る気体の圧力、要求される気体ひいては電子材料
用洗浄液の目標純度などを勘案して、適宜選定すること
ができる。
[0006] The cleaning liquid for electronic materials of the present invention is one in which a gas to be dissolved is previously brought into contact with pure water for cleaning, and then dissolved in the cleaning liquid. The pure water to be brought into contact with the gas to be dissolved is not particularly limited as long as the water quality does not transfer impurities from the pure water to the gas to be dissolved, but is usually used for preparing a cleaning liquid for dissolving the gas. The use of the same pure water is convenient from a management standpoint. For example, when the cleaning liquid is ultrapure water, the same ultrapure water is used as the pure water with which the gas is brought into contact, and when the cleaning liquid is an oxidizing cleaning liquid in which hydrogen peroxide is dissolved in ultrapure water. ,
As the pure water to be brought into contact with the gas, it is preferable to use the same ultrapure water as used in the preparation of the oxidizing cleaning liquid. Pure water to be brought into contact with the gas and pure water used for preparing the cleaning liquid are pure water having the same purity, so that there is no risk of impurities being transferred from the pure water to the gas due to the contact between the gas and the pure water, The gas can be purified. In the present invention, the method of contacting the gas to be dissolved with pure water is not particularly limited,
For example, a bubble-type gas-liquid contact method, a droplet-type gas-liquid contact method, a gas-liquid contact method using a packed tower, and the like can be given. The bubble-type gas-liquid contact method increases the contact area with pure water by converting a gas into a number of small bubbles. FIG. 1 is an explanatory diagram of one embodiment of a bubble-type gas-liquid contact device. The gas is guided to the perforated plate 3 provided at the bottom of the closed water tank 2 through the raw material gas pipe 1 and is released into pure water as a number of small bubbles. The small bubbles float in the pure water while being purified by dissolving the impurities contained in the pure water, and undergo gas-liquid separation at the upper part of the water tank container. The purified gas is transferred via the cleaning gas pipe 4 for dissolving in the cleaning liquid. It is preferable that the water tank is provided with a pure water inlet 5 and a water outlet 6 after gas cleaning, and the water in the water tank is continuously or intermittently renewed. Other examples of the bubble-type gas-liquid contact method include a plate tower such as a bubble bell tower and a perforated plate tower. In the droplet-type gas-liquid contact method, pure water is sprayed or raindrop-shaped to increase the contact area with a gas, and examples thereof include a felt-type gas cleaning device. In the gas-liquid contact method using a packed tower, pure water flows down in a thin layer along the surface of the packed bed from the top of the packed bed, and the gas rises in the gap between the packed bodies from the bottom of the tower and becomes pure. It comes into contact with water countercurrently. Among them, the bubble-type gas-liquid contact method can be suitably used because the apparatus is simple and the required power is small. Conditions for cleaning the gas by contacting it with pure water are appropriately selected in consideration of the degree of gas contamination, the pressure of the gas that can be supplied, the required gas, and the target purity of the cleaning liquid for electronic materials. be able to.

【0007】純水と気体の接触を始めた初期において
は、気体を清浄化するための純水に気体が溶解するため
に、洗浄用液体に溶解すべき気体が失われる。しかし、
清浄化のための純水は、短時間で接触している気体で飽
和し、それ以降は実質的に気体は失われることなく清浄
化される。清浄化される気体中に含まれる不純物の水へ
の溶解度は、通常は気体自体の水への溶解度よりはるか
に大きいので、接触される純水が気体で飽和したのち
も、なお多量の不純物を溶解して除去することができ
る。気体と接触する純水は、一定量を気液接触装置に入
れ、一定量の気体と回分式に接触したのち全量を更新す
ることができ、あるいは、気液接触装置中の純水を、連
続式に少量ずつ交換して常に一定の水質を保持させるこ
ともできる。水可溶性不純物を含有する気体をそのまま
洗浄用液体に溶解すると、得られる電子材料用洗浄液は
不純物を含む低純度のものとなるが、本発明の電子材料
用洗浄液は、気体を洗浄用液体に溶解する前に、あらか
じめ洗浄用液体と同じ純度の純水と接触させ、気体中の
不純物を水相に移行させて清浄化するので、不純物によ
る汚染のない高純度の電子材料用洗浄液を得ることがで
きる。
[0007] In the initial stage when gas contact with pure water is started, the gas to be dissolved in pure water for purifying the gas loses the gas to be dissolved in the cleaning liquid. But,
The pure water for cleaning is saturated with the contacting gas for a short time, and thereafter, the gas is purified without substantially losing the gas. The solubility of impurities contained in the gas to be purified in water is usually much greater than the solubility of the gas itself in water, so even after the pure water to be contacted is saturated with gas, a large amount of impurities can be removed. It can be dissolved and removed. Pure water that comes into contact with gas can be put into a gas-liquid contactor with a certain amount, and contacted with a certain amount of gas in batch mode, and then the whole amount can be renewed. It is also possible to maintain a constant water quality by changing the formula little by little. If the gas containing water-soluble impurities is dissolved in the cleaning liquid as it is, the resulting cleaning liquid for electronic materials will be of low purity containing impurities, but the cleaning liquid for electronic materials of the present invention dissolves the gas in the cleaning liquid. Before cleaning, it is contacted with pure water of the same purity as the cleaning liquid in advance, and the impurities in the gas are transferred to the aqueous phase for cleaning.Therefore, it is possible to obtain a high-purity cleaning liquid for electronic materials free of impurities. it can.

【0008】[0008]

【実施例】以下に、実施例を挙げて本発明をさらに詳細
に説明するが、本発明はこれらの実施例によりなんら限
定されるものではない。 実施例1 水の電気分解により製造したオゾンを含有する気体を、
図1に示される装置を用いて超純水と接触させることに
より清浄化したのち、溶存オゾン濃度が5.0mg/リッ
トルになるように超純水に溶解して電子材料用洗浄液を
調製した。この電子材料用洗浄液に含まれる鉄、ニッケ
ル、クロム、鉛、亜鉛、アルミニウム、チタン、銅、銀
及び白金の10種の金属の濃度を、誘導結合プラズマ発
光質量分析法にて測定したところ、総金属濃度は10ng
/リットル以下であった。 比較例1 実施例1と同じ水の電気分解により製造したオゾンを含
有する気体を、超純水と接触させて清浄化することな
く、溶存オゾン濃度が5.0mg/リットルになるように
直接超純水に溶解して電子材料用洗浄液を調製した。こ
の電子材料用洗浄液に含まれる10種の金属の濃度を、
実施例1と同様にして測定したところ、総金属濃度は2
5ng/リットルであった。 実施例2 酸素ガスを原料とする無声放電により製造したオゾンを
含有する気体を、図1に示される装置を用いて超純水と
接触させることにより清浄化したのち、溶存オゾン濃度
が5.0mg/リットルになるように超純水に溶解して電
子材料用洗浄液を調製した。この電子材料用洗浄液に含
まれる鉄、ニッケル、クロム、鉛、亜鉛、アルミニウ
ム、チタン、銅、銀及び白金の10種の金属の濃度を、
実施例1と同様にして測定したところ、総金属濃度は1
0ng/リットル以下であった。 比較例2 実施例2と同じ酸素ガスを原料とする無声放電により製
造したオゾンを含有する気体を、超純水と接触させて清
浄化することなく、溶存オゾン濃度が5.0mg/リット
ルになるように直接超純水に溶解して電子材料用洗浄液
を調製した。この電子材料用洗浄液に含まれる10種の
金属の濃度を、実施例1と同様にして測定したところ、
総金属濃度は60ng/リットルであった。 比較例3 実施例1〜2のオゾンを含有する気体の清浄化及び溶解
と、比較例1〜2のオゾンを含有する気体の溶解に用い
た超純水に含まれる鉄、ニッケル、クロム、鉛、亜鉛、
アルミニウム、チタン、銅、銀及び白金の10種の金属
の濃度を、実施例1と同様にして測定したところ、総金
属濃度は10ng/リットル以下であった。実施例1〜2
及び比較例1〜3の結果を、第1表に示す。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the present invention. Example 1 A gas containing ozone produced by electrolysis of water was
After cleaning by bringing it into contact with ultrapure water using the apparatus shown in FIG. 1, it was dissolved in ultrapure water so that the dissolved ozone concentration became 5.0 mg / liter to prepare a cleaning solution for electronic materials. The concentrations of the ten metals of iron, nickel, chromium, lead, zinc, aluminum, titanium, copper, silver and platinum contained in the cleaning solution for electronic materials were measured by inductively coupled plasma emission mass spectrometry. Metal concentration is 10ng
/ Liter or less. Comparative Example 1 The same ozone-containing gas produced by electrolysis of water as in Example 1 was directly contacted with ultrapure water and purified so that the dissolved ozone concentration became 5.0 mg / liter without being purified. It was dissolved in pure water to prepare a cleaning solution for electronic materials. The concentration of the ten metals contained in this cleaning solution for electronic materials is
When measured in the same manner as in Example 1, the total metal concentration was 2
It was 5 ng / liter. Example 2 An ozone-containing gas produced by silent discharge using oxygen gas as a raw material was purified by contacting it with ultrapure water using the apparatus shown in FIG. 1, and then the dissolved ozone concentration was 5.0 mg. Per liter to prepare a cleaning solution for electronic materials. Concentration of 10 kinds of metals of iron, nickel, chromium, lead, zinc, aluminum, titanium, copper, silver and platinum contained in the cleaning liquid for electronic materials,
When measured in the same manner as in Example 1, the total metal concentration was 1
It was less than 0 ng / liter. Comparative Example 2 A gas containing ozone produced by silent discharge using the same oxygen gas as in Example 2 was brought into contact with ultrapure water and purified, and the dissolved ozone concentration became 5.0 mg / liter. Was directly dissolved in ultrapure water to prepare a cleaning solution for electronic materials. The concentrations of the ten metals contained in the cleaning solution for electronic materials were measured in the same manner as in Example 1.
Total metal concentration was 60 ng / liter. Comparative Example 3 Iron, nickel, chromium, and lead contained in ultrapure water used for cleaning and dissolving the ozone-containing gas of Examples 1 and 2 and dissolving the ozone-containing gas of Comparative Examples 1 and 2. ,zinc,
When the concentrations of 10 metals, aluminum, titanium, copper, silver and platinum, were measured in the same manner as in Example 1, the total metal concentration was 10 ng / liter or less. Examples 1-2
Table 1 shows the results of Comparative Examples 1 to 3.

【0009】[0009]

【表1】 [Table 1]

【0010】第1表の結果から、オゾンを含有する気体
を超純水と接触させて清浄化し、超純水に溶解すること
により、無声放電により製造した比較的純度の低いオゾ
ン含有気体を用いた実施例2においても、水の電気分解
により製造した比較的純度の高いオゾン含有気体を用い
た実施例1と同様に、総金属濃度の低い高純度の電子材
料用洗浄液が得られることが分かる。これに対して、オ
ゾンを含有する気体を超純水と接触させて清浄化するこ
となく、直接超純水に溶解した場合には、得られる洗浄
液中の総金属濃度が高く、かつ無声放電により製造した
オゾン含有気体を用いた比較例2の方が、水の電気分解
により製造したオゾン含有気体を用いた比較例1よりも
総金属濃度が高く、使用したオゾン含有気体の純度がそ
のまま得られる洗浄液の純度に現れている。比較例3に
おいて測定した、オゾン含有気体の溶解に用いた超純水
の総金属濃度が低いことからも、比較例1及び比較例2
の洗浄液中の金属分は、清浄化することなく使用したオ
ゾン含有気体に同伴されて混入したものであることが確
かめられた。
From the results shown in Table 1, the gas containing ozone was purified by contacting the gas containing ozone with ultrapure water to purify it and dissolving it in ultrapure water. It can be seen that in Example 2 as well, a high-purity cleaning liquid for electronic materials having a low total metal concentration was obtained as in Example 1 using a relatively pure ozone-containing gas produced by electrolysis of water. . On the other hand, if the ozone-containing gas is directly dissolved in ultrapure water without cleaning by contacting the gas with ultrapure water, the total metal concentration in the resulting cleaning solution is high, and silent discharge Comparative Example 2 using the produced ozone-containing gas has a higher total metal concentration than Comparative Example 1 using the ozone-containing gas produced by electrolysis of water, and the purity of the used ozone-containing gas can be obtained as it is. This is reflected in the purity of the cleaning solution. Since the total metal concentration of the ultrapure water used for dissolving the ozone-containing gas measured in Comparative Example 3 was low, Comparative Examples 1 and 2 were also used.
It was confirmed that the metal component in the cleaning liquid was mixed with the ozone-containing gas used without cleaning.

【0011】[0011]

【発明の効果】本発明の電子材料用洗浄液は、洗浄用液
体に溶解すべき気体を、あらかじめ純水と接触させて可
溶性不純物を除去し清浄化するので、水溶性不純物を含
有する気体を原料として使用しても、高純度の電子材料
用洗浄液とすることができる。例えば、無声放電により
製造したオゾンを含有する気体や、特別な高純度化処理
を施されていない水の電気分解によるオゾンを含有する
気体を、高純度の電子材料用洗浄液の原料として使用す
ることが可能となる。
According to the cleaning liquid for electronic materials of the present invention, the gas to be dissolved in the cleaning liquid is preliminarily brought into contact with pure water to remove soluble impurities and to be purified. Can be used as a high-purity cleaning solution for electronic materials. For example, use a gas containing ozone produced by silent discharge or a gas containing ozone by electrolysis of water that has not been subjected to a special high-purification treatment as a raw material for a high-purity cleaning liquid for electronic materials. Becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、気泡式気液接触装置の一態様の説明図
である。
FIG. 1 is an explanatory diagram of one embodiment of a bubble-type gas-liquid contact device.

【符号の説明】[Explanation of symbols]

1 原料気体配管 2 密閉式の水槽容器 3 多孔板 4 清浄化気体配管 5 純水入口 6 気体清浄化後の水出口 DESCRIPTION OF SYMBOLS 1 Raw material gas piping 2 Sealed water tank container 3 Perforated plate 4 Purification gas piping 5 Pure water inlet 6 Water outlet after gas cleaning

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大澤 公伸 東京都新宿区西新宿3丁目4番7号 栗田 工業株式会社内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Kiminobu Osawa Kurita Kogyo Co., Ltd., 3-4-7 Nishishinjuku, Shinjuku-ku, Tokyo

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】あらかじめ純水と接触させて清浄化した気
体を、洗浄用液体に溶解してなることを特徴とする電子
材料用洗浄液。
1. A cleaning liquid for electronic materials, wherein a gas previously cleaned by contacting with pure water is dissolved in a cleaning liquid.
JP00228498A 1998-01-08 1998-01-08 Cleaning liquid for electronic materials Expired - Fee Related JP4203776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00228498A JP4203776B2 (en) 1998-01-08 1998-01-08 Cleaning liquid for electronic materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00228498A JP4203776B2 (en) 1998-01-08 1998-01-08 Cleaning liquid for electronic materials

Publications (2)

Publication Number Publication Date
JPH11197678A true JPH11197678A (en) 1999-07-27
JP4203776B2 JP4203776B2 (en) 2009-01-07

Family

ID=11525082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00228498A Expired - Fee Related JP4203776B2 (en) 1998-01-08 1998-01-08 Cleaning liquid for electronic materials

Country Status (1)

Country Link
JP (1) JP4203776B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6310017B1 (en) * 1999-02-01 2001-10-30 Ct Associates, Inc. Cleaner composition, method for making and using same
JP2002018253A (en) * 2000-07-06 2002-01-22 Sasakura Engineering Co Ltd Hydrogen dissolving apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6310017B1 (en) * 1999-02-01 2001-10-30 Ct Associates, Inc. Cleaner composition, method for making and using same
JP2002018253A (en) * 2000-07-06 2002-01-22 Sasakura Engineering Co Ltd Hydrogen dissolving apparatus
JP4637329B2 (en) * 2000-07-06 2011-02-23 株式会社ササクラ Hydrogen dissolver

Also Published As

Publication number Publication date
JP4203776B2 (en) 2009-01-07

Similar Documents

Publication Publication Date Title
US5985811A (en) Cleaning solution and cleaning method
US8999069B2 (en) Method for producing cleaning water for an electronic material
JP2001205204A (en) Apparatus for manufacturing washing liquid for electronic part members
WO2014069203A1 (en) Method for manufacturing ozone-gas-dissolved water and cleaning method for electronic materials
JP4108798B2 (en) Ozone-containing ultrapure water supply method and ozone-containing ultrapure water supply device
JPH11197678A (en) Cleaning liquid for electronic material
JP3332323B2 (en) Cleaning method and cleaning device for electronic component members
JP2000216130A (en) Washing water and method for electronic material
JP4554377B2 (en) Cleaning liquid and cleaning method
JP4051693B2 (en) Cleaning method for electronic materials
JPH01298003A (en) Method for generating ozone
JP2000331977A (en) Method for cleaning electronic material
JP2000319689A (en) Cleaning water for electronic material
JPH11186207A (en) Cleaning water for electronic material
JP3444473B2 (en) Electronic material cleaning method and electronic material cleaning water
JPH02164035A (en) Cleaning of semiconductor substrate
JPH1129795A (en) Cleaning water for electronic material, its preparation, and cleaning of electronic material
JP2000262992A (en) Substrate washing method
JP3436295B2 (en) Cleaning water for electronic materials
JPH11293288A (en) Cleaning water for electronic material and cleaning liquid for electronic material
JPH11219928A (en) Cleaning of electronic material
JPH11181493A (en) Cleaning water for electronic material
JP2001062412A (en) Cleaning method, production of cleaning liquid, cleaning liquid and producing device for cleaning liquid
JP4508311B2 (en) Adjustment method of ozone concentration
JPH11138113A (en) Method of removing fine particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040924

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20070413

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080703

A521 Written amendment

Effective date: 20080828

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20080918

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20081001

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20111024

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20121024

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees