JP2008104938A - Oxygen-dissolved water producer and oxygen-dissolved water producing apparatus - Google Patents

Oxygen-dissolved water producer and oxygen-dissolved water producing apparatus Download PDF

Info

Publication number
JP2008104938A
JP2008104938A JP2006289543A JP2006289543A JP2008104938A JP 2008104938 A JP2008104938 A JP 2008104938A JP 2006289543 A JP2006289543 A JP 2006289543A JP 2006289543 A JP2006289543 A JP 2006289543A JP 2008104938 A JP2008104938 A JP 2008104938A
Authority
JP
Japan
Prior art keywords
oxygen
dissolved water
water
dissolved
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006289543A
Other languages
Japanese (ja)
Inventor
Yasuhiko Ichise
泰彦 市瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asaba Manufacturing Inc
Original Assignee
Asaba Manufacturing Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asaba Manufacturing Inc filed Critical Asaba Manufacturing Inc
Priority to JP2006289543A priority Critical patent/JP2008104938A/en
Publication of JP2008104938A publication Critical patent/JP2008104938A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Water Treatments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily obtain highly concentrated oxygen-dissolved water at a low running cost by simplifying a production structure of the oxygen-dissolved water. <P>SOLUTION: Multiple partition walls 25 for producing oxygen-dissolved water droplets, having multiple water droplets producing through-holes dispersedly disposed, for producing oxygen-dissolved water droplets by mixing oxygen gas released from a gas intake port into dropping water released from a water intake port, are dispersedly disposed in an oxygen-dissolved water producing chamber from upper to lower part sequentially with given spaces. The hole diameters of the partition walls 25 for producing oxygen-dissolved water droplets installed in the lower part in the chamber are set smaller than those of the partition walls 25 for producing oxygen-dissolved water droplets installed in the upper part. An oxygen-dissolved water cluster conversion part 26 packed with multiple far-infrared radiation materials is provided, and an oxygen-dissolved water cluster conversion part 31 with the outer face of the side wall of a case coated with the far-infrared radiation material, is provided. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、地下水、水道水、雨水等の自然水を高濃度の酸素溶解水に生成できる酸素溶解水生成装置、特にその酸素溶解水生成器に関する。   The present invention relates to an oxygen-dissolved water generator, particularly an oxygen-dissolved water generator, capable of generating natural water such as ground water, tap water, and rainwater into high-concentration oxygen-dissolved water.

一般に、植物の成長を促進し、品質の向上、収穫量の増加を計るには、根に必要量の酸素を供給しなければならない。しかし、施設園芸等において、多量の水を用い、水耕栽培、点滴栽培等をする場合、通常地下水を利用しているが、地下水は地表水等と比べて植物の生長に必要な溶解酸素量が少ない。そこで、水に酸素を溶解させる方法として、大気の曝気、過酸化水素の補充、純酸素の曝気、酸素富化膜の利用等が行われている。   In general, to promote plant growth, improve quality, and increase yields, the roots must be supplied with the required amount of oxygen. However, groundwater is usually used when cultivating horticulture, etc. using a large amount of water for hydroponics, drip cultivation, etc., but the amount of dissolved oxygen required for plant growth compared to surface water etc. Less is. Therefore, as a method for dissolving oxygen in water, air aeration, hydrogen peroxide replenishment, pure oxygen aeration, use of an oxygen-enriched film, and the like are performed.

しかしながら、いずれの方法にも、酸素溶解水を生成するための構造が複雑であり、ランニングコストが高い等の問題がある。   However, both methods have problems such as a complicated structure for generating oxygen-dissolved water and high running costs.

本発明は、このような従来の問題点に着目してなされたものであり酸素溶解水の生成構造が簡単で、高濃度の酸素溶解水を得易く、ランニングコストが安い酸素溶解水生成器並びに酸素溶解水生成装置を提供することを目的とする。   The present invention has been made paying attention to such conventional problems, and has a simple structure for generating oxygen-dissolved water, a high-concentration oxygen-dissolved water that is easy to obtain, and an oxygen-dissolved water generator that is low in running cost. An object is to provide an oxygen-dissolved water generator.

上記目的を達成するために、本発明による酸素溶解水生成器は上下壁と側壁とを有するケースを用い、その上壁付近の壁部に、水を外部から取り入れる水取入口と、酸素ガスを外部から取り入れるガス取入口とを設け、そのケース内の上側空間を水に酸素ガスを混入し、酸素溶解水を生成する酸素溶解水生成室にし、その下側空間を酸素溶解水を貯える酸素溶解水貯水室にし、その下壁付近の壁部に酸素溶解水を外部に取り出す酸素溶解水取出口を設ける。   In order to achieve the above object, an oxygen-dissolved water generator according to the present invention uses a case having upper and lower walls and side walls, a water inlet for taking water from the outside, and oxygen gas into a wall near the upper wall. Provided with an external gas intake, the upper space inside the case is mixed with oxygen gas to form an oxygen-dissolved water generating chamber that generates oxygen-dissolved water, and the lower space stores oxygen-dissolved water An oxygen-dissolved water outlet for taking out oxygen-dissolved water to the outside is provided on the wall near the lower wall of the water reservoir.

そして、上記酸素溶解水生成室の水取入口に外部から圧送水を供給し、更にそのガス取入口に外部から圧送水の水圧より高い圧力の酸素ガスを供給し、その酸素溶解水生成室内に、水取入口から放出される落下水にガス取入口から放出される酸素ガスを混入して、酸素溶解水滴を形成する水滴形成用貫通穴を多数分散配設した酸素溶解水滴形成用仕切壁を複数個、上方から下方へ順次所定距離離して分散配設し、その上方に設置する酸素溶解水滴形成用仕切壁の穴径より、下方に設置する酸素溶解水滴形成用仕切壁の穴径を小さくする。   Then, pressurized water is supplied from the outside to the water intake of the oxygen-dissolved water generation chamber, and oxygen gas having a pressure higher than the water pressure of the pressurized water is supplied from the outside to the gas intake. An oxygen-dissolved water droplet forming partition wall in which a large number of water droplet forming through holes are formed by mixing oxygen gas discharged from the gas intake port with falling water discharged from the water intake port to form oxygen-dissolved water droplets. Disperse and arrange a plurality at a predetermined distance sequentially from the top to the bottom, and the hole diameter of the oxygen-dissolving water droplet forming partition wall installed below is smaller than the hole diameter of the oxygen-dissolving water droplet forming partition wall installed above the plurality. To do.

又、上記酸素溶解水貯水室内に、遠赤外線放射材を多数充填した酸素溶解水クラスター変換部を設け、そのクラスター変換部より上部を酸素溶解水の水位変動部、そのクラスター変換部より下部を変換した小クラスターの酸素溶解水を貯える給水部にすると好ましくなる。   In addition, an oxygen-dissolved water cluster converter filled with many far-infrared radiation materials is installed in the oxygen-dissolved water reservoir, and the upper part of the cluster converter is converted to the water level fluctuation part of the oxygen-dissolved water, and the lower part is converted from the cluster converter. It is preferable to use a water supply unit for storing small-cluster oxygen-dissolved water.

又、上記ケースの側壁外面に遠赤外線放射材を被覆した酸素溶解水クラスター変換部を設けるとよい。
又、上記遠赤外線放射材としてグラファイトシリカを用いるとよい。
Further, it is preferable to provide an oxygen-dissolved water cluster conversion part in which the far-infrared radiation material is coated on the outer surface of the side wall of the case.
Further, graphite silica may be used as the far-infrared radiation material.

又、本発明による酸素溶解水生成装置には上記酸素溶解水生成器を備え付けるとよい。   The oxygen-dissolved water generator according to the present invention may be provided with the oxygen-dissolved water generator.

本発明の酸素溶解水生成器は、外部から圧送水を供給し、更に外部からその圧送水の水圧より高い圧力の酸素ガスを供給することにより、水取入口から放出される落下水をガス取入口から放出される酸素ガスで吹き飛ばす等して、上方に配設した酸素溶解水滴形成用仕切壁の上面に分散し、その落下途中や上面との衝突、更には仕切壁に分散配設した多数の各貫通穴の通過等により、水と酸素ガスとの接触面積を増やすことができる。それ故、水中に酸素ガスを良好に混入でき、各貫通穴から夫々落下させると、多量の酸素を溶解し、多量のマイナスイオンを含んだ酸素溶解水滴を簡単に形成できる。   The oxygen-dissolved water generator of the present invention supplies pressure water from the outside, and further supplies oxygen gas having a pressure higher than the water pressure of the pressure water from the outside, thereby collecting the falling water released from the water intake. It is dispersed on the upper surface of the partition wall for forming oxygen-dissolved water droplets disposed above by blowing it off with oxygen gas released from the inlet, etc. The contact area between water and oxygen gas can be increased by passing through each through hole. Therefore, oxygen gas can be mixed well into water, and when dropped from each through hole, a large amount of oxygen is dissolved and an oxygen-dissolved water droplet containing a large amount of negative ions can be easily formed.

そして、その酸素溶解水滴は下方に配設した酸素溶解水滴形成用仕切壁の上面へと落下するが、同様にして水中に酸素ガスを混入できるので、各貫通穴から夫々落下させると、更に多量の酸素を溶解し、多量のマイナスイオンを含んだ酸素溶解水滴を簡単に形成できる。その際、酸素溶解水生成室内に、水滴形成用貫通穴を多数分散配設した酸素溶解水滴形成用仕切壁を複数個、上方から下方へ順次所定距離離して分散配設し、その上方に設置する酸素溶解水滴形成用仕切壁の穴径より、下方に設置する酸素溶解水滴形成用仕切壁の穴径を小さくすることにより、落下の途中で水滴を順次小さくして行き、酸素ガスとの接触面積を増やすことができる。それ故、酸素溶解水の生成構造が簡単になり、その生成構造によって水中に酸素ガスを混入し易く、マイナスイオンを生成し易くなって、多量の酸素を溶解し、多量のマイナスイオンを含んだ高濃度の酸素溶解水を簡単に生成できて、ランニングコストも安価になる。   Then, the oxygen-dissolved water drops fall to the upper surface of the oxygen-dissolved water droplet forming partition wall arranged below, but oxygen gas can be mixed into the water in the same way. It is possible to easily form oxygen-dissolved water droplets containing a large amount of negative ions. At that time, in the oxygen-dissolved water generating chamber, a plurality of oxygen-dissolved water droplet forming partition walls with a large number of water droplet forming through holes are dispersed and arranged at a predetermined distance sequentially from the upper side to the lower side, and installed above them. By making the hole diameter of the partition wall for forming the oxygen-dissolving water droplets below the hole diameter of the partition wall for forming the oxygen-dissolving water droplets, the water droplets are made smaller in the middle of the fall and contact with oxygen gas. The area can be increased. Therefore, the generation structure of oxygen-dissolved water is simplified, and the generation structure makes it easy to mix oxygen gas into water, easily generate negative ions, dissolves a large amount of oxygen, and contains a large amount of negative ions. High-concentration oxygen-dissolved water can be easily generated, and the running cost is reduced.

又、酸素溶解水貯水室内に、遠赤外線放射材を多数充填した酸素溶解水クラスター変換部を設け、そのクラスター変換部より上部を酸素溶解水の水位変動部、下部を変換した小クラスターの酸素溶解水を貯える給水部とすることにより、多量の酸素を溶解し、多量のマイナスイオンを含んだ酸素溶解水に遠赤外線を当てて、酸素溶解水のクラスターを小さくし、植物の根から吸収され易く、植物の生長に好適な小クラスターの酸素溶解水にすることができる。しかも、クラスターを小さくすると酸素溶解度を高めることができる。そして、酸素溶解水貯水室の酸素溶解水クラスター変換部より上部を水位変動部にして、酸素溶解水の水位を変動させても、遠赤外線放射材を多数充填したクラスター変換部内に絶えず酸素溶解水を満たしておくと、酸素ガスの大きな気泡が遠赤外線放射材に邪魔されて、下部の給水部まで通過することがない。それ故、取出口から給水される酸素溶解水に溶解状態にない酸素ガスの大きな気泡が含まれず、酸素ガスの利用率を上げることができる。   In addition, an oxygen-dissolved water cluster converter filled with many far-infrared radiation materials is installed in the oxygen-dissolved water storage chamber, and the upper part of the cluster converter is the water level fluctuation part of the oxygen-dissolved water, and the oxygen dissolution of small clusters converted from the lower part. By using a water supply unit that stores water, a large amount of oxygen is dissolved, far-infrared rays are applied to oxygen-dissolved water containing a large amount of negative ions, and the oxygen-dissolved water cluster is reduced, making it easy to absorb from the roots of plants. Thus, it is possible to obtain small-cluster oxygen-dissolved water suitable for plant growth. In addition, the oxygen solubility can be increased by reducing the clusters. Even if the water level of the oxygen-dissolved water storage chamber is changed from the oxygen-dissolved water cluster conversion section to the water level fluctuation section, the oxygen-dissolved water is constantly in the cluster conversion section filled with many far-infrared radiation materials. Is satisfied, large bubbles of oxygen gas are not obstructed by the far-infrared radiation material and do not pass to the lower water supply section. Therefore, the oxygen-dissolved water supplied from the outlet does not include large bubbles of oxygen gas that are not in a dissolved state, and the utilization rate of oxygen gas can be increased.

又、ケースの側壁外面に遠赤外線放射材を被覆した酸素溶解水クラスター変換部を設けることにより、外部に設けた酸素溶解水クラスター変換部で発生した遠赤外線を側壁を通過させて、ケース内部の酸素溶解水に当てて、やはりクラスターを小さくし、小クラスターの酸素溶解水にすることができる。   In addition, by providing an oxygen-dissolved water cluster conversion part coated with a far-infrared radiation material on the outer side wall of the case, the far-infrared light generated by the oxygen-dissolved water cluster conversion part provided outside is passed through the side wall, When applied to oxygen-dissolved water, the clusters can still be made smaller to form small-cluster oxygen-dissolved water.

又、遠赤外線放射材として、グラファイトシリカを用いることにより、そのグラファイトシリカが40℃以下の常温で放射する強力な遠赤外線を酸素溶解水に当てて、クラスターを小さくし、小クラスターの酸素溶解水にすることができる。   In addition, by using graphite silica as the far-infrared radiation material, strong far-infrared radiation that the graphite silica radiates at a room temperature of 40 ° C. or less is applied to the oxygen-dissolved water to reduce the cluster, and the small-cluster oxygen-dissolved water. Can be.

又、そのような酸素溶解水生成器を備えることにより、酸素溶解水生成装置を簡単に製造ことができる。   Moreover, by providing such an oxygen-dissolved water generator, an oxygen-dissolved water generator can be easily manufactured.

以下、添付の図1〜7を参照して、本発明の実施の最良形態を説明する。
図1は本発明を適用した酸素溶解水生成装置の酸素溶解水生成部を示す正面図、図2はその酸素溶解水生成装置の構成を示すブロック図である。この酸素溶解水生成装置1は酸素溶解水生成の中心として、酸素溶解水生成部2に酸素溶解水生成器3を備える。そして、酸素溶解水生成器3のケース4を構成するため、その側壁部材5として、例えば図3、4に示すような外径が216mm、内径が194mm、高さが700mmの塩化ビニール等のプラスチック製円筒体を用いる。又、その上下開口6、7を夫々覆う上下蓋8、9として、例えば図5、6に示す大きさが等しく1辺の長さが250mmの略正四角形状の板体を用いる。すると、上下蓋8、9の円形中央部10、11をケース4の上下壁部材として用い、その周囲部分を側壁部材5に上下壁部材を一体に結合してケース4を形成する際の結合用鍔部12、13にできる。
The best mode for carrying out the present invention will be described below with reference to FIGS.
FIG. 1 is a front view showing an oxygen-dissolved water generator of an oxygen-dissolved water generator to which the present invention is applied, and FIG. 2 is a block diagram showing the configuration of the oxygen-dissolved water generator. The oxygen-dissolved water generator 1 includes an oxygen-dissolved water generator 3 in the oxygen-dissolved water generator 2 as a center for generating oxygen-dissolved water. Then, in order to constitute the case 4 of the oxygen-dissolved water generator 3, as its side wall member 5, for example, a plastic such as vinyl chloride having an outer diameter of 216 mm, an inner diameter of 194 mm, and a height of 700 mm as shown in FIGS. A cylindrical body is used. Further, as the upper and lower lids 8 and 9 for covering the upper and lower openings 6 and 7, respectively, for example, a substantially square plate having the same size as shown in FIGS. 5 and 6 and a side length of 250 mm is used. Then, the circular center portions 10 and 11 of the upper and lower lids 8 and 9 are used as the upper and lower wall members of the case 4, and the surrounding portions are connected to the side wall member 5 to integrally join the upper and lower wall members to form the case 4. It can be made into the collar parts 12 and 13.

そこで、上蓋7の中央部10には、その中心に水を外部からケース4に取り入れる口径の大きな貫通穴を水取入口14として設け、その水取入口14より離して外側に酸素ガスを外部からケース4に取り入れる口径の小さな貫通穴をガス取入口15として設ける。そして、上蓋8の中央部10の下面に、3本の各長さが例えば400mmの支持棒16(16a、16b、16c)を水取入口14より外側の3方にいずれも等距離離し、正三角形状に配置して、下面に垂直となるように突設する。又、上蓋8の中央部下面の最外側部に、水取入口14を中心にしてガス取入口15、支持棒16の設置箇所等の外側を取り囲む円形溝17を設け、そこにシール部材となるOリング18を嵌めて配設する。又、上蓋8の結合用鍔部12の各4隅付近に、結合用貫通穴19(19a、…19d)を夫々設ける。   Therefore, the central portion 10 of the upper lid 7 is provided with a through-hole having a large diameter as a water intake 14 at the center for taking water into the case 4 from the outside, and oxygen gas is supplied from the outside away from the water intake 14. A through hole having a small diameter to be taken into the case 4 is provided as the gas inlet 15. Then, three support rods 16 (16a, 16b, 16c) each having a length of 400 mm, for example, are spaced apart from each other by three equal distances on the lower surface of the central portion 10 of the upper lid 8 so as to be They are arranged in a triangular shape and project so as to be perpendicular to the lower surface. In addition, a circular groove 17 is provided on the outermost part of the lower surface of the central portion of the upper lid 8 so as to surround the outside of the gas intake port 15 and the support rod 16 with the water intake port 14 as a center. An O-ring 18 is fitted and disposed. Further, coupling through holes 19 (19a,... 19d) are provided in the vicinity of each of the four corners of the coupling flange 12 of the upper lid 8.

又、下蓋9の中央部11に、上蓋8の中央部10に設けた水取入口14、ガス取入口15と同一位置に対応させて、酸素溶解水をケース4から外部に取り出す酸素溶解水取出口20、酸素溶解水の水位検出用チューブ21との接続口22を夫々設ける。又、下蓋9の中央部11の上面に、上蓋8に設けた支持棒16の設置箇所と同一位置に対応させて、3本の各長さが例えば250mmの支持棒23(23a、23b、23c)を酸素溶解水取出口20から離し、正三角形状に配置して、上面に垂直となるように突設する。又、下蓋9の中央部上面の最外側部に、上蓋8に設けた円形溝17、Oリング18と同一位置に対応させて、水取入口20を中心にして、チューブ接続口22、支持棒23の設置箇所等の外側を取り囲む円形溝56を設け、そこにシール部材となるOリング57を嵌めて配設する。又、下蓋9の結合用鍔部13の各4隅付近に、上蓋8の結合用鍔部12に設けた各結合用貫通穴19と同一位置に対応させて、結合用貫通穴24(24a、…24d)を夫々設ける。   In addition, the oxygen-dissolved water that takes out oxygen-dissolved water from the case 4 to the outside at the central portion 11 of the lower lid 9 in the same position as the water intake 14 and the gas intake 15 provided in the central portion 10 of the upper lid 8. A connection port 22 is provided for each of the outlet 20 and the oxygen-dissolved water level detection tube 21. In addition, on the upper surface of the central portion 11 of the lower lid 9, the three support rods 23 (23a, 23b, 23c) is separated from the oxygen-dissolved water outlet 20 and arranged in a regular triangle shape so as to project perpendicularly to the upper surface. In addition, on the outermost part of the upper surface of the center part of the lower lid 9, the tube connection port 22 is supported around the water intake 20 so as to correspond to the circular groove 17 and the O-ring 18 provided in the upper lid 8. A circular groove 56 surrounding the outside of the installation place of the rod 23 is provided, and an O-ring 57 serving as a seal member is fitted and disposed therein. Further, in the vicinity of the four corners of the coupling collar 13 of the lower lid 9, the coupling through holes 24 (24 a) are arranged corresponding to the same positions as the coupling through holes 19 provided in the coupling collar 12 of the upper lid 8. ... 24d) are provided.

そして、ケース4の内部の上側空間を水に酸素ガスを混入し、酸素溶解水を生成する酸素溶解水生成室にし、その下側空間を酸素溶解水を貯える酸素溶解水貯水室にする。そこで、酸素溶解水生成室内に、水取入口14から放出される落下水にガス取入口15から放出される酸素ガスを混入して、酸素溶解水滴を形成する水滴形成用貫通穴(図示なし)を多数分散配設した酸素溶解水滴形成用仕切壁25を複数個、上方から下方へ順次所定距離離して分散配設し、その上方に設置する酸素溶解水滴形成用仕切壁25の穴径より、下方に設置する酸素溶解水滴形成用仕切壁25の穴径を小さくする。   Then, the upper space inside the case 4 is mixed with oxygen gas to form an oxygen-dissolved water generating chamber for generating oxygen-dissolved water, and the lower space is used as an oxygen-dissolved water storage chamber for storing oxygen-dissolved water. Therefore, a water droplet formation through hole (not shown) that forms oxygen-dissolved water droplets by mixing oxygen gas released from the gas intake port 15 with falling water discharged from the water intake port 14 into the oxygen-dissolved water generating chamber. A plurality of oxygen-dissolved water droplet forming partition walls 25 distributed in a large number are dispersed and disposed sequentially at a predetermined distance from the upper side to the lower side, and from the hole diameter of the oxygen-dissolved water droplet forming partition wall 25 installed thereabove, The hole diameter of the partition wall 25 for forming oxygen-dissolved water droplets installed below is reduced.

その際、酸素溶解水生成室内に分散配設する酸素溶解水滴形成用仕切壁25として、例えば側壁用円筒体5の内径より若干小さな径を有する厚さ1mm程の金属製円板体を3枚用いる。そして、上位に配置する酸素溶解水滴形成用仕切壁25aには、その全面にパンチングにより直径5mmの水滴形成用貫通穴を多数、隣接する穴同士を近接状態にして分散配設する。又、中位に配置する酸素溶解水滴形成用仕切壁25bには、その全面にパンチングにより直径3mmの水滴形成用貫通穴を同様にして配設する。又、下位に配置する酸素溶解水滴形成用の仕切壁25cには、その全面にパンチングにより直径1mmの水滴形成用貫通穴を同様にして配設する。なお、各個の穴形状はいずれも円錐台状にして上方より下方に行く程順次径を大きくして水切りを良くし、水滴を形成し易くする。   At this time, as the oxygen-dissolved water droplet forming partition wall 25 distributed and arranged in the oxygen-dissolved water generating chamber, for example, three metal discs each having a diameter slightly smaller than the inner diameter of the side wall cylinder 5 and having a thickness of about 1 mm. Use. In addition, the oxygen-dissolved water droplet forming partition wall 25a disposed on the upper side is provided with a large number of water droplet forming through holes having a diameter of 5 mm by punching on the entire surface, and the adjacent holes are dispersedly arranged. Further, in the oxygen-dissolved water droplet forming partition wall 25b arranged in the middle, a water droplet forming through hole having a diameter of 3 mm is similarly provided on the entire surface by punching. In addition, a water droplet forming through hole having a diameter of 1 mm is similarly provided on the entire surface of the partition wall 25c for forming oxygen-dissolved water droplets arranged at a lower position by punching. Note that each hole has a truncated cone shape, and the diameter is gradually increased from the upper side to the lower side to improve drainage and facilitate formation of water droplets.

そして、上蓋8の下面に突設した3本の支持棒16に対し、その下面より上位、中位、下位の各酸素溶解水滴形成用仕切壁25を上方から下方へ順次100mmずつ離して水平に取り付け分散配設する。又、酸素溶解水貯水室内に、遠赤外線放射材を多数充填した酸素溶解水クラスター変換部26を設け、その酸素溶解水クラスター変換部26と、下位に配置した酸素溶解水滴形成用仕切壁25cとの間の部分を貯える酸素溶解水の水位変動を可能にする水位変動部27、その酸素溶解水クラスター変換部26より下部側を変換した小クラスターの酸素溶解水を貯える給水部28にする。なお、上位、中位、下位の各酸素溶解水滴形成用仕切壁25の取り付け位置は当然変更できる。   Then, with respect to the three support rods 16 projecting from the lower surface of the upper lid 8, the upper, middle and lower oxygen-dissolving water droplet forming partition walls 25 from the lower surface are sequentially separated from each other by 100 mm in order and horizontally Install and distribute. In addition, an oxygen-dissolved water cluster converter 26 filled with a large number of far-infrared radiation materials is provided in the oxygen-dissolved water reservoir, and the oxygen-dissolved water cluster converter 26 and an oxygen-dissolved water droplet forming partition wall 25c disposed below. The water level fluctuation part 27 that enables the fluctuation of the water level of the oxygen-dissolved water that stores the portion between the two, and the water supply part 28 that stores the small-cluster oxygen-dissolved water converted from the lower part of the oxygen-dissolved water cluster conversion part 26. The attachment positions of the upper, middle, and lower oxygen-dissolved water droplet forming partition walls 25 can naturally be changed.

そこで、酸素溶解水クラスター変換部26を形成するためのケースとして、例えば直径を側壁用円筒体5の内径より若干小さくし、高さを150mmにした円柱状のかご体29を用いる。その際、かご体29の上下壁部材として、例えば穴径が5mmのパンチングメタルを用いる。そして、かご体29を下蓋9の上面に突設した3本の支持棒23の中央部に取り付け、そのかご体29の内部に遠赤外線放射材として、例えばグラファイトシリカの粉末を珪石の粉末と一緒に焼結したセラミックボール30を多数充填する。又、側壁用円筒体5の外周面のほぼ全体に遠赤外線放射材として、例えばグラファイトシリカの粉末を被覆した酸素溶解水クラスター変換部31を設ける。   Therefore, as a case for forming the oxygen-dissolved water cluster conversion portion 26, for example, a cylindrical car body 29 having a diameter slightly smaller than the inner diameter of the side wall cylinder 5 and a height of 150 mm is used. At that time, for example, a punching metal having a hole diameter of 5 mm is used as the upper and lower wall members of the car body 29. Then, the car body 29 is attached to the central portion of the three support rods 23 projecting from the upper surface of the lower lid 9. As the far-infrared radiation material inside the car body 29, for example, graphite silica powder and silica stone powder are used. A large number of ceramic balls 30 sintered together are filled. In addition, an oxygen-dissolved water cluster converter 31 covered with, for example, graphite silica powder is provided as a far-infrared radiation material on almost the entire outer peripheral surface of the side wall cylinder 5.

このグラファイトシリカ(学術名)はシリカブラックとも呼ばれて、北海道桧山郡上ノ国天の川上流より産出され、表1に示す通り、天然ミネラル特にシリカを豊富に含み、常温(40℃以下)で鉄等の金属を通す強力な遠赤外線を多量に放射する鉱石である。それ故、グラファイトシリカから放射される遠赤外線を水に当てると、水のクラスター(分子集団)を効率良く分解し、小クラスターの水に変換することができる。

Figure 2008104938
長野県下伊那郡喬木村6714番地1 松島光陽化学株式会社提供 This graphite silica (scientific name) is also called silica black, and is produced from the upstream of Kaminokuni Tenkawa, Hiyama-gun, Hokkaido. As shown in Table 1, it contains abundant natural minerals, especially silica, and is made of iron, etc. at room temperature (40 ° C or below). It is an ore that emits a large amount of strong far-infrared rays through metal. Therefore, when far-infrared rays emitted from graphite silica are applied to water, the water cluster (molecular group) can be efficiently decomposed and converted into small cluster water.
Figure 2008104938
Provided by Matsushima Koyo Chemical Co., Ltd. 6714-1 Kashiwagi-mura, Shimoina-gun, Nagano

酸素溶解水生成部2の組立時、先ず側壁用円筒体5の上開口6を上蓋8で閉じて、その円筒体5の上側空間内に上蓋8の下面から下方に突設した3本の支持棒16と3枚の酸素溶解水滴形成用仕切壁25との組立体を挿入し、更に下開口7を下蓋9で閉じて、その円筒体5の下側空間内に下蓋9の上面から上方に突設した3本の支持棒23と酸素溶解水クラスター変換部26との組立体を挿入する。そして、必要箇所にねじ溝を設けた長さが例えば1000mmの結合棒32(32a、…32d)を4本用い、それ等の各結合棒32を上下蓋8、9の4隅付近に設けた対応する貫通穴19、24に夫々挿通し、ナット33、ワッシャ34等の締め付け結合部材を用いて、側壁用円筒体5に上下蓋8、9を結合する。すると、ケース4を完成すると同時に、そのケース4内に内部構造を備えた酸素溶解水生成器3を完成し、その下側に4本の結合棒32の各下部側を突出して、酸素溶解水生成器3を4本の足付きにできる。   When assembling the oxygen-dissolved water generating unit 2, first, the upper opening 6 of the side wall cylinder 5 is closed with the upper lid 8, and the three supports projecting downward from the lower surface of the upper lid 8 in the upper space of the cylindrical body 5. An assembly of the rod 16 and the three oxygen-dissolved water droplet forming partition walls 25 is inserted, and the lower opening 7 is closed with the lower lid 9, and the lower surface of the cylindrical body 5 is inserted into the lower space of the lower lid 9. An assembly of the three support rods 23 projecting upward and the oxygen-dissolved water cluster converter 26 is inserted. Then, four connecting rods 32 (32a,... 32d) having a length of, for example, 1000 mm provided with screw grooves are used, and these connecting rods 32 are provided near the four corners of the upper and lower lids 8 and 9. The upper and lower lids 8 and 9 are joined to the side wall cylindrical body 5 by inserting the corresponding through holes 19 and 24 respectively and using fastening members such as nuts 33 and washers 34. Then, at the same time as completing the case 4, the oxygen-dissolved water generator 3 having an internal structure in the case 4 is completed, and the lower portions of the four connecting rods 32 protrude below the oxygen-dissolved water generator. The generator 3 can have four legs.

そこで、酸素溶解水生成器3を支えるため、図7に示す支持台35を用いる。この支持台35には水平部と垂直部とを有し、例えば長さが400mm、幅が40mmのL形断面状部材36を4本用いる。そして、左右に離して平行に並べた2本の縦部材36a、36bの間に、前後に離して平行に並べた2本の横部材36c、36dを掛け渡して結合し、その各横部材36c、36dの中央部付近に2個ずつ結合用貫通穴37(37a、…37d)を設けて支持台35を形成する。すると、酸素溶解水生成器3を支える支持用足の各先端部を、支持台35の対応する各貫通穴37に夫々挿通し、ナット33、ワッシャ34等の締め付け結合部材を用いて、支持台35に強固に固定できる。なお、使用時には支持台35の最下部付近をコンクリートに埋設する等し、酸素溶解水生成器3の中心線を垂直にして立設するとよい。   Therefore, in order to support the oxygen-dissolved water generator 3, a support base 35 shown in FIG. 7 is used. The support base 35 has a horizontal portion and a vertical portion. For example, four L-shaped cross-sectional members 36 having a length of 400 mm and a width of 40 mm are used. Then, between the two vertical members 36a, 36b arranged in parallel apart from each other in the left-right direction, the two horizontal members 36c, 36d arranged in parallel apart from each other in the front-rear direction are spanned and joined, and each of the horizontal members 36c is connected. The support base 35 is formed by providing two coupling through holes 37 (37a,... 37d) in the vicinity of the center of 36d. Then, each front end portion of the supporting foot that supports the oxygen-dissolved water generator 3 is inserted into each corresponding through hole 37 of the supporting base 35, and using a fastening coupling member such as a nut 33 and a washer 34, the supporting base is used. 35 can be firmly fixed. In use, the vicinity of the lowermost portion of the support base 35 may be embedded in concrete, for example, and the center line of the oxygen-dissolved water generator 3 may be set up vertically.

又、酸素溶解水生成器3に対し、その生成器3と外部配管との接続用として、上蓋8の水取入口14に送水配管との接続用端部を有する屈曲管継手38の他端部を接続し、更にガス取入口15に酸素ガス配管とのボール弁付き接続用端部を有する三方管継手39の他端部を接続する。又、下蓋9の水取出口20に給水配管との接続用端部を有する屈曲管継手40の他端部を接続し、更に接続口22に水位検出用チューブ21との接続用端部を有する三方管継手41の他端部を接続する。そして、水位検出用チューブ21として例えば耐水性ポリウレタンチューブを用い、そのチューブ21を三方管継手39の残りの一端部と三方管継手41のチューブ接続用端部とに接続し、酸素溶解水生成器3に沿わせ、その近傍に垂直に配管する。すると、酸素溶解水生成部2が完成する。なお、三方管継手41の残りの一端部はボール弁付きにし、排水時に弁を開ける。   The other end portion of the bent pipe joint 38 having an end portion for connection to the water supply pipe at the water intake port 14 of the upper lid 8 for connecting the oxygen dissolved water generator 3 to the generator 3 and external piping. And the other end of the three-way pipe joint 39 having a connection end with a ball valve to the oxygen gas pipe is connected to the gas inlet 15. Further, the other end of the bent pipe joint 40 having an end for connecting to the water supply pipe is connected to the water outlet 20 of the lower lid 9, and the end for connecting to the water level detecting tube 21 is further connected to the connection port 22. The other end of the three-way pipe joint 41 is connected. For example, a water-resistant polyurethane tube is used as the water level detection tube 21, and the tube 21 is connected to the remaining one end of the three-way pipe joint 39 and the tube connection end of the three-way pipe joint 41, thereby generating an oxygen-dissolved water generator. Along the line 3, pipe vertically around it. Then, the oxygen dissolved water production | generation part 2 is completed. The remaining one end of the three-way pipe joint 41 is provided with a ball valve, and the valve is opened during drainage.

このような酸素溶解水生成部2に対し、送水配管42、酸素ガス配管43、給水配管44等を接続する。そして、水源として例えば地下水を用い、その送水配管42に水を加圧して送り出すポンプ45、水中に含まれる鉄、マンガン、砂等を除去するフィルタ46、逆止弁47を備えて、圧送水を酸素溶解水生成器3に送り込む。その際、ポンプ45として、例えば送水圧力2〜3kg/平方cm、毎分吐出量30〜40リットルの電動ポンプを用いる。なお、地下水の水温は浅井戸が16〜17℃、深井戸が13〜14℃である。   A water supply pipe 42, an oxygen gas pipe 43, a water supply pipe 44, and the like are connected to the oxygen dissolved water generating unit 2. For example, groundwater is used as a water source, and a pump 45 that pressurizes and sends water to the water supply pipe 42, a filter 46 that removes iron, manganese, sand, and the like contained in the water, and a check valve 47 are provided. It feeds into the oxygen dissolved water generator 3. At this time, as the pump 45, for example, an electric pump having a water supply pressure of 2 to 3 kg / square cm and a discharge amount of 30 to 40 liters per minute is used. The groundwater temperature is 16-17 ° C for shallow wells and 13-14 ° C for deep wells.

又、酸素ガス源として例えば30kgの酸素ボンベ48を用い、その酸素ガス配管43に減圧弁等のレギュレーター49、電磁弁50を備えて、圧力の高い酸素ガスを酸素溶解水生成器3に送り込む。その際、酸素ボンベ48のガス圧をレギュレーター49により減圧し、水圧より高い圧力例えば1kg/平方cm高い圧力に調整する。又、電磁弁50にはその弁開閉制御用に光センサー等の水位センサー51付きのコントローラ52を備え付ける。すると、酸素溶解水生成室内の酸素量が少ないと送水配管42から供給される水量が増加し、酸素量が多いと供給される水量が減る。そこで、酸素溶解水生成器3に貯まる酸素溶解水の水位が設定した、例えば点線位置まで上昇してきたことを、水位検出用チューブ21内の水位が連動するので、その水位をセンサー51で検出し、コントローラ52から信号を送って電磁弁50を開く。それ故、水位変動の範囲を一定に保つことができる。なお、コントローラ52は市販品の組み合わせによって簡単に作れる。   Further, for example, a 30 kg oxygen cylinder 48 is used as an oxygen gas source, and the oxygen gas pipe 43 is provided with a regulator 49 such as a pressure reducing valve and an electromagnetic valve 50, and oxygen gas having a high pressure is fed into the oxygen dissolved water generator 3. At that time, the gas pressure of the oxygen cylinder 48 is reduced by the regulator 49 and adjusted to a pressure higher than the water pressure, for example, 1 kg / square cm. The electromagnetic valve 50 is provided with a controller 52 with a water level sensor 51 such as an optical sensor for valve opening / closing control. Then, when the amount of oxygen in the oxygen-dissolved water generating chamber is small, the amount of water supplied from the water supply pipe 42 increases, and when the amount of oxygen is large, the amount of water supplied decreases. Therefore, the water level in the water level detection tube 21 is interlocked with the water level in the water level detection tube 21 that the water level of the oxygen-dissolved water stored in the oxygen-dissolved water generator 3 has been set, for example, has risen to the dotted line position. Then, a signal is sent from the controller 52 to open the solenoid valve 50. Therefore, the range of water level fluctuation can be kept constant. The controller 52 can be easily made by combining commercially available products.

使用時に、このような酸素溶解水生成器3に外部から圧送水を供給し、更に外部からその圧送水の水圧より高い圧力の酸素ガスを供給すると、水取入口14から放出される落下水をガス取入口15から放出される酸素ガスで吹き飛ばす等して、上位に配設した酸素溶解水滴形成用仕切壁25aの上面に分散し、その落下途中や上面との衝突、更には仕切壁25aに分散配設した多数の各貫通穴の通過等により、水と酸素ガスとの接触面積を増やすことができる。それ故、水中に酸素ガスを良好に混入でき、各貫通穴から夫々落下させると、多量の酸素を溶解し、多量のマイナスイオンを含んだ酸素溶解水滴を簡単に形成できる。   When in use, pressure supply water is supplied to the oxygen-dissolved water generator 3 from the outside, and when oxygen gas having a pressure higher than the water pressure of the pressure supply water is supplied from the outside, falling water discharged from the water intake 14 is discharged. It is dispersed on the upper surface of the oxygen-dissolved water droplet forming partition wall 25a disposed at the upper position by blowing it off with oxygen gas discharged from the gas intake port 15, and collides with the upper surface of the partition wall 25a. The contact area between water and oxygen gas can be increased by passing through a large number of dispersed through holes. Therefore, oxygen gas can be mixed well into water, and when dropped from each through hole, a large amount of oxygen is dissolved and an oxygen-dissolved water droplet containing a large amount of negative ions can be easily formed.

そして、その各酸素溶解水滴は中位に配設した酸素溶解水滴形成用仕切壁25bの上面へと落下するが、同様にして水中に酸素ガスを混入できるので、各貫通穴から夫々落下させると、更に多量の酸素を溶解し、多量のマイナスイオンを含んだ酸素溶解水滴を簡単に形成できる。又、下位に配設した酸素溶解水滴形成用仕切壁25cについても同様である。その際、上位、中位、下位と、上方より下方に向って設置する酸素溶解水滴形成用仕切壁25の各貫通穴の穴径を順次小さくすることにより、落下途中の所定箇所に設置されている各仕切壁25を通過する毎に、水滴を順次小さくして行き、酸素ガスとの接触面積を増すことができる。それ故、酸素溶解水の生成構造が簡単になり、その生成構造によって水中に酸素ガスを混入し易く、マイナスイオンを生成し易くなって、多量の酸素を溶解し、多量のマイナスイオンを含んだ高濃度の酸素溶解水を簡単に生成できて、ランニングコストも安価になる。なお、酸素溶解水滴形成用仕切壁に設ける各貫通穴を小さくしても、1枚のみでは形成する水滴の大きさが均一にならず、小さな水滴を多量に作れない。   Then, each oxygen-dissolved water droplet falls to the upper surface of the oxygen-dissolved water droplet forming partition wall 25b disposed in the middle, but oxygen gas can be mixed in the water in the same manner. Further, a large amount of oxygen can be dissolved, and an oxygen-dissolved water droplet containing a large amount of negative ions can be easily formed. The same applies to the oxygen-dissolved water droplet forming partition wall 25c disposed in the lower part. At that time, the diameter of each through hole of the partition wall 25 for forming the oxygen-dissolved water droplets, which is installed from the upper side, the middle level, the lower side and the lower side from the upper side, is sequentially reduced, so that it is installed at a predetermined location in the middle of the fall. Each time it passes through each partition wall 25, the water droplets can be made smaller in order to increase the contact area with oxygen gas. Therefore, the generation structure of oxygen-dissolved water is simplified, and the generation structure makes it easy to mix oxygen gas into water, easily generate negative ions, dissolves a large amount of oxygen, and contains a large amount of negative ions. High-concentration oxygen-dissolved water can be easily generated, and the running cost is reduced. Even if each through hole provided in the partition wall for forming oxygen-dissolved water droplets is made small, the size of the water droplets to be formed is not uniform, and a large number of small water droplets cannot be formed.

このようにして生成した酸素溶解水を貯える酸素溶解水貯水室内に、グラファイトシリカを主原料とするセラミックボール30を多数充填した酸素溶解水クラスター変換部26を設けておくと、多量の酸素を溶解して、多量のマイナスイオンを含ませた酸素溶解水にセラミックボール30で発生した遠赤外線を当てて、酸素溶解水のクラスターを小さくできる。しかも、クラスターを小さくすると、酸素溶解度を高めることができる。それ故、植物の根から吸収され易く、植物の生長に好適な酸素溶解水にすることができる。そして、酸素溶解水貯水室の酸素溶解水クラスター変換部26より上部を水位変動部27にして、酸素溶解水の水位を変動させても、セラミックボール30を多数充填したクラスター変換部26の内部に絶えず酸素溶解水を満たしておくと、酸素ガスの大きな気泡がセラミックボール30に邪魔されて、下部の給水部28まで通過することがない。それ故、取出口20から給水される酸素溶解水に溶解状態にない酸素ガスの大きな気泡が含まれず、酸素ガスの利用率を上げることができる。   If an oxygen-dissolved water cluster converter 26 filled with a large number of ceramic balls 30 mainly made of graphite silica is provided in the oxygen-dissolved water storage chamber for storing the oxygen-dissolved water thus generated, a large amount of oxygen is dissolved. Then, the far-infrared rays generated in the ceramic ball 30 are applied to the oxygen-dissolved water containing a large amount of negative ions, so that the cluster of the oxygen-dissolved water can be reduced. Moreover, when the cluster is made smaller, the oxygen solubility can be increased. Therefore, it can be easily absorbed from the roots of the plant and can be made into oxygen-dissolved water suitable for plant growth. Even if the water level of the oxygen-dissolved water storage chamber is higher than the oxygen-dissolved water cluster converter 26 and the water level fluctuates 27, the water level of the oxygen-dissolved water is changed. When the oxygen-dissolved water is constantly filled, large bubbles of oxygen gas are not obstructed by the ceramic balls 30 and do not pass to the lower water supply unit 28. Therefore, the oxygen-dissolved water supplied from the outlet 20 does not include large bubbles of oxygen gas that is not in a dissolved state, and the utilization rate of oxygen gas can be increased.

又、ケース4を構成する側壁用円筒体5の外周面のほぼ全体に、グラファイトシリカを主原料として被覆した酸素溶解水クラスター変換部31を設けておくと、そのクラスター変換部31で発生した遠赤外線をケース4の側壁を通過させて、内部の酸素溶解水に当てて、やはりクラスターを小さくし、小クラスターの酸素溶解水にすることができる。   Further, if an oxygen-dissolved water cluster conversion unit 31 coated with graphite silica as a main raw material is provided on almost the entire outer peripheral surface of the side wall cylindrical body 5 constituting the case 4, the distant generated in the cluster conversion unit 31 is provided. The infrared rays can be passed through the side wall of the case 4 and applied to the oxygen-dissolved water inside, so that the clusters can also be made smaller to form small-cluster oxygen-dissolved water.

そこで、水源として、例えば酸素溶解度D07の地下水を用い、酸素溶解水生成器3に対し、その地下水を水圧3kg/平方cmにして毎分40リットル供給し、酸素ガスをガス圧4kg/平方cmにして供給すると、酸素溶解度D025の酸素溶解水を得ることができる。   Therefore, for example, groundwater having an oxygen solubility of D07 is used as a water source, and the groundwater is supplied to the oxygen-dissolved water generator 3 at a water pressure of 3 kg / square cm and supplied at 40 liters per minute, and the oxygen gas is supplied at a gas pressure of 4 kg / square cm. When supplied, oxygen-dissolved water having an oxygen solubility of D025 can be obtained.

このようにして、酸素溶解水生成器3により多量の酸素を溶解し、多量のマイナスイオンを含ませた小クラスターの酸素溶解水を生成し、給水部28の取水口20から給水配管44によりスリール弁等の開閉自在弁53を介して、水耕栽培の水路、点滴栽培の口部等へ給水し、植物の根から吸収させることにより、植物の生長を促進し、品質の向上、収穫量の増加を計ることができる。それ故、酸素溶解水生成器3を備えると、酸素溶解水生成装置1を簡単に製造できる。なお、ポンプアップした地下水はスリール弁等の常閉弁54を開くことにより直接給水配管44へ送水できる。又、酸素溶解水生成器3に貯まった酸素溶解水等が必要のない場合、スリール弁等の常閉弁55を開くことにより排水することもできる。   In this way, a large amount of oxygen is dissolved by the oxygen-dissolved water generator 3 to generate a small cluster of oxygen-dissolved water containing a large amount of negative ions. Water is supplied to hydroponic waterways, drip-growing mouths, etc. through openable / closable valves 53 such as valves, and absorbed from the roots of the plant to promote plant growth, improve quality, An increase can be measured. Therefore, when the oxygen-dissolved water generator 3 is provided, the oxygen-dissolved water generator 1 can be easily manufactured. The pumped-up groundwater can be directly supplied to the water supply pipe 44 by opening a normally closed valve 54 such as a reel valve. Further, when the oxygen-dissolved water stored in the oxygen-dissolved water generator 3 is not necessary, the water can be drained by opening the normally closed valve 55 such as a reel valve.

本発明を適用した酸素溶解水生成装置の酸素溶解水生成部を示す正面図である。It is a front view which shows the oxygen dissolved water production | generation part of the oxygen dissolved water production | generation apparatus to which this invention is applied. 同酸素溶解水生成装置の構成を示すブロック図である。It is a block diagram which shows the structure of the oxygen dissolved water production | generation apparatus. 同酸素溶解水生成部に備える酸素溶解水生成器のケースの側壁を構成する側壁用円筒体の正面図である。It is a front view of the cylindrical body for side walls which comprises the side wall of the case of the oxygen dissolved water generator with which the oxygen dissolved water production | generation part is equipped. 同側壁用円筒体の平面図である。It is a top view of the cylinder for the side walls.

同酸素溶解水生成器のケースの上壁を構成する上蓋と、その上蓋に設置したOリング、3本の支持棒等の設置状態を示す底面図である。It is a bottom view which shows the installation state of the upper cover which comprises the upper wall of the case of the oxygen dissolved water generator, the O-ring installed in the upper cover, three support rods, etc. 同酸素溶解水生成器のケースの下壁を構成する下蓋と、その下蓋に設置したOリング、3本の支持棒等の設置状態を示す平面図である。It is a top view which shows the installation state of the lower cover which comprises the lower wall of the case of the oxygen dissolved water generator, the O-ring installed in the lower cover, three support rods, etc. 同酸素溶解水生成器を支える支持台の平面図である。It is a top view of the support stand which supports the oxygen dissolved water generator.

符号の説明Explanation of symbols

1…酸素溶解水生成装置 2…酸素溶解水生成部 3…酸素溶解水生成器 4…ケース 5…側壁用円筒体 6、7…上下開口 8、9…上下蓋 10、11…円形中央部 12、13…結合用鍔部 14…水取入口 15…ガス取入口 16、23…支持棒 17、56…円形溝 18、57…Oリング 19、24…結合用貫通穴 20…水取出口 21…水位検出用チューブ 22…チューブ接続口 25…酸素溶解水滴形成用仕切壁 26、31…酸素溶解水クラスター変換部 27…水位変動部 28…給水部 29…かご体 30…セラミックボール 32…結合棒 35…支持台 38、40…接続用屈曲管継手 39、41…接続用三方管継手 42…供給配管 43…酸素ガス配管 44…給水管 45…ポンプ 48…酸素ボンベ 49…レギュレーター 50…電磁弁 51…水位センサー 52…コントローラ   DESCRIPTION OF SYMBOLS 1 ... Oxygen-dissolved water production | generation apparatus 2 ... Oxygen-dissolved water production | generation part 3 ... Oxygen-dissolved water production | generation 4 ... Case 5 ... Cylindrical body for side walls 6, 7 ... Vertical opening 8,9 ... Upper / lower lid 10,11 ... Circular center part 12 , 13 ... coupling flange 14 ... water inlet 15 ... gas inlet 16, 23 ... support rod 17, 56 ... circular groove 18, 57 ... O-ring 19, 24 ... coupling through hole 20 ... water outlet 21 ... Water level detection tube 22 ... Tube connection port 25 ... Oxygen-dissolved water droplet forming partition wall 26, 31 ... Oxygen-dissolved water cluster conversion unit 27 ... Water level fluctuation unit 28 ... Water supply unit 29 ... Car body 30 ... Ceramic ball 32 ... Connecting rod 35 ... support bases 38, 40 ... bent pipe joints for connection 39, 41 ... three-way pipe joints for connection 42 ... supply pipe 43 ... oxygen gas pipe 44 ... water supply pipe 45 ... pump 48 ... oxygen cylinder 49 ... legi Aids 50 ... solenoid valves 51 ... water level sensor 52 ... controller

Claims (5)

上下壁と側壁とを有するケースを用い、その上壁付近の壁部に、水を外部から取り入れる水取入口と、酸素ガスを外部から取り入れるガス取入口とを設け、そのケース内の上側空間を水に酸素ガスを混入し、酸素溶解水を生成する酸素溶解水生成室にし、その下側空間を酸素溶解水を貯える酸素溶解水貯水室にし、その下壁付近の壁部に酸素溶解水を外部に取り出す酸素溶解水取出口を設けてなる酸素溶解水生成器であって、上記酸素溶解水生成室の水取入口に外部から圧送水を供給し、更にそのガス取入口に外部から圧送水の水圧より高い圧力の酸素ガスを供給し、その酸素溶解水生成室内に、水取入口から放出される落下水にガス取入口から放出された酸素ガスを混入して、酸素溶解水滴を形成する水滴形成用貫通穴を多数分散配設した酸素溶解水滴形成用仕切壁を複数個、上方から下方へ順次所定距離離して分散配設し、その上方に設置する酸素溶解水滴形成用仕切壁の穴径より、下方に設置する酸素溶解水滴形成用仕切壁の穴径を小さくすることを特徴とする酸素溶解水生成器。   Using a case with upper and lower walls and side walls, a water inlet for taking in water from the outside and a gas inlet for taking in oxygen gas from the outside are provided in the wall near the upper wall, and the upper space in the case is provided. Oxygen gas is mixed into the water to form an oxygen-dissolved water generating chamber that generates oxygen-dissolved water. The lower space is used as an oxygen-dissolved water storage chamber for storing oxygen-dissolved water, and oxygen-dissolved water is placed on the wall near the lower wall. An oxygen-dissolved water generator having an oxygen-dissolved water outlet to be taken out to the outside, supplying pressurized water from the outside to the water inlet of the oxygen-dissolved water generating chamber, and further supplying water from the outside to the gas inlet Oxygen gas with a pressure higher than the water pressure is supplied, and the oxygen-dissolved water droplets are formed by mixing the oxygen gas released from the gas intake into the falling water discharged from the water intake into the oxygen-dissolved water production chamber. Many dispersed through holes for water droplet formation A plurality of partition walls for forming element-dissolved water droplets are dispersed and arranged sequentially from the top to the bottom at a predetermined distance, and oxygen-dissolved water droplets are formed below the hole diameter of the partition wall for forming oxygen-dissolved water droplets installed above the partition walls. An oxygen-dissolved water generator characterized by reducing the hole diameter of the partition wall. 酸素溶解水貯水室内に、遠赤外線放射材を多数充填した酸素溶解水クラスター変換部を設け、そのクラスター変換部より上部を酸素溶解水の水位変動部、そのクラスター変換部より下部を変換した小クラスターの酸素溶解水を貯える給水部にすることを特徴とする請求項1記載の酸素溶解水生成器。   In the oxygen-dissolved water reservoir, an oxygen-dissolved water cluster converter filled with many far-infrared radiation materials is provided, and the upper part of the cluster converter is the water level fluctuation part of the oxygen-dissolved water, and the lower cluster is converted from the cluster converter. The oxygen-dissolved water generator according to claim 1, wherein the oxygen-dissolved water generator is used as a water supply portion for storing the oxygen-dissolved water. ケースの側壁外面に遠赤外線放射材を被覆した酸素溶解水クラスター変換部を設けることを特徴とする請求項1又は2記載の酸素溶解水生成器   3. The oxygen-dissolved water generator according to claim 1 or 2, wherein an oxygen-dissolved water cluster conversion part coated with a far-infrared radiation material is provided on the outer surface of the side wall of the case. 遠赤外線放射材としてグラファイトシリカを用いることを特徴とする請求項2又は3記載の酸素溶解水生成器。   The oxygen-dissolved water generator according to claim 2 or 3, wherein graphite silica is used as the far-infrared radiation material. 請求項1、2、3又は4記載の酸素溶解水生成器を備えることを特徴とする酸素溶解水生成装置。   An oxygen-dissolved water generator comprising the oxygen-dissolved water generator according to claim 1, 2, 3 or 4.
JP2006289543A 2006-10-25 2006-10-25 Oxygen-dissolved water producer and oxygen-dissolved water producing apparatus Pending JP2008104938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006289543A JP2008104938A (en) 2006-10-25 2006-10-25 Oxygen-dissolved water producer and oxygen-dissolved water producing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006289543A JP2008104938A (en) 2006-10-25 2006-10-25 Oxygen-dissolved water producer and oxygen-dissolved water producing apparatus

Publications (1)

Publication Number Publication Date
JP2008104938A true JP2008104938A (en) 2008-05-08

Family

ID=39438751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006289543A Pending JP2008104938A (en) 2006-10-25 2006-10-25 Oxygen-dissolved water producer and oxygen-dissolved water producing apparatus

Country Status (1)

Country Link
JP (1) JP2008104938A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010269295A (en) * 2009-05-19 2010-12-02 Kyoji Takada Water ph control only by heat source and natural ore water
JP2010269294A (en) * 2009-05-19 2010-12-02 Kyoji Takada Method for generating acidic water

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1190418A (en) * 1997-09-25 1999-04-06 Toshio Ikeda Water activating device
JP2000051870A (en) * 1998-08-12 2000-02-22 Shuhei Miyashita Water purifying and activating device
JP2000317479A (en) * 1999-05-11 2000-11-21 Takashi Hirai Water cleaning device
JP2001347146A (en) * 2000-06-08 2001-12-18 Yokogawa Electric Corp Gas dissolving device
JP2002018253A (en) * 2000-07-06 2002-01-22 Sasakura Engineering Co Ltd Hydrogen dissolving apparatus
JP2003144820A (en) * 2001-11-12 2003-05-20 Success Japan:Kk Porous sintered filter material
JP2005205352A (en) * 2004-01-26 2005-08-04 Cross Point:Kk Water activator
JP2006239644A (en) * 2005-03-07 2006-09-14 Masakazu Uzawa Method and apparatus for treating water

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1190418A (en) * 1997-09-25 1999-04-06 Toshio Ikeda Water activating device
JP2000051870A (en) * 1998-08-12 2000-02-22 Shuhei Miyashita Water purifying and activating device
JP2000317479A (en) * 1999-05-11 2000-11-21 Takashi Hirai Water cleaning device
JP2001347146A (en) * 2000-06-08 2001-12-18 Yokogawa Electric Corp Gas dissolving device
JP2002018253A (en) * 2000-07-06 2002-01-22 Sasakura Engineering Co Ltd Hydrogen dissolving apparatus
JP2003144820A (en) * 2001-11-12 2003-05-20 Success Japan:Kk Porous sintered filter material
JP2005205352A (en) * 2004-01-26 2005-08-04 Cross Point:Kk Water activator
JP2006239644A (en) * 2005-03-07 2006-09-14 Masakazu Uzawa Method and apparatus for treating water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010269295A (en) * 2009-05-19 2010-12-02 Kyoji Takada Water ph control only by heat source and natural ore water
JP2010269294A (en) * 2009-05-19 2010-12-02 Kyoji Takada Method for generating acidic water

Similar Documents

Publication Publication Date Title
US20130067814A1 (en) Hydroponic system
US20150313104A1 (en) Vertical Planter
JP6163108B2 (en) Method and apparatus for generating water bubbles or bubbles
KR101485824B1 (en) Verticality type interior garden
CN106171932B (en) A kind of soilless culture nutrient fluid multiple stage circulation utilizes device
CN104855254B (en) Mechanical pot culture automatic water supply system
JP2014514132A5 (en)
CN102577868A (en) Plant culture container capable of storing and supplying water
JP2008104938A (en) Oxygen-dissolved water producer and oxygen-dissolved water producing apparatus
CN202514351U (en) Plant culture container capable of storing and supplying water
KR101223763B1 (en) Apparatus for home hydroponic culture
CA2726970C (en) Counter current supersaturation oxygenation system
CN215380544U (en) Growth device is planted in suspension
US20210251162A1 (en) Closed loop self-watering sub-irrigation planter
KR101157642B1 (en) Apparatus for Dissolving Oxygen Using Bubble
CN208940618U (en) A kind of Intelligent supplemental lighting spiral soilless cultivation Landscape Facilities
KR101098254B1 (en) Apparatus for co2 aqueous solution making
CN208657695U (en) A kind of ultrasonic wave aerosol rotation generator and aerosol small stream machine
CN207313202U (en) A kind of micro-electrolysis reaction tower with self-loopa defoaming function
CN108887225A (en) Ultrasonic wave aerosol revolves generator and aerosol small stream machine
KR102431949B1 (en) water outlet device for pond
KR102484227B1 (en) Water flow experiment kit
JP3370536B2 (en) Water quality improvement device
US20210235642A1 (en) Plant Water Feeder
JPH0792237B2 (en) Upholstery equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20091015

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20110802

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120124