JPH09205202A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH09205202A
JPH09205202A JP1215596A JP1215596A JPH09205202A JP H09205202 A JPH09205202 A JP H09205202A JP 1215596 A JP1215596 A JP 1215596A JP 1215596 A JP1215596 A JP 1215596A JP H09205202 A JPH09205202 A JP H09205202A
Authority
JP
Japan
Prior art keywords
type
region
well region
channel
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1215596A
Other languages
Japanese (ja)
Inventor
Takeshi Nobe
武 野辺
Shigeo Akiyama
茂夫 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP1215596A priority Critical patent/JPH09205202A/en
Publication of JPH09205202A publication Critical patent/JPH09205202A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • H01L29/7828Vertical transistors without inversion channel, e.g. vertical ACCUFETs, normally-on vertical MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66666Vertical transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device with a small temperature dependency of threshold voltage. SOLUTION: In a semiconductor device, a P-type well region 2 and an N-type source region 3 are formed on the main surface of an N-type semiconductor substrate 1 which also plays a role of a drain region by the double diffusion technology and an N-type channel 4 which is an N-type inversion layer with a low carrier concentration is formed at the surface region of the P-type well region 2 sandwiched by the N-type semiconductor substrate 1 and the N-type source region 3. At this time, the horizontal sectional shape of the P-type well region 2 is regular-octagonal and the angle of each comer part is nearly 135 degrees.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置に関
し、特に、半導体基板をドレイン領域としたディプレッ
ションモード二重拡散型MOSFETに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly to a depletion mode double diffusion type MOSFET having a semiconductor substrate as a drain region.

【0002】[0002]

【従来の技術】従来のディプレッションモード二重拡散
型MOSFET(以下、ディプレッションモードDMO
Sと称す)は、図3(a)に示すように、ドレイン領域
を兼ねるN形半導体基板1の主表面に、P形ウェル領域
2とN形ソース領域3とが二重拡散技術により形成され
ている。また、N形半導体基板1とN形ソース領域3と
で挟まれたP形ウェル領域2の表面領域にはキャリア濃
度が低いN形反転層であるN形チャネル4が形成されて
いる。N形チャネル4の上方には絶縁膜5を介してゲー
ト電極6が設けられている。なお、N形ソース領域3上
にはソース電極8が、N形半導体基板1(つまり、ドレ
イン領域)の裏面にはドレイン電極9が、それぞれ設け
られている。
2. Description of the Related Art A conventional depletion mode double diffusion MOSFET (hereinafter referred to as depletion mode DMO).
As shown in FIG. 3A, a P-type well region 2 and an N-type source region 3 are formed on the main surface of the N-type semiconductor substrate 1 which also serves as a drain region by a double diffusion technique. ing. Further, in the surface region of the P-type well region 2 sandwiched between the N-type semiconductor substrate 1 and the N-type source region 3, an N-type channel 4 which is an N-type inversion layer having a low carrier concentration is formed. A gate electrode 6 is provided above the N-type channel 4 with an insulating film 5 interposed therebetween. A source electrode 8 is provided on the N-type source region 3, and a drain electrode 9 is provided on the back surface of the N-type semiconductor substrate 1 (that is, the drain region).

【0003】ところで、上記ディプレッションモードD
MOSにおけるP形ウェル領域2の水平断面形状は、図
3(b)に示すように四角形である。
By the way, the depletion mode D
The horizontal cross-sectional shape of the P-type well region 2 in the MOS is a quadrangle as shown in FIG.

【0004】[0004]

【発明が解決しようとする課題】ところで、ディプレッ
ションモードDMOSは、ゲート電圧が零ボルトでもチ
ャネル領域を有する(所謂ノーマリ・オン形のデバイ
ス)ので、オフ状態にするためには、ゲート電圧(信
号)の印加によりN形チャネル4のキャリアをなくす必
要がある。このオン・オフの状態が変化する電圧が所謂
しきい値電圧である。しかしながら、上記ディプレッシ
ョンモードDMOSでは、チップ温度が上昇すると、し
きい値電圧の絶対値が大きくなってしまうという問題が
あり、その結果、オフ状態にする(N形チャネル4のキ
ャリアをなくす)ためには、より大きなゲート電圧が必
要となってしまうという問題があった。
The depletion mode DMOS has a channel region even if the gate voltage is zero volt (a so-called normally-on type device). Therefore, in order to turn it off, the gate voltage (signal) is required. It is necessary to eliminate the carrier of the N-type channel 4 by applying. The voltage at which the on / off state changes is the so-called threshold voltage. However, in the depletion mode DMOS, there is a problem that the absolute value of the threshold voltage becomes large when the chip temperature rises, and as a result, in order to turn it off (to eliminate the carrier of the N-type channel 4). Has a problem that a larger gate voltage is required.

【0005】本発明は上記事由に鑑みて為されたもので
あり、その目的は、しきい値電圧の温度依存性が小さい
半導体装置を提供することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a semiconductor device in which the temperature dependence of the threshold voltage is small.

【0006】[0006]

【課題を解決するための手段】請求項1の発明は、上記
目的を達成するために、第1導電形の半導体基板の主表
面に、第1導電形のソース領域が形成され、前記ソース
領域を囲んで第2導電形のウェル領域が形成され、前記
半導体基板の主表面と前記ソース領域との間に介在する
前記ウェル領域の表面領域に第1導電形のチャネルが形
成され、前記チャネル上に絶縁膜を介してゲート電極が
形成されて成り、前記ウェル領域の水平断面形状は、略
多角形であり且つ前記略多角形のコーナ部を形成する角
度が135度以上であることを特徴とするものであり、
前記ウェル領域のコーナ部の角度が135度以上である
ことにより、前記ウェル領域の表面領域での不純物濃度
を均一化できるため、前記チャネルにおける不純物の濃
度が均一となり、その結果、しきい値電圧の温度依存性
が小さくなる。
In order to achieve the above object, a first conductivity type source region is formed on a main surface of a first conductivity type semiconductor substrate, and the source region is formed. A well region of the second conductivity type is formed surrounding the channel region, and a channel of the first conductivity type is formed in a surface region of the well region interposed between the main surface of the semiconductor substrate and the source region. And a gate electrode formed on the insulating film via an insulating film, wherein the well region has a substantially polygonal horizontal cross-section, and an angle forming the corner of the polygon is 135 degrees or more. Is what
When the corner portion of the well region has an angle of 135 degrees or more, the impurity concentration in the surface region of the well region can be made uniform, so that the impurity concentration in the channel becomes uniform, resulting in a threshold voltage. The temperature dependence of is reduced.

【0007】請求項2の発明は、請求項1の発明におい
て、ウェル領域の水平断面形状が、正多角形であるの
で、正多角形でない場合に比べて前記ウェル領域の表面
領域での不純物濃度を均一化できるため、前記チャネル
における不純物濃度が、より均一になり、その結果、し
きい値電圧の温度依存性が小さくなる。請求項3の発明
は、請求項1又は請求項2の発明において、コーナ部の
外接円の曲率半径が10μm以上なので、前記ウェル領
域の表面領域での不純物濃度を更に均一化できるため、
前記チャネルにおける不純物濃度が更に均一になり、そ
の結果、しきい値電圧の温度依存性が小さくなる。
According to a second aspect of the invention, in the first aspect of the invention, since the horizontal cross-sectional shape of the well region is a regular polygon, the impurity concentration in the surface region of the well region is larger than that in the case where the well region is not a regular polygon. Can be made uniform, the impurity concentration in the channel becomes more uniform, and as a result, the temperature dependence of the threshold voltage is reduced. According to the invention of claim 3, in the invention of claim 1 or 2, since the radius of curvature of the circumscribed circle of the corner portion is 10 μm or more, the impurity concentration in the surface region of the well region can be made more uniform,
The impurity concentration in the channel becomes more uniform, and as a result, the temperature dependence of the threshold voltage is reduced.

【0008】請求項4の発明は、第1導電形の半導体基
板の主表面に、第1導電形のソース領域が形成され、前
記ソース領域を囲んで第2導電形のウェル領域が形成さ
れ、前記半導体基板の主表面と前記ソース領域との間に
介在する前記ウェル領域の表面領域に第1導電形のチャ
ネルが形成され、前記チャネル上に絶縁膜を介してゲー
ト電極が形成されて成り、前記チャネル形成用拡散領域
の水平断面形状が略円形であることを特徴とするもので
あり、前記ウェル領域の形状を円形にすることにより、
前記ウェル領域の表面領域での不純物濃度を更に均一化
できるため、前記チャネルにおける不純物濃度が均一に
なり、その結果、しきい値電圧の温度依存性が小さくな
る。さらに、コーナ部が無いので前記ウェル領域への電
界集中が無くなり、耐圧が向上する。
According to a fourth aspect of the present invention, a source region of the first conductivity type is formed on the main surface of the semiconductor substrate of the first conductivity type, and a well region of the second conductivity type is formed surrounding the source region. A channel of the first conductivity type is formed in a surface region of the well region interposed between the main surface of the semiconductor substrate and the source region, and a gate electrode is formed on the channel via an insulating film, It is characterized in that the horizontal cross-sectional shape of the diffusion region for channel formation is substantially circular, by making the shape of the well region circular,
Since the impurity concentration in the surface region of the well region can be made more uniform, the impurity concentration in the channel becomes uniform, and as a result, the temperature dependence of the threshold voltage is reduced. Further, since there is no corner portion, electric field concentration on the well region is eliminated and the breakdown voltage is improved.

【0009】[0009]

【発明の実施の形態】図1(a)に本発明の実施の形態
のディプレッションモードDMOSの断面図を示す。本
ディプレッションモードDMOSの基本構成は従来例と
略同じであり、ドレイン領域を兼ねるN形半導体基板1
の主表面に、P形ウェル領域2とN形ソース領域3とが
二重拡散技術により形成されている。また、N形半導体
基板1とN形ソース領域3とで挟まれたP形ウェル領域
2の表面領域にはキャリア濃度が低いN形反転層である
N形チャネル4が形成されている。N形チャネル4の上
方には絶縁膜5を介してゲート電極6が設けられてい
る。なお、N形ソース領域3上にはソース電極8が、N
形半導体基板1(つまり、ドレイン領域)の裏面にはド
レイン電極9が、それぞれ設けられている。
FIG. 1A is a sectional view of a depletion mode DMOS according to an embodiment of the present invention. The basic configuration of the depletion mode DMOS is almost the same as the conventional example, and the N-type semiconductor substrate 1 also serving as the drain region is formed.
A P-type well region 2 and an N-type source region 3 are formed on the main surface of the substrate by the double diffusion technique. Further, in the surface region of the P-type well region 2 sandwiched between the N-type semiconductor substrate 1 and the N-type source region 3, an N-type channel 4 which is an N-type inversion layer having a low carrier concentration is formed. A gate electrode 6 is provided above the N-type channel 4 with an insulating film 5 interposed therebetween. The source electrode 8 is formed on the N-type source region 3 by N
Drain electrodes 9 are provided on the back surface of the shaped semiconductor substrate 1 (that is, the drain region), respectively.

【0010】本ディプレッションモードDMOSの特徴
とするところは、図1(b)に示すようにP形ウェル領
域2の水平断面形状が正8角形であり、その各角部(コ
ーナ部)の角度が略135度で形成されていることにあ
る。本ディプレッションモードDMOSでは、N形チャ
ネル4は、チャネル形成用P形ウェル領域2の水平断面
形状を正八角形にすることにより、従来の四角形の場合
よりもP形ウェル領域2の表面領域での不純物濃度を均
一にできる。本ディプレッションモードDMOSでは、
P形ウェル領域2の水平断面形状が正八角形であり、そ
の各角部(コーナ部)の角度が135度で形成されてい
るので、P形ウェル領域2形成時における正八角形のコ
ーナ部でのP形不純物の濃度がコーナ部以外の領域での
P形不純物の濃度と略均一になる。このため、しきい値
制御用のN形不純物をイオン注入によって添加した時
に、N形チャネル4におけるN形不純物濃度を均一にで
きるのである(つまり、図1(b)におけるコーナ部4
aのN形不純物濃度が、コーナ部4a以外の領域に比べ
て高くならないのである)。その結果、しきい値電圧の
温度依存性が小さくなるのである。ところで、従来例の
ようにP形ウェル領域2の水平断面形状が四角形の場合
は、P形ウェル領域2形成時に四角形のコーナ部でのP
形不純物の濃度が低くなってしまい、その後のNチャネ
ル4形成時にコーナ部(図4における4a’の部分)の
N形不純物の濃度が高くなって、その結果、しきい値電
圧の温度依存性が大きくなってしまうのである。従っ
て、従来のような水平断面形状が四角形のP形ウェル領
域をもつ場合に比べて、本ディプレッションモードDM
OSの方がしきい値電圧の温度依存性を小さくできるの
である。その結果、チップ温度や周囲温度が上昇しても
しきい値電圧の絶対値の変動が抑制され、大きなゲート
電圧が必要でなくなるのである。
The feature of the depletion mode DMOS is that the horizontal cross-sectional shape of the P-type well region 2 is a regular octagon as shown in FIG. 1B, and the angle of each corner (corner) is It is formed at approximately 135 degrees. In the depletion mode DMOS, the N-type channel 4 has a regular octagonal horizontal cross-sectional shape of the P-type well region 2 for forming a channel, so that the impurity in the surface region of the P-type well region 2 is larger than that in the conventional quadrangle. The concentration can be made uniform. In this depletion mode DMOS,
Since the horizontal cross-sectional shape of the P-type well region 2 is a regular octagon and the angle of each corner portion (corner portion) is formed to be 135 degrees, the regular octagonal corner portion at the time of forming the P-type well region 2 is formed. The concentration of P-type impurities becomes substantially uniform with the concentration of P-type impurities in regions other than the corners. Therefore, when the N-type impurity for controlling the threshold value is added by ion implantation, the N-type impurity concentration in the N-type channel 4 can be made uniform (that is, the corner portion 4 in FIG. 1B).
The N-type impurity concentration of a is not higher than that of the region other than the corner portion 4a). As a result, the temperature dependence of the threshold voltage is reduced. By the way, if the horizontal cross-sectional shape of the P-type well region 2 is a quadrangle as in the conventional example, the P at the corner portion of the quadrangle when forming the P-type well region 2 is P.
The concentration of the N-type impurity becomes low, and the concentration of the N-type impurity in the corner portion (portion 4a ′ in FIG. 4) becomes high during the subsequent formation of the N-channel 4, resulting in the temperature dependence of the threshold voltage. Is getting bigger. Therefore, the depletion mode DM is compared to the conventional case where the horizontal cross-sectional shape has a square P-type well region.
The OS can reduce the temperature dependence of the threshold voltage. As a result, even if the chip temperature or the ambient temperature rises, the variation of the absolute value of the threshold voltage is suppressed and a large gate voltage is not needed.

【0011】以下に、本ディプレッションモードDMO
Sの製造方法を図2及び図3に基づいて説明する。ま
ず、N半導体基板1の主表面上に酸化膜10を形成す
る。続いて、例えば、通常のフォトリソグラフィ技術と
ドライエッチング技術等によって、酸化膜10に水平断
面が図3に示すような正八角形の開孔20(側断面図は
図4(a)参照)を複数設ける。その後、酸化膜10を
マスクとしてP形不純物の拡散を行い、高温熱処理を行
うことによって図4(a)に示すようなP形ウェル領域
2が形成される。ここで、酸化膜10aの下方にもP形
ウェル領域2が形成されているが、これは、前記高温熱
処理によって前記P形不純物が横方向(つまり、酸化膜
10aの下方)にも拡散されるためである。したがっ
て、P形ウェル領域2の水平断面は、正八角形もしくは
正八角形に近い形状(例えば、正八角形の角部が丸まっ
たような形状)となる。
The depletion mode DMO will be described below.
A method of manufacturing S will be described with reference to FIGS. 2 and 3. First, oxide film 10 is formed on the main surface of N semiconductor substrate 1. Then, a plurality of regular octagonal openings 20 (see FIG. 4A for a side sectional view) whose horizontal section is a horizontal section as shown in FIG. 3 are formed in the oxide film 10 by, for example, ordinary photolithography technology and dry etching technology. Set up. After that, P-type impurities are diffused using the oxide film 10 as a mask, and high-temperature heat treatment is performed to form the P-type well region 2 as shown in FIG. 4A. Here, the P-type well region 2 is also formed below the oxide film 10a, but the P-type impurity is diffused laterally (that is, below the oxide film 10a) by the high temperature heat treatment. This is because. Therefore, the horizontal cross section of the P-type well region 2 is a regular octagon or a shape close to a regular octagon (for example, a shape in which the corners of the regular octagon are rounded).

【0012】次に、酸化膜10をマスクとして、露出し
たP形ウェル領域2の表面領域にソース領域形成用のN
形不純物を拡散することによってN形ソース領域3が形
成され図4(b)に示す構造が得られる。すなわち、上
記P形ウェル領域2及びN形ソース領域3は所謂二重拡
散技術によって形成している。続いて、酸化膜10をウ
ェットエッチング技術等によって選択的に除去する。次
に、イオン注入装置等によって、しきい値電圧を制御す
るためのN形不純物を、例えば、図4(c)に一点鎖線
で示す深さまで注入する。このN形不純物の注入量によ
ってしきい値が決まる。ここで、N形不純物が注入され
ることによって、N形ソース領域3とN半導体基板1の
表面領域との間に介在するP形ウェル領域2の表面領域
は、キャリア濃度が低くなり導電形がN形に反転するこ
とでN形チャネル4が形成され、図4(c)に示す構造
が得られる。
Next, using the oxide film 10 as a mask, N for forming a source region is formed in the exposed surface region of the P-type well region 2.
The N-type source region 3 is formed by diffusing the N-type impurity, and the structure shown in FIG. 4B is obtained. That is, the P-type well region 2 and the N-type source region 3 are formed by the so-called double diffusion technique. Subsequently, the oxide film 10 is selectively removed by a wet etching technique or the like. Next, an N-type impurity for controlling the threshold voltage is implanted by, for example, an ion implanter to a depth shown by a chain line in FIG. 4C. The threshold value is determined by the implantation amount of the N-type impurity. Here, by implanting the N-type impurity, the surface region of the P-type well region 2 interposed between the N-type source region 3 and the surface region of the N semiconductor substrate 1 has a low carrier concentration and has a conductivity type. The N-type channel 4 is formed by inversion to the N-type, and the structure shown in FIG. 4C is obtained.

【0013】次に、ゲート酸化膜である絶縁膜5、ゲー
ト電極6、層間絶縁膜7、ソース電極8、ドレイン電極
9それぞれを周知の技術によって形成することにより図
4(d)に示す構造が得られる。以上説明したように本
ディプレッションモードDMOSでは、P形ウェル領域
2の水平断面形状を正八角形に形成するために、正八角
形のマスクを用いていることに特徴がある。
Next, the insulating film 5, which is a gate oxide film, the gate electrode 6, the interlayer insulating film 7, the source electrode 8 and the drain electrode 9 are formed by known techniques to obtain the structure shown in FIG. can get. As described above, the depletion mode DMOS is characterized in that a regular octagonal mask is used to form the horizontal cross-sectional shape of the P-type well region 2 into a regular octagon.

【0014】なお、本実施の形態では、所謂縦型構造の
ディプレッションモードDMOSについて説明したが、
縦型構造に限定するものではなく、横型構造であっても
よい。また、上記各領域の導電形のP形とN形とが逆転
した構成のものでもよいことは勿論である。P形ウェル
領域2の水平断面形状は正八角形に限定するものではな
く、コーナ部の角度が135度以上であれば、略多角形
でもよい(ただし、正多角形の方が加工は容易にな
る)。また、正八角形以上の角を有する正多角形にする
ことにより、よりP形ウェル領域2の表面領域でのP形
不純物濃度を均一化でき、その結果、よりN形チャネル
4のN形不純物濃度を均一化でき、しきい値電圧の温度
依存性を小さくできる。図1(b))に示すコーナ部の
外接円Aの曲率半径が10μm以上であれば、更に、N
形チャネルのN形不純物濃度はさらに均一になり、しき
い値電圧の温度依存性は更に小さくなる。
In this embodiment, the depletion mode DMOS having a so-called vertical structure has been described.
The structure is not limited to the vertical structure, but may be a horizontal structure. Further, it goes without saying that the conductivity type of each of the above regions may be reversed from the P type and the N type. The horizontal cross-sectional shape of the P-type well region 2 is not limited to a regular octagon, and may be a substantially polygonal shape as long as the corner portion has an angle of 135 degrees or more (however, the regular polygonal shape facilitates processing). ). Further, by forming a regular polygon having a regular octagon or more, the P-type impurity concentration in the surface region of the P-type well region 2 can be made more uniform, and as a result, the N-type impurity concentration of the N-type channel 4 can be further increased. Can be made uniform, and the temperature dependence of the threshold voltage can be reduced. If the radius of curvature of the circumscribed circle A of the corner portion shown in FIG.
The N-type impurity concentration of the N-type channel becomes more uniform, and the temperature dependence of the threshold voltage becomes smaller.

【0015】また、P形ウェル領域2の水平断面形状を
略円形にすることにより、P形ウェル領域2の表面領域
でのP形不純物濃度を均一化できるため、N形チャネル
4におけるN形不純物濃度が均一になり、その結果、し
きい値電圧の温度依存性が小さくなる。さらに、円形の
場合は、コーナ部が無いのでP形ウェル領域2への電界
集中が無くなり、耐圧が向上する
Further, by making the horizontal cross-section of the P-type well region 2 substantially circular, the P-type impurity concentration in the surface region of the P-type well region 2 can be made uniform, so that the N-type impurity in the N-type channel 4 is formed. The concentration becomes uniform, and as a result, the temperature dependence of the threshold voltage is reduced. Further, in the case of a circular shape, since there is no corner portion, electric field concentration on the P-type well region 2 is eliminated and the breakdown voltage is improved.

【0016】[0016]

【発明の効果】請求項1の発明は、上記目的を達成する
ために、ウェル領域の水平断面形状が、略多角形であり
且つ前記略多角形のコーナ部を形成する角度が135度
以上であるから、前記ウェル領域の表面領域での不純物
濃度を均一化できるため、前記チャネルにおける不純物
の濃度が均一となり、しきい値電圧の温度依存性が小さ
くなるという効果がある。その結果、チップ温度や周囲
温度が上昇してもしきい値電圧の絶対値の変動が抑制さ
れ、大きなゲート電圧が必要でなくなるという効果があ
る。
According to the invention of claim 1, in order to achieve the above object, the horizontal cross-sectional shape of the well region is substantially polygonal, and the angle forming the corner portion of the substantially polygonal is 135 degrees or more. Therefore, the impurity concentration in the surface region of the well region can be made uniform, so that the impurity concentration in the channel becomes uniform and the temperature dependence of the threshold voltage is reduced. As a result, even if the chip temperature or the ambient temperature rises, fluctuations in the absolute value of the threshold voltage are suppressed, and a large gate voltage is not required.

【0017】請求項2の発明は、請求項1の発明におい
て、ウェル領域の水平断面形状が、正多角形であるの
で、正多角形でない場合に比べて前記ウェル領域の表面
領域での不純物濃度を均一化できるため、前記チャネル
における不純物濃度が、より均一になり、その結果、し
きい値電圧の温度依存性が小さくなるという効果があ
る。
According to a second aspect of the present invention, in the first aspect of the invention, since the horizontal cross-sectional shape of the well region is a regular polygon, the impurity concentration in the surface region of the well region is greater than that in the case where the well region is not a regular polygon. Can be made uniform, so that the impurity concentration in the channel becomes more uniform, and as a result, the temperature dependence of the threshold voltage is reduced.

【0018】請求項3の発明は、請求項1又は請求項2
の発明において、コーナ部の外接円の曲率半径が10μ
m以上なので、前記ウェル領域の表面領域での不純物濃
度を更に均一化できるため、前記チャネルにおける不純
物濃度が更に均一になり、その結果、しきい値電圧の温
度依存性が小さくなるという効果がある。請求項4の発
明は、ウェル領域の形状を円形にすることにより、前記
ウェル領域の表面領域での不純物濃度を更に均一化でき
るため、前記チャネルにおける不純物濃度が均一にな
り、その結果、しきい値電圧の温度依存性が小さくなる
という効果がある。さらに、コーナ部が無いので前記ウ
ェル領域への電界集中が無くなり、耐圧が向上するとい
う効果がある。
The invention of claim 3 is claim 1 or claim 2.
In the invention, the radius of curvature of the circumscribed circle of the corner portion is 10 μm.
Since it is m or more, the impurity concentration in the surface region of the well region can be made more uniform, so that the impurity concentration in the channel becomes more uniform, and as a result, the temperature dependence of the threshold voltage is reduced. . According to the fourth aspect of the present invention, by making the shape of the well region circular, the impurity concentration in the surface region of the well region can be made more uniform, so that the impurity concentration in the channel becomes uniform, and as a result, the threshold concentration is increased. This has the effect of reducing the temperature dependence of the value voltage. Further, since there is no corner portion, there is an effect that electric field concentration on the well region is eliminated and the breakdown voltage is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明の実施の形態を示す半導体装置
の側断面図である。(b)は同上の要部の平面図であ
る。
FIG. 1A is a side sectional view of a semiconductor device showing an embodiment of the present invention. (B) is a plan view of the main part of the same.

【図2】同上の主要工程断面図である。FIG. 2 is a sectional view of a main process of the above.

【図3】同上の主要工程平面図である。FIG. 3 is a plan view of the main steps of the above.

【図4】(a)は従来例の半導体装置の側断面図であ
る。(b)は同上の要部の平面図である。
FIG. 4A is a side sectional view of a conventional semiconductor device. (B) is a plan view of the main part of the same.

【符号の説明】[Explanation of symbols]

1 N形半導体基板 2 P形ウェル領域 3 N形ソース領域 4 N形チャネル 5 絶縁膜 6 ゲート電極 7 層間絶縁膜 8 ソース電極 9 ドレイン電極 1 N-type semiconductor substrate 2 P-type well region 3 N-type source region 4 N-type channel 5 insulating film 6 gate electrode 7 interlayer insulating film 8 source electrode 9 drain electrode

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 第1導電形の半導体基板の主表面に、第
1導電形のソース領域が形成され、前記ソース領域を囲
んで第2導電形のウェル領域が形成され、前記半導体基
板の主表面と前記ソース領域との間に介在する前記ウェ
ル領域の表面領域に第1導電形のチャネルが形成され、
前記チャネル上に絶縁膜を介してゲート電極が形成され
て成り、前記ウェル領域の水平断面形状は、略多角形で
あり且つ前記略多角形のコーナ部を形成する角度が13
5度以上であることを特徴とする半導体装置。
1. A main surface of a semiconductor substrate of the first conductivity type is formed with a source region of the first conductivity type, and a well region of the second conductivity type is formed so as to surround the source region. A channel of the first conductivity type is formed in a surface region of the well region interposed between the surface and the source region,
A gate electrode is formed on the channel via an insulating film, and the well region has a horizontal cross-sectional shape that is substantially polygonal, and an angle that forms the substantially polygonal corner portion is 13 degrees.
A semiconductor device characterized by being at least 5 degrees.
【請求項2】 ウェル領域の水平断面形状は、正多角形
であることを特徴とする請求項1記載の半導体装置。
2. The semiconductor device according to claim 1, wherein the horizontal cross-sectional shape of the well region is a regular polygon.
【請求項3】 コーナ部の外接円の曲率半径が10μm
以上であることを特徴とする請求項1又は請求項2記載
の半導体装置。
3. The radius of curvature of the circumscribed circle of the corner portion is 10 μm.
It is above, The semiconductor device of Claim 1 or Claim 2 characterized by the above-mentioned.
【請求項4】 第1導電形の半導体基板の主表面に、第
1導電形のソース領域が形成され、前記ソース領域を囲
んで第2導電形のウェル領域が形成され、前記半導体基
板の主表面と前記ソース領域との間に介在する前記ウェ
ル領域の表面領域に第1導電形のチャネルが形成され、
前記チャネル上に絶縁膜を介してゲート電極が形成され
て成り、前記ウェル領域の水平断面形状が略円形である
ことを特徴とする半導体装置。
4. A main region of the semiconductor substrate of the first conductivity type is formed with a source region of the first conductivity type, and a well region of the second conductivity type is formed so as to surround the source region. A channel of the first conductivity type is formed in a surface region of the well region interposed between the surface and the source region,
A semiconductor device, wherein a gate electrode is formed on the channel via an insulating film, and a horizontal cross-section of the well region is substantially circular.
JP1215596A 1996-01-26 1996-01-26 Semiconductor device Withdrawn JPH09205202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1215596A JPH09205202A (en) 1996-01-26 1996-01-26 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1215596A JPH09205202A (en) 1996-01-26 1996-01-26 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH09205202A true JPH09205202A (en) 1997-08-05

Family

ID=11797581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1215596A Withdrawn JPH09205202A (en) 1996-01-26 1996-01-26 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH09205202A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002029900A3 (en) * 2000-10-03 2002-10-31 Cree Inc Silicon carbide power mosfets having a shorting channel and methods of fabrication them
US6610366B2 (en) 2000-10-03 2003-08-26 Cree, Inc. Method of N2O annealing an oxide layer on a silicon carbide layer
US6767843B2 (en) 2000-10-03 2004-07-27 Cree, Inc. Method of N2O growth of an oxide layer on a silicon carbide layer
US6972436B2 (en) 1998-08-28 2005-12-06 Cree, Inc. High voltage, high temperature capacitor and interconnection structures
US6979863B2 (en) 2003-04-24 2005-12-27 Cree, Inc. Silicon carbide MOSFETs with integrated antiparallel junction barrier Schottky free wheeling diodes and methods of fabricating the same
US7022378B2 (en) 2002-08-30 2006-04-04 Cree, Inc. Nitrogen passivation of interface states in SiO2/SiC structures
US7067176B2 (en) 2000-10-03 2006-06-27 Cree, Inc. Method of fabricating an oxide layer on a silicon carbide layer utilizing an anneal in a hydrogen environment
US7074643B2 (en) 2003-04-24 2006-07-11 Cree, Inc. Silicon carbide power devices with self-aligned source and well regions and methods of fabricating same
US7118970B2 (en) 2004-06-22 2006-10-10 Cree, Inc. Methods of fabricating silicon carbide devices with hybrid well regions
US7414268B2 (en) 2005-05-18 2008-08-19 Cree, Inc. High voltage silicon carbide MOS-bipolar devices having bi-directional blocking capabilities
US7485924B2 (en) 2005-08-31 2009-02-03 Sharp Kabushiki Kaisha Lateral double-diffused field effect transistor and integrated circuit having same
US7528040B2 (en) 2005-05-24 2009-05-05 Cree, Inc. Methods of fabricating silicon carbide devices having smooth channels
US7615801B2 (en) 2005-05-18 2009-11-10 Cree, Inc. High voltage silicon carbide devices having bi-directional blocking capabilities
US7727904B2 (en) 2005-09-16 2010-06-01 Cree, Inc. Methods of forming SiC MOSFETs with high inversion layer mobility
US8835987B2 (en) 2007-02-27 2014-09-16 Cree, Inc. Insulated gate bipolar transistors including current suppressing layers
US9029945B2 (en) 2011-05-06 2015-05-12 Cree, Inc. Field effect transistor devices with low source resistance
US9117739B2 (en) 2010-03-08 2015-08-25 Cree, Inc. Semiconductor devices with heterojunction barrier regions and methods of fabricating same
US9142662B2 (en) 2011-05-06 2015-09-22 Cree, Inc. Field effect transistor devices with low source resistance
US9231122B2 (en) 2011-09-11 2016-01-05 Cree, Inc. Schottky diode
US9373617B2 (en) 2011-09-11 2016-06-21 Cree, Inc. High current, low switching loss SiC power module
CN105990407A (en) * 2015-01-30 2016-10-05 张家港意发功率半导体有限公司 IGBT cellular structure and manufacturing process thereof
US9548374B2 (en) 2006-08-17 2017-01-17 Cree, Inc. High power insulated gate bipolar transistors
US9640617B2 (en) 2011-09-11 2017-05-02 Cree, Inc. High performance power module
US9640652B2 (en) 2009-03-27 2017-05-02 Cree, Inc. Semiconductor devices including epitaxial layers and related methods
US9673283B2 (en) 2011-05-06 2017-06-06 Cree, Inc. Power module for supporting high current densities
US9984894B2 (en) 2011-08-03 2018-05-29 Cree, Inc. Forming SiC MOSFETs with high channel mobility by treating the oxide interface with cesium ions

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6972436B2 (en) 1998-08-28 2005-12-06 Cree, Inc. High voltage, high temperature capacitor and interconnection structures
US6998322B2 (en) 1998-08-28 2006-02-14 Cree, Inc. Methods of fabricating high voltage, high temperature capacitor and interconnection structures
US6610366B2 (en) 2000-10-03 2003-08-26 Cree, Inc. Method of N2O annealing an oxide layer on a silicon carbide layer
US6767843B2 (en) 2000-10-03 2004-07-27 Cree, Inc. Method of N2O growth of an oxide layer on a silicon carbide layer
US6956238B2 (en) 2000-10-03 2005-10-18 Cree, Inc. Silicon carbide power metal-oxide semiconductor field effect transistors having a shorting channel and methods of fabricating silicon carbide metal-oxide semiconductor field effect transistors having a shorting channel
US7067176B2 (en) 2000-10-03 2006-06-27 Cree, Inc. Method of fabricating an oxide layer on a silicon carbide layer utilizing an anneal in a hydrogen environment
WO2002029900A3 (en) * 2000-10-03 2002-10-31 Cree Inc Silicon carbide power mosfets having a shorting channel and methods of fabrication them
US7022378B2 (en) 2002-08-30 2006-04-04 Cree, Inc. Nitrogen passivation of interface states in SiO2/SiC structures
US7381992B2 (en) 2003-04-24 2008-06-03 Cree, Inc. Silicon carbide power devices with self-aligned source and well regions
US6979863B2 (en) 2003-04-24 2005-12-27 Cree, Inc. Silicon carbide MOSFETs with integrated antiparallel junction barrier Schottky free wheeling diodes and methods of fabricating the same
US7074643B2 (en) 2003-04-24 2006-07-11 Cree, Inc. Silicon carbide power devices with self-aligned source and well regions and methods of fabricating same
US7118970B2 (en) 2004-06-22 2006-10-10 Cree, Inc. Methods of fabricating silicon carbide devices with hybrid well regions
US7705362B2 (en) 2004-06-22 2010-04-27 Cree, Inc. Silicon carbide devices with hybrid well regions
US7414268B2 (en) 2005-05-18 2008-08-19 Cree, Inc. High voltage silicon carbide MOS-bipolar devices having bi-directional blocking capabilities
US7615801B2 (en) 2005-05-18 2009-11-10 Cree, Inc. High voltage silicon carbide devices having bi-directional blocking capabilities
US7528040B2 (en) 2005-05-24 2009-05-05 Cree, Inc. Methods of fabricating silicon carbide devices having smooth channels
US8188483B2 (en) 2005-05-24 2012-05-29 Cree, Inc. Silicon carbide devices having smooth channels
US9142663B2 (en) 2005-05-24 2015-09-22 Cree, Inc. Silicon carbide devices having smooth channels
US8859366B2 (en) 2005-05-24 2014-10-14 Cree, Inc. Methods of fabricating silicon carbide devices having smooth channels
US7485924B2 (en) 2005-08-31 2009-02-03 Sharp Kabushiki Kaisha Lateral double-diffused field effect transistor and integrated circuit having same
US7727904B2 (en) 2005-09-16 2010-06-01 Cree, Inc. Methods of forming SiC MOSFETs with high inversion layer mobility
US8536066B2 (en) 2005-09-16 2013-09-17 Cree, Inc. Methods of forming SiC MOSFETs with high inversion layer mobility
US9548374B2 (en) 2006-08-17 2017-01-17 Cree, Inc. High power insulated gate bipolar transistors
US9064840B2 (en) 2007-02-27 2015-06-23 Cree, Inc. Insulated gate bipolar transistors including current suppressing layers
US8835987B2 (en) 2007-02-27 2014-09-16 Cree, Inc. Insulated gate bipolar transistors including current suppressing layers
US9640652B2 (en) 2009-03-27 2017-05-02 Cree, Inc. Semiconductor devices including epitaxial layers and related methods
US9117739B2 (en) 2010-03-08 2015-08-25 Cree, Inc. Semiconductor devices with heterojunction barrier regions and methods of fabricating same
US9595618B2 (en) 2010-03-08 2017-03-14 Cree, Inc. Semiconductor devices with heterojunction barrier regions and methods of fabricating same
US9142662B2 (en) 2011-05-06 2015-09-22 Cree, Inc. Field effect transistor devices with low source resistance
US9029945B2 (en) 2011-05-06 2015-05-12 Cree, Inc. Field effect transistor devices with low source resistance
US9673283B2 (en) 2011-05-06 2017-06-06 Cree, Inc. Power module for supporting high current densities
US9984894B2 (en) 2011-08-03 2018-05-29 Cree, Inc. Forming SiC MOSFETs with high channel mobility by treating the oxide interface with cesium ions
US9231122B2 (en) 2011-09-11 2016-01-05 Cree, Inc. Schottky diode
US9640617B2 (en) 2011-09-11 2017-05-02 Cree, Inc. High performance power module
US9865750B2 (en) 2011-09-11 2018-01-09 Cree, Inc. Schottky diode
US9373617B2 (en) 2011-09-11 2016-06-21 Cree, Inc. High current, low switching loss SiC power module
US10141302B2 (en) 2011-09-11 2018-11-27 Cree, Inc. High current, low switching loss SiC power module
US10153364B2 (en) 2011-09-11 2018-12-11 Cree, Inc. Power module having a switch module for supporting high current densities
US11024731B2 (en) 2011-09-11 2021-06-01 Cree, Inc. Power module for supporting high current densities
US11171229B2 (en) 2011-09-11 2021-11-09 Cree, Inc. Low switching loss high performance power module
CN105990407A (en) * 2015-01-30 2016-10-05 张家港意发功率半导体有限公司 IGBT cellular structure and manufacturing process thereof

Similar Documents

Publication Publication Date Title
JPH09205202A (en) Semiconductor device
JPH01183856A (en) Double diffusion type field-effect semiconductor device and manufacture thereof
JPH11214529A (en) Integration of mos device and semiconductor chip
KR100238699B1 (en) Soi type mos transistor
KR101099560B1 (en) Method for manufacturing high voltage transistor
KR0165381B1 (en) High voltage mosfet manufacturing method
JP2001274383A (en) Semiconductor device and manufacturing method
JPH10256534A (en) Semiconductor device with dmos structure and its manufacture
KR20050104163A (en) High voltage transistor and method of fabricating the same
KR100935249B1 (en) High Voltage Device and Method for the same
KR20040051669A (en) Method of manufacturing DMOS transistor in semiconductor device
JPH0479336A (en) Production of semiconductor device
KR950002184B1 (en) Manufacturing method for semiconductor memory device
KR100244478B1 (en) Manufacturing method for compact mask rom
JPH0691250B2 (en) Semiconductor device
KR100225383B1 (en) Method of manufacturing semiconductor device
KR20050066901A (en) Mos transistor having low junction capacitance and method for fabricating the same
KR0165348B1 (en) Method for manufacturing mos transistor
JPH0344076A (en) Manufacture of semiconductor device
JPH03151669A (en) Manufacture of semiconductor device
KR20040006772A (en) Method for fabricating semiconductor device
KR20030002660A (en) Manufacturing method for semiconductor device
JPS61253865A (en) Manufacture of semiconductor device
JPS6260265A (en) Manufacture of semiconductor device
JPH01189173A (en) Semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030401