JPH09104949A - Steel plate for ultralarge heat input welding structure excellent in low temperature toughness - Google Patents

Steel plate for ultralarge heat input welding structure excellent in low temperature toughness

Info

Publication number
JPH09104949A
JPH09104949A JP19662096A JP19662096A JPH09104949A JP H09104949 A JPH09104949 A JP H09104949A JP 19662096 A JP19662096 A JP 19662096A JP 19662096 A JP19662096 A JP 19662096A JP H09104949 A JPH09104949 A JP H09104949A
Authority
JP
Japan
Prior art keywords
heat input
haz
welding
toughness
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19662096A
Other languages
Japanese (ja)
Inventor
Tadashi Ishikawa
忠 石川
Hiroshi Takezawa
博 竹澤
Akira Ito
昭 伊藤
Toshiaki Haji
利昭 土師
Hidesato Mabuchi
秀里 間渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP19662096A priority Critical patent/JPH09104949A/en
Publication of JPH09104949A publication Critical patent/JPH09104949A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a steel plate for welding structures excellent in HAZ toughness in which, in welding environmental conditions in ultralarge heat input welding, TiN having a size not to be melted and dissipated even for a long high temp. residence time characteristic of ultralarge heat input welding is secured in HAZ contg. bonds and fine BN is largely precipitated with the above TiN as the nuclei. SOLUTION: This steel plate has a compsn. contg., be weight, 0.03 to 0.18% C, 0.1 to 1.0% Si, 0.5 to 1.8% Mn, 0.005 to 0.060% Al, 0.005 to 0.025% Ti and 0.0005 to 0.0020% B, contg. N satisfying 0<EN<0.0020 in the formula of EN= N-0.292Ti-1.292B, and the balance Fe with inevitable impurities, and furthermore, TiN precipitates having 0.1 to 1μm diameter equivalent to a circle are present by >=3×10<5> pieces per mm<2> .

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、500kJ/cm
〜1000kJ/cm程度の超大入熱溶接時でも、ボン
ドを含む熱影響部(以下HAZと称す)の靭性が−20
°Cにて4.0kgf−m以上と優れた溶接構造用鋼板
に関する。
TECHNICAL FIELD The present invention relates to 500 kJ / cm.
The toughness of the heat-affected zone including the bond (hereinafter referred to as HAZ) is -20 even when welding with an extremely high heat input of about 1000 kJ / cm.
The present invention relates to a steel plate for welded structure having an excellent value of 4.0 kgf-m or more at ° C.

【0002】[0002]

【従来の技術】近年、溶接構造用鋼板は溶接コストを低
減するために、超大入熱溶接の採用が検討されており、
この場合にも優れたHAZ靭性を有する鋼板が望まれて
いる。
2. Description of the Related Art In recent years, the use of super-high heat input welding is being considered for welding structural steel sheets in order to reduce welding costs.
Also in this case, a steel sheet having excellent HAZ toughness is desired.

【0003】従来、大入熱溶接の分野において、良好な
HAZ靭性を有する鋼板、及びその製造方法の提案とし
ては、例えば特公昭55−26164号公報及び特開昭
63−103051号公報等がある。
Conventionally, in the field of large heat input welding, as a proposal of a steel sheet having good HAZ toughness and a manufacturing method thereof, there are, for example, Japanese Examined Patent Publication No. 55-26164 and Japanese Unexamined Patent Publication No. 63-103051. .

【0004】特公昭55−26164号公報の提案は、
大入熱溶接法として入熱が320kJ/cm相当(エレ
クトロスラグ溶接)以下の入熱の溶接方法を対象として
0.02μm以下の微細なTiNを鋼中に確保すること
により、HAZのオーステナイト粒を小さくし、HAZ
の靭性を確保することを特徴としている。
The proposal of Japanese Patent Publication No. 55-26164 is as follows.
As a large heat input welding method, a heat input of 320 kJ / cm or less (electroslag welding) is used as a target, and a fine TiN of 0.02 μm or less is secured in the steel to obtain HAZ austenite grains. Smaller, HAZ
It is characterized by ensuring the toughness of.

【0005】しかし、この提案は入熱が320kJ/c
m以下の溶接を対象としており、しかもHAZ靭性の保
証温度は0°C迄である。
However, this proposal has a heat input of 320 kJ / c.
It is intended for welding of m or less, and the guaranteed temperature of HAZ toughness is up to 0 ° C.

【0006】又、後者の特開昭63−103051号公
報の提案は、入熱が230kJ/cm程度の溶接を対象
にしており、前記特公昭55−26164号公報の提案
と同様の理由から0.02〜0.04μmの微細なTi
Nの所要量を鋼中に確保することにより、HAZ靭性の
向上を行うものである。
Further, the latter proposal of Japanese Patent Laid-Open No. 63-103051 is intended for welding with a heat input of about 230 kJ / cm, and for the same reason as the proposal of Japanese Patent Publication No. 55-26164, 0 Fine Ti of 0.02 to 0.04 μm
By securing the required amount of N in the steel, the HAZ toughness is improved.

【0007】一方、500kJ/cm〜1000kJ/
cm程度の超大入熱熔接が既に可能になっている。
On the other hand, 500 kJ / cm to 1000 kJ /
Ultra-high heat input welding of about cm is already possible.

【0008】これ等の超大入熱溶接法は、特公昭55−
26164号公報、特開昭63−103051号公報で
対象としている入熱量より大きく、TiNが溶解する1
350°C以上の滞留時間が大幅に増大している。その
ため、超大入熱溶接のボンド部、及びHAZ部では微細
なTiNは溶解して期待する作用をもたらさず、HAZ
靭性の確保を困難にしている。
These ultra-high heat input welding methods are disclosed in Japanese Patent Publication No. 55-
26164 and JP-A-63-103051, the amount of heat input is larger than the target heat input, and TiN is melted.
The residence time at 350 ° C or higher is significantly increased. Therefore, fine TiN does not melt at the bond part of super-high heat input welding and the HAZ part and does not bring about the expected effect.
Making toughness difficult.

【0009】他方、超大入熱溶接方法を用いて構築され
る溶接構造物は、大入熱溶接方法を用いて構築される溶
接構造物より更に大型化する事から、その構造物の安全
性が及ぼす社会的影響及び経済的影響の大きさから、溶
接ボンドを含むHAZ靭性は更に厳しく要求され、これ
をより低い温度迄保証する事が望まれている。
On the other hand, since the welded structure constructed by using the super-high heat input welding method is larger in size than the welded structure constructed by the high heat input welding method, the safety of the structure is high. HAZ toughness including weld bonds is more severely required due to the magnitude of social and economic impacts, and it is desired to guarantee this to lower temperatures.

【0010】[0010]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、この要望に応え、従来の入熱量と比較にな
らない膨大な500kJ/cm〜1000kJ/cm程
度の超大入熱溶接の溶接環境条件において、超大入熱溶
接特有の長い高温滞留時間の下でも溶解消滅しない大き
さのTiNをボンドを含むHAZに確保し、このTiN
を核に微細なBNを多量に析出せしめてHAZ靭性vE
−20が4.0kgf−m以上を示す溶接構造用鋼板を
提供することにある。
The problem to be solved by the present invention is to meet this demand, and a welding environment of an extremely large heat input welding of a huge 500 kJ / cm to 1000 kJ / cm which is uncomparable with the conventional heat input. Under the conditions, TiN of a size that does not dissolve and disappear even under the long high temperature residence time peculiar to ultra-high heat input welding is secured in the HAZ including the bond.
HAZ toughness vE by depositing a large amount of fine BN in the core of
It is to provide a steel plate for welded structure in which -20 shows 4.0 kgf-m or more.

【0011】[0011]

【課題を解決するための手段】本発明の低温靭性の優れ
た超大入熱溶接構造用鋼板は、重量%で、C:0.03
〜0.18%、Si:0.1〜1.0%、Mn:0.5
〜l.8%、Al:0.005〜0.060%、Ti:
0.005〜0.025%、B:0.0005〜0.0
020%を含有し、EN=N−0.292Ti−1.2
92Bなる式において、0<EN<0.0020を満足
するNを含有し、残部がFeおよび不可避的不純物から
なり、且つ、0.1μm以上1μm以下の円相当直径を
有するTiN析出物が1mm2あたり3×105個以上存
在することを特徴とする。
The ultra-high heat input welding structural steel sheet excellent in low temperature toughness of the present invention has a C: 0.03% by weight.
~ 0.18%, Si: 0.1-1.0%, Mn: 0.5
~ L. 8%, Al: 0.005-0.060%, Ti:
0.005-0.025%, B: 0.0005-0.0
020%, EN = N-0.292Ti-1.2
92B, a TiN precipitate containing N satisfying 0 <EN <0.0020, the balance being Fe and unavoidable impurities, and having a circle equivalent diameter of 0.1 μm or more and 1 μm or less is 1 mm 2 It is characterized in that there are 3 × 10 5 or more per unit.

【0012】[0012]

【発明の実施の形態】Cは母材の強度確保のため添加
し、上限は別途添加するTi、Bと反応してTiC及び
又はBCを生成してHAZの靭性を劣化するのを防止す
るため定めている。
BEST MODE FOR CARRYING OUT THE INVENTION C is added to secure the strength of the base metal, and the upper limit is to prevent addition of Ti and B which are added separately to form TiC and / or BC to deteriorate the toughness of HAZ. It has established.

【0013】Siは鋼の脱酸と母材強度の確保のため添
加し、Mnは母材強度の確保のため添加するが、共にH
AZの靭性劣化を防止するため上限を定めている。
Si is added to deoxidize the steel and secure the strength of the base metal, and Mn is added to secure the strength of the base metal.
An upper limit is set to prevent deterioration of the toughness of AZ.

【0014】Alは、Al窒化物による鋼の微細化の
他、圧延過程での固溶、析出により、鋼の結晶方位の整
合及び再結晶に有効な働きをさせるために添加する。し
かし、添加量が少ないときにはその効果がなく、過剰の
場合には鍋の靭性を劣化させるので、それぞれ上下限を
定めている。
Al is added in order to make the steel effective in matching the crystal orientation of the steel and recrystallization by solid solution and precipitation in the rolling process in addition to the refinement of the steel by Al nitride. However, if the addition amount is small, it has no effect, and if the addition amount is excessive, the toughness of the pot is deteriorated.

【0015】Tiは溶接ボンドに溶融しない寸法のTi
Nを確保し、これを核にBNの再析出を促進し、HAZ
の組織の微細化によりHAZの靭性を確保するために添
加し、上限はBがBC生成の防止から規制されて定まる
固定し得るN量から、Tiが過剰となってTiCを生成
してHAZ靭性の劣化を招くのを防止するために定めて
いる。
[0015] Ti is of a size that does not melt into a weld bond.
N is secured, and this is used as a nucleus to promote reprecipitation of BN, and HAZ
Is added in order to secure the toughness of the HAZ by refining the structure of, and the upper limit of B is regulated from the prevention of the formation of BC. It is provided to prevent the deterioration of

【0016】これ等によりHAZ結晶粒は細粒化し、H
AZ組織の微細化は促進され、ボンドを含むHAZの靭
性は格段に向上する。従って上限はボンドを含むHAZ
におけるAlNの溶融による固溶Nが、BC生成から定
められたBの上限に対して過剰になってNの余剰を招
き、ボンドを含むHAZに固溶Nを残して前記靭性を劣
化するのを防止するために定めている。
As a result, the HAZ crystal grains become finer and
The refinement of the AZ structure is promoted, and the toughness of the HAZ containing the bond is significantly improved. Therefore, the upper limit is HAZ including bond
The solid solution N due to the melting of AlN in (3) becomes excessive with respect to the upper limit of B determined from the BC generation and causes an excess of N, leaving the solid solution N in the HAZ containing the bond to deteriorate the toughness. It is set to prevent.

【0017】Bは超大入熱溶接後のHAZ組織の微細化
と、固溶Nの固定によりボンド靭性を確保するために添
加し、上限は再析出時にBCの生成によりHAZの焼入
れ性を向上してHAZ靭性を劣化するのを防止するため
定めている。
B is added in order to secure the bond toughness by refining the HAZ structure after ultra-high heat input welding and fixing the solid solution N. The upper limit improves the hardenability of the HAZ by the formation of BC during reprecipitation. Therefore, the HAZ toughness is prevented from deteriorating.

【0018】Nは入熱500〜1000kJ/cm程度
の超大入熱溶接ボンドの高温と多大の熱容量でも溶融し
ない寸法のTiNを確保するために必要なN量を下限と
し、上限は前記したBCの生成を抑制するためのBの上
限から、最終的にBNとして固定出来なかったNが固溶
してボンドの靭性を劣化するのを防止するため鋼中のT
i量、B量に応じて上限、下限を定めている。
N is the lower limit of the amount of N necessary to secure TiN of a size that does not melt even at a high temperature and a large heat capacity of an extremely large heat input welding bond with a heat input of about 500 to 1000 kJ / cm, and the upper limit thereof is the above BC. From the upper limit of B for suppressing the formation, T in the steel is prevented in order to prevent N that could not be finally fixed as BN from forming a solid solution and degrading the toughness of the bond.
The upper and lower limits are set according to the i amount and the B amount.

【0019】なお、SはMnSとして鋼中介在物を形成
して母材靭性を劣化するのを防止するため可能な限り少
ないのが望ましい。
It is desirable that S be as small as possible in order to prevent the inclusions in the steel from forming MnS and deteriorating the toughness of the base material.

【0020】また、Ni,Cr,Mo,Cu,Nb,V
の1種又は2種以上を当業分野で通常使用されているよ
うに、、それぞれの作用効果に応じて添加することは支
障がない。
Further, Ni, Cr, Mo, Cu, Nb, V
It is not a problem to add one or two or more of them according to their respective action and effects, as is usually used in the art.

【0021】Niは母材及びHAZの靭性向上のために
添加し、上限は焼入れ性を高めてHAZ組織をベイナイ
ト化するのを防止するため定めるのが望ましく、Cr,
Mo,Cuは母材の強度を向上するために添加するが、
HAZの硬化を防止するために上限に配慮が必要であ
る。
Ni is added to improve the toughness of the base metal and HAZ, and the upper limit is preferably determined to enhance hardenability and prevent bainite formation of the HAZ structure.
Mo and Cu are added to improve the strength of the base material,
It is necessary to consider the upper limit in order to prevent the HAZ from hardening.

【0022】Nb,Vは炭化物、窒化物を形成して母材
組織の結晶粒の細粒化を促進し、強度と靭性を高めるた
めに添加するが、HAZ靭性の劣化防止のために上限に
注意が必要である。
Nb and V are added to form carbides and nitrides to accelerate the refinement of the crystal grains of the base metal structure and to improve the strength and toughness, but the upper limit is added to prevent deterioration of the HAZ toughness. Caution must be taken.

【0023】[0023]

【実施例】図1は、本発明の鋼板の超大入熱溶接と片面
1層大入熱溶接における溶接ボンド部直近の熱サイクル
の測定結果の一例を示す。図から超大入熱溶接法の14
00°C以上の高温に曝される滞留時間は、片面1層溶
接と比べ著しく長いことが判明した。
EXAMPLE FIG. 1 shows an example of the measurement results of the thermal cycle in the vicinity of the weld bond portion in the super-high heat input welding and the single-sided single layer high heat input welding of the steel sheet of the present invention. From the figure, 14
It has been found that the residence time of exposure to high temperatures of 00 ° C or higher is significantly longer than in single-sided single-layer welding.

【0024】図2は、溶接時におけるボンド部での14
00°C以上の滞留時間とその時溶解するTiN析出物
の臨界寸法(析出物形状を円相当に換算した直径)を示
す。
FIG. 2 is a view of the bonding portion 14 at the time of welding.
A residence time of 00 ° C. or higher and a critical dimension of the TiN precipitate that is dissolved at that time (diameter obtained by converting the shape of the precipitate into a circle) are shown.

【0025】特公昭55−26164号公報や特開昭6
3−103051号公報の提案が対象としている400
kJ/cm以下の溶接に対応する滞留時間は、本発明が
対象とする超大入熱溶接と比べその滞留時間が短いた
め、0.05μm以下のTiN析出物が熱影響を受けた
後も存在し、HAZ組織の微細化に寄与することができ
るが、超大入熱溶接では0.1μm未満のTiNは溶解
消滅することを知見した。
JP-B-55-26164 and JP-A-6-26
400 targeted by the proposal of JP-A-3-103051
The residence time corresponding to welding of kJ / cm or less is shorter than that of the ultra-high heat input welding targeted by the present invention, so that the TiN precipitate of 0.05 μm or less is present even after being thermally affected. , It is possible to contribute to the miniaturization of the HAZ structure, but it was found that TiN of less than 0.1 μm melts and disappears in ultra-high heat input welding.

【0026】さらに、図3は、超大入熱溶接部のHAZ
靭性と、当該溶接サイクルを受けた鋼板部分における直
径0.1μm以上のTiN析出物個数の関係を、B含有
鋼とB非含有鋼について示したものである。
Further, FIG. 3 shows the HAZ of the ultra-high heat input welded portion.
The relationship between the toughness and the number of TiN precipitates having a diameter of 0.1 μm or more in the steel sheet portion subjected to the welding cycle is shown for the B-containing steel and the B-free steel.

【0027】この図から、B非含有鋼ではTiN析出物
の個数に関係なくHAZ靭性は不良であり、B含有鋼で
は EN=N−0.292Ti−1.295B の式において、0<EN<0.0020の範囲内の場
合、溶接熱サイクルを受けて溶け残った直径0.1μm
以上のTiN析出物が1mm2当たり3×105個以上存
在するとHAZ靭性が超大入熱溶接下でも確保されるこ
とが分かった。しかし、TiNが粗大になりすぎると脆
性破壊の核となることがあるが、破面調査の結果1μm
以下の円相当径であれば目的とする温度域である−20
°C程度では脆性破壊の発生の核にならないことを知見
した。
From this figure, the HAZ toughness is poor in the B-free steel regardless of the number of TiN precipitates, and in the B-containing steel EN = N-0.292Ti-1.295B, 0 <EN < Within the range of 0.0020, the diameter of the unmelted portion after the heat cycle of welding is 0.1 μm.
It was found that the presence of 3 × 10 5 or more of the above TiN precipitates per mm 2 ensures the HAZ toughness even under super-high heat input welding. However, if TiN becomes too coarse, it may become the core of brittle fracture.
If the diameter is equivalent to the following circle, it is the target temperature range -20
It was found that the temperature does not become the nucleus of brittle fracture at about ° C.

【0028】そこで、直径0.1μm以上1μm以下の
TiN析出物を十分に確保するため、表1に示す化学成
分を有する鋼の凝固冷速がTiN析出物の寸法に及ぼす
影響を検討した。その結果を図4,図5に示す。
Therefore, in order to sufficiently secure TiN precipitates having a diameter of 0.1 μm or more and 1 μm or less, the influence of the solidification cooling rate of steel having the chemical composition shown in Table 1 on the size of TiN precipitates was examined. The results are shown in FIGS.

【0029】[0029]

【表1】 図4に明らかな様に、5°C/分以上の冷却速度では析
出TiNの直径は0.1μm未満の微細なものとなり、
直径0.1μm以上の析出TiNを確保するには、5°
C/分以下の冷却速度で凝固させる必要がある。
[Table 1] As is clear from FIG. 4, at a cooling rate of 5 ° C./min or more, the diameter of precipitated TiN becomes finer than 0.1 μm,
To secure the precipitated TiN with a diameter of 0.1 μm or more, 5 °
It is necessary to solidify at a cooling rate of C / min or less.

【0030】また、図5から、凝固冷却時に5°C/分
超の冷却速度で冷却した鋼片は、1200°C〜130
0°Cに再加熱後、5°C/分以下の冷却速度で冷却す
れば凝固時の冷却速度の影響を受けることなく、また、
圧延に際しては、その儘圧延するか、加熱温度をAc3
点〜1200°Cとすることで、直径0.1μm以上の
析出TiNが、超大入熱溶接時迄確保できる。
Further, from FIG. 5, a steel slab cooled at a cooling rate of more than 5 ° C./min during solidification cooling is 1200 ° C. to 130 ° C.
After reheating to 0 ° C, cooling at a cooling rate of 5 ° C / min or less does not affect the cooling rate during solidification, and
At the time of rolling, perform the normal rolling or set the heating temperature to Ac 3
By setting the temperature to 1200 ° C, precipitated TiN having a diameter of 0.1 µm or more can be secured until the time of ultra-high heat input welding.

【0031】図6は、化学成分を種々変化させて凝固冷
速を5°C/分以下として製造した鋼板を用いて、化学
成分の超大入熱溶接部の靭性に及ぼす影響を調査した結
果を示す。
FIG. 6 shows the results of an investigation of the effect of chemical components on the toughness of a super-heat-input welded part using a steel sheet produced by changing the chemical components variously and setting the solidification cooling rate to 5 ° C./min or less. Show.

【0032】この図から、Bを含有した鋼においてN
が、 EN=N−0.292Ti−1.295B なる式において 0<EN<0.0020の範囲で、超
大入熱溶接相当の1400°Cピーク温度の熱サイクル
靭性が高い値を確保できることが明らかとなった。
From this figure, in the steel containing B, N
However, in the formula EN = N-0.292Ti-1.295B, it is clear that a high value of the heat cycle toughness at the peak temperature of 1400 ° C corresponding to the super large heat input welding can be secured in the range of 0 <EN <0.0020. Became.

【0033】これ等のHAZ組織とTiN析出物の関係
を調査したところ、直径0.1μm以上のTiN析出物
によるHAZ靭性の向上メカニズムは、従来から知られ
ているような微細なTiN析出物によるオーステナイト
粗大化防止効果ではなく、溶け残っている粗大TiN析
出物と、このTiN析出物を核としてフェライト変態直
上の温度で析出するBNの複合析出物を変態析出核とし
て生成する塊状初析フェライトによることが判明した。
When the relationship between these HAZ structures and TiN precipitates was investigated, the mechanism for improving the HAZ toughness by TiN precipitates having a diameter of 0.1 μm or more is due to the fine TiN precipitates that have been conventionally known. Not by the effect of preventing austenite coarsening, but by coarse TiN precipitates that remain unmelted and bulk pro-eutectoid ferrite that forms a composite precipitate of BN that precipitates at a temperature directly above the ferrite transformation using this TiN precipitate as a nucleus It has been found.

【0034】即ち、この塊状初析フェライトが存在する
と板状の初析フェライトの生成が抑制され、その結果こ
の板状の初析フェライトを生成サイトとして発達するフ
ェライト・サイド・プレート(以下FSPと称す)の生
成が抑制され、靭性に有害な前記FSPの生成が抑制さ
れるためにHAZ靭性が向上することがわかった。
That is, the presence of this massive pro-eutectoid ferrite suppresses the production of plate-like pro-eutectoid ferrite, and as a result, the ferrite side plate (hereinafter referred to as FSP) develops with this plate-like pro-eutectoid ferrite as a production site. It was found that the HAZ toughness is improved because the production of FSP, which is harmful to the toughness, is suppressed, and the HAZ toughness is improved.

【0035】尚、B含有鋼においても、Nが EN=N−0.292Ti−1.295B なる式においてEN>0.0020%の場合には、過剰
Nにより靭性の確保が困難となり、EN<0%の場合に
は、BNの析出に必要なN量が確保されないために、B
Nの析出ができず固溶Bによりボンド部の焼入れ性が増
大し、塊状初析フェライトが生成されずFSPが発達
し、靭性の確保が困難になる。
Also in the B-containing steel, if N> 0.0020% in the equation where N is EN = N-0.292Ti-1.295B, it becomes difficult to secure toughness due to excess N, and EN < In the case of 0%, the amount of N required for precipitation of BN cannot be secured, so
Since N cannot be precipitated, solid solution B increases the hardenability of the bond portion, does not generate massive proeutectoid ferrite, develops FSP, and makes it difficult to secure toughness.

【0036】図7(1)は本発明の鋼板において、微細
なHAZ組織を形成してHAZ靭性を向上した塊状初析
フェライトα1の組織上の位置関係と形状の概略を示
し、同図(2)は従来の鋼板において、劣悪なHAZ組
織を形成してHAZ靭性を劣化している上記した板状初
析フェライトα2、及びFSP並びに上部ベーナイトB
uの組織上の位置関係と形状の概略を示したものであ
る。
FIG. 7 (1) schematically shows the positional relationship and shape of the massive proeutectoid ferrite α1 in the steel sheet of the present invention, which has a fine HAZ structure to improve the HAZ toughness. ) Is the above-mentioned plate-like pro-eutectoid ferrite α2 and FSP and upper bainite B, which form a poor HAZ structure and deteriorate HAZ toughness in the conventional steel sheet.
3 is a schematic diagram showing the positional relationship and shape of u on the tissue.

【0037】以上の各知見から、必要な量のTiとNと
Bを含有する鋼を準備し、鋳造凝固時の冷却速度、或い
はTiNの再溶解加熱後の冷却速度を5°C/分以下に
することにより、TiN析出物の大きさと量を前記の通
り調整し、入熱量が500〜1000kJ/cmの超大
入熱により形成された高温高熱な溶接ボンドでも溶解し
ないTiN析出物を確保して、それを析出サイトにして
BNをフェライト変態直上で析出させ、超大入熱溶接時
にボンドを含むHAZの靭性を向上することができる。
From the above findings, a steel containing necessary amounts of Ti, N and B was prepared, and the cooling rate during solidification by casting or the cooling rate after remelting and heating TiN was 5 ° C./min or less. By adjusting the size and amount of the TiN precipitate as described above, the TiN precipitate that does not dissolve even in a high temperature and high temperature welding bond formed by an extremely large heat input of 500 to 1000 kJ / cm is secured. By using it as a precipitation site and precipitating BN immediately above the ferrite transformation, it is possible to improve the toughness of the HAZ containing the bond during super-high heat input welding.

【0038】このBNのフェライト変態促進効果によ
り、粒界に塊状初析フェライトα1を随所で生成させ、
図7(2)に示す板状初析フェライトα2とFSPがな
く、図7(1)に示す塊状初析フェライトα1に囲まれ
た細粒化した結晶粒からなる微細なHAZ組織が形成さ
れる。
Due to the effect of ferritic transformation promotion of BN, massive pro-eutectoid ferrite α1 is generated at every grain boundary,
There is no plate-like pro-eutectoid ferrite α2 and FSP shown in FIG. 7 (2), and a fine HAZ structure composed of fine-grained crystal grains surrounded by massive pro-eutectoid ferrite α1 shown in FIG. 7 (1) is formed. .

【0039】供試鋼を連続鋳造により鋳片とし、それ自
体公知の制御圧延、制御冷却を施して鋼板とし、得た各
鋼板をそれぞれ4に示す条件の溶接に供した。
The sample steel was cast into a slab by continuous casting, subjected to known control rolling and controlled cooling to give a steel plate, and the obtained steel plates were each subjected to welding under the conditions shown in 4.

【0040】以下に結果を示す。The results are shown below.

【0041】1.供試鋼の成分 表1に示す。1. Table 1 Table 1

【0042】2.鋼板製造条件 表2に示す。2. Steel plate manufacturing conditions are shown in Table 2.

【0043】3.鋼板の機械的性質 表2に示す。3. The mechanical properties of the steel sheet are shown in Table 2.

【0044】4.溶接条件 表2に示す。4. Welding conditions are shown in Table 2.

【0045】5.HAZ靭性 表2に示す。5. HAZ toughness is shown in Table 2.

【0046】[0046]

【表2】 表2に示す鋼番1〜12は本発明の実施例を示す。この
実施例は、500kJ/cm〜1000kJ/cmの超
夫入熱溶接で示した各靭性vE−20は、溶接ボンド
(F.L.)では4.1〜20.9、HAZ,1mmで
は6.0〜18.0、HAZ,3mmでは14.3〜2
7.2、HAZ,5mmでは21.6〜27.0であ
り、鋼板の降伏点は32〜48kgf/mm2であっ
た。
[Table 2] Steel Nos. 1 to 12 shown in Table 2 show examples of the present invention. In this example, each toughness vE-20 shown by super heat input welding of 500 kJ / cm to 1000 kJ / cm is 4.1 to 20.9 in weld bond (FL) and 6 in HAZ, 1 mm. 0.0-18.0, HAZ, 3 mm 14.3-2
7.2, HAZ, 5 mm was 21.6 to 27.0, and the yield point of the steel sheet was 32 to 48 kgf / mm 2 .

【0047】一方、鋼番13〜22は比較例を示す。鋼
番13〜17の比較例は、何れも凝固時、または再加熱
後の冷却速度が5°C/分以上であり、0.1μm以上
のTiN析出物の個数が少なく、鋼番18はTiが過剰
でNが不足しており、鋼番19はNが過剰であり、鋼番
20〜21はNが不足して十分なTiN析出物の個数が
得られず、鋼番22はBが過剰であった。
On the other hand, steel numbers 13 to 22 show comparative examples. In all of Comparative Examples of Steel Nos. 13 to 17, the cooling rate during solidification or after reheating was 5 ° C./min or more, the number of TiN precipitates of 0.1 μm or more was small, and Steel No. 18 was Ti. Is excessive and N is insufficient. Steel No. 19 has an excessive amount of N. Steel Nos. 20 to 21 have an insufficient amount of N and cannot obtain a sufficient number of TiN precipitates. Steel No. 22 has an excessive amount of B. Met.

【0048】鋼番13〜22の比較例は、本発明例と同
様の溶接条件である入熱量が500kJ/cm〜100
0kJ/cmの超大入熱熔接での各靭性vE−20は、
溶接ボンド(F.L.)は0.4〜3.4であり、HA
Z,1mmはvE−20で2.1〜4.3、HAZ,3
mmは3.5〜14.0であり、課題の4.0kgf−
m以上のHAZ靭性には達しなかった。
In the comparative examples of steel Nos. 13 to 22, the heat input amount, which is the welding condition similar to that of the present invention, is 500 kJ / cm to 100.
Each toughness vE-20 at 0 kJ / cm ultra-high heat input welding is
Weld bond (FL) is 0.4 to 3.4, HA
Z, 1 mm is vE-20 with 2.1 to 4.3, HAZ, 3
mm is 3.5 to 14.0, which is 4.0 kgf-of the task.
The HAZ toughness of m or more was not reached.

【0049】[0049]

【発明の効果】【The invention's effect】

(1) 本発明の鋼板は、入熱量500kJ/cm〜1
000kJ/cm程度の超大入熱溶接のボンドを含むH
AZに与えられた高温で滞留時間の長い超大入熱溶接の
環境条件に対応できる。
(1) The steel sheet of the present invention has a heat input amount of 500 kJ / cm to 1
H including a bond of ultra-high heat input welding of about 000 kJ / cm
It is possible to meet the environmental conditions of ultra-high heat input welding, which is applied to AZ at high temperature and long residence time.

【0050】(2) 高温で滞留時間の長い環境の下で
も、溶接時の溶接ボンドを含むHAZに、溶解しない寸
法のTiN析出物と、その所要個数を確保することによ
り、TiNとBNの相乗的な作用を発揮せしめ、これに
より溶接ボンドを含むHAZ靭性が、4.0kgf−m
以上の優れた低温靭性を示す。
(2) Even under an environment of high temperature and long residence time, by securing a required number of TiN precipitates of insoluble size in the HAZ containing weld bonds during welding, synergistic effect of TiN and BN The HAZ toughness including the weld bond is 4.0 kgf-m.
The above excellent low temperature toughness is exhibited.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明が対象とする超大入熱溶接と、片面1
層大入熱溶接における溶接ボンド部直近の熱サイクル測
定結果の一例を示す。
BRIEF DESCRIPTION OF THE DRAWINGS FIG.
An example of the thermal cycle measurement result in the vicinity of the weld bond portion in the large layer heat input welding is shown.

【図2】 溶接時におけるボンド部での1400°C以
上の滞留時間と、その時溶解するTiN析出物の臨界寸
法(直径)を示す。
FIG. 2 shows a residence time of 1400 ° C. or higher at a bond portion during welding and a critical dimension (diameter) of TiN precipitate which is melted at that time.

【図3】 超大入熱溶接部のHAZ靭性と、当該溶接熱
サイクルを受けた鋼板部分での直径0.1μm以上のT
iN析出物個数との関係をB含有鋼とB非含有鋼につい
て示す。
[FIG. 3] HAZ toughness of a super-high heat input welded part and T of 0.1 μm or more in diameter in a steel plate part subjected to the welding heat cycle.
The relationship with the number of iN precipitates is shown for B-containing steel and B-free steel.

【図4】 鋼の鋳造凝固後の冷却速度がTiN析出物の
寸法に及ぼす影響を示す。
FIG. 4 shows the effect of cooling rate of steel after casting solidification on the size of TiN precipitates.

【図5】 TiNの一部溶融する温度に再加熱した鋼片
における再加熱後の冷却速度と、TiN析出物の寸法の
関係を示す。
FIG. 5 shows the relationship between the cooling rate after reheating and the size of TiN precipitates in a steel piece reheated to a temperature at which TiN partially melts.

【図6】 化学成分の超大入熱溶接部の靭性に及ぼす影
響を示す。
FIG. 6 shows the influence of chemical components on the toughness of a super-high heat input weld.

【図7】 塊状初析フェライト、IFP及び板状フェラ
イト、FSP、Bu等の組織上の位置関係と形状の特徴
の概略を示す。(1)は本発明の鋼板のものを示し、
(2)は従来の鋼板のものを示す。
FIG. 7 schematically shows the positional relationship on the structure and the characteristic of shape of massive pro-eutectoid ferrite, IFP and plate ferrite, FSP, Bu and the like. (1) shows the steel plate of the present invention,
(2) shows a conventional steel plate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 土師 利昭 大分市大字西ノ洲1番地 新日本製鐵株式 会社大分製鐡所内 (72)発明者 間渕 秀里 大分市大字西ノ洲1番地 新日本製鐵株式 会社大分製鐡所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshiaki Hoshi 1 Nishinosu, Oita-shi, Oita-shi Nippon Steel Corporation (72) Inventor Hidesato Mabuchi Oita-shi, Nishinosu 1-Nihon Steel Company Oita Steel Works

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.03〜0.18%、
Si:0.1〜1.0%、Mn:0.5〜l.8%、A
l:0.005〜0.060%、Ti:0.005〜
0.025%、B:0.0005〜0.0020%を含
有し、EN=N−0.292Ti−1.292Bなる式
において、0<EN<0.0020を満足するNを含有
し、残部がFeおよび不可避的不純物からなり、且つ、
0.1μm以上1μm以下の円相当直径を有するTiN
析出物が1mm2あたり3×105個以上存在することを
特徴とする低温靭性の優れた超大入熱溶接構造用鋼板。
1. C: 0.03 to 0.18% by weight,
Si: 0.1-1.0%, Mn: 0.5-l. 8%, A
1: 0.005-0.060%, Ti: 0.005-
0.025%, B: 0.0005 to 0.0020%, EN = N-0.292Ti-1.292B in the formula, 0 <EN <0.0020 is contained, and the balance is Consists of Fe and inevitable impurities, and
TiN having a circle equivalent diameter of 0.1 μm or more and 1 μm or less
Ultra-high heat input welding structural steel sheet with excellent low temperature toughness, characterized in that there are 3 × 10 5 or more precipitates per 1 mm 2 .
JP19662096A 1996-07-25 1996-07-25 Steel plate for ultralarge heat input welding structure excellent in low temperature toughness Pending JPH09104949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19662096A JPH09104949A (en) 1996-07-25 1996-07-25 Steel plate for ultralarge heat input welding structure excellent in low temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19662096A JPH09104949A (en) 1996-07-25 1996-07-25 Steel plate for ultralarge heat input welding structure excellent in low temperature toughness

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2268638A Division JP2931065B2 (en) 1990-10-05 1990-10-05 Method for manufacturing ultra-high heat input welded structural steel sheet with excellent low-temperature toughness

Publications (1)

Publication Number Publication Date
JPH09104949A true JPH09104949A (en) 1997-04-22

Family

ID=16360790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19662096A Pending JPH09104949A (en) 1996-07-25 1996-07-25 Steel plate for ultralarge heat input welding structure excellent in low temperature toughness

Country Status (1)

Country Link
JP (1) JPH09104949A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100482214B1 (en) * 2000-11-28 2005-04-21 주식회사 포스코 Method for manufacturing high strength steel plate having superior toughness in weld heat-affected zone by nitriding treatment
KR100705889B1 (en) * 2004-09-22 2007-04-09 가부시키가이샤 고베 세이코쇼 Low yield ratio high tension steel plate having small acoustic anistropy and excellent weldability, and its producing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100482214B1 (en) * 2000-11-28 2005-04-21 주식회사 포스코 Method for manufacturing high strength steel plate having superior toughness in weld heat-affected zone by nitriding treatment
KR100705889B1 (en) * 2004-09-22 2007-04-09 가부시키가이샤 고베 세이코쇼 Low yield ratio high tension steel plate having small acoustic anistropy and excellent weldability, and its producing method

Similar Documents

Publication Publication Date Title
KR101386042B1 (en) Steel material for high heat input welding
JP4673784B2 (en) High strength steel sheet having excellent weld heat affected zone toughness and method for producing the same
JP5842314B2 (en) High heat input welding steel
JP3256118B2 (en) Ultra-high heat input welding High-strength steel for welding with excellent heat-affected zone toughness
JP4523893B2 (en) Steel for welded structure having a tensile strength of 590 N / mm2 and excellent in toughness of base metal and weld heat-affected zone, and method for producing the same
JP5796636B2 (en) Steel material for large heat input welding
JP3719037B2 (en) Continuous cast slab having no surface crack and method for producing non-tempered high strength steel using this slab
JPH10298708A (en) High tensile strength steel for welding excellent in toughness in superhigh heat input heat-affected zone
JP4041447B2 (en) Thick steel plate with high heat input welded joint toughness
KR101971772B1 (en) Method of manufacturing steel plate for high-heat input welding
KR100867139B1 (en) High Tensile Strength Steel Sheet Excellent in Toughness in Large Heat Input Heat-affected Zone
JP4237904B2 (en) Ferritic heat resistant steel sheet with excellent creep strength and toughness of base metal and welded joint and method for producing the same
JP3668713B2 (en) High tensile steel plate with excellent weldability and uniform elongation
JP2931065B2 (en) Method for manufacturing ultra-high heat input welded structural steel sheet with excellent low-temperature toughness
JP2003129180A (en) Pearlitic rail superior in toughness and ductility, and manufacturing method therefor
JP5233364B2 (en) Steel material for large heat input welding
JP5233365B2 (en) Steel material for large heat input welding
JPH01159356A (en) High tension steel having superior tougeness at weld heat-affected zone
JP2776174B2 (en) Manufacturing method of high tensile strength and high toughness fine bainite steel
JPH03162522A (en) Manufacture of high tension steel plate having superior toughness of high heat input weld heat-affected zone
JP2019104955A (en) Carbon steel slab and manufacturing method of the same
JPS62170459A (en) High tension steel plate for high heat input welding
JP3464567B2 (en) Welded structural steel with excellent toughness in the heat affected zone
JPH09104949A (en) Steel plate for ultralarge heat input welding structure excellent in low temperature toughness
JP2020204091A (en) High strength steel sheet for high heat input welding