JP2931065B2 - Method for manufacturing ultra-high heat input welded structural steel sheet with excellent low-temperature toughness - Google Patents

Method for manufacturing ultra-high heat input welded structural steel sheet with excellent low-temperature toughness

Info

Publication number
JP2931065B2
JP2931065B2 JP2268638A JP26863890A JP2931065B2 JP 2931065 B2 JP2931065 B2 JP 2931065B2 JP 2268638 A JP2268638 A JP 2268638A JP 26863890 A JP26863890 A JP 26863890A JP 2931065 B2 JP2931065 B2 JP 2931065B2
Authority
JP
Japan
Prior art keywords
heat input
steel
toughness
haz
high heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2268638A
Other languages
Japanese (ja)
Other versions
JPH04143246A (en
Inventor
忠 石川
博 竹澤
昭 伊藤
利昭 土師
秀里 間渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2268638A priority Critical patent/JP2931065B2/en
Publication of JPH04143246A publication Critical patent/JPH04143246A/en
Application granted granted Critical
Publication of JP2931065B2 publication Critical patent/JP2931065B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、500kJ/cm〜1000kJ/cm程度の超大入熱溶接
時でも、ボンドを含む熱影響部(以下HAZと称す)の靭
性が−20℃にて4.0kgf−m以上と優れた溶接構造用鋼板
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention provides a heat-affected zone including a bond (hereinafter referred to as HAZ) having a toughness even at a very large heat input welding of about 500 kJ / cm to 1000 kJ / cm. The present invention relates to a method for producing a steel sheet for welded structures excellent at 4.0 kgf-m or more at 20 ° C.

[従来の技術] 近年、溶接構造用鋼板は溶接コストを低減するため
に、超大入熱溶接の採用が検討されており、この場合に
も優れたHAZ靭性を有する鋼板が望まれている。
[Related Art] In recent years, in order to reduce welding costs, the use of ultra-high heat input welding has been studied for steel sheets for welded structures, and even in this case, a steel sheet having excellent HAZ toughness is desired.

従来、大入熱溶接の分野において、良好なHAZ靭性を
有する鋼板、及びその製造方法の提案としては、例えば
特公昭55−26164号公報及び特開昭63−103051号公報等
がある。
Conventionally, in the field of large heat input welding, proposals of a steel sheet having good HAZ toughness and a method of manufacturing the same include, for example, Japanese Patent Publication No. 55-26164 and Japanese Patent Application Laid-Open No. 63-103051.

特公昭55−26164号公報の提案は、大入熱溶接法とし
て入熱が320kJ/cm相当(エレクトロスラグ溶接)以下の
入熱の溶接方法を対象として0.02μm以下の微細なTiN
を鋼中に確保することにより、HAZのオーステナイト粒
を小さくし、HAZの靭性を確保することを特徴としてい
る。
The proposal of Japanese Patent Publication No. 55-26164 proposes a method for welding a heat input having a heat input of 320 kJ / cm or less (electroslag welding) or less as a large heat input welding method.
The feature is that the austenitic grains of the HAZ are made smaller and the toughness of the HAZ is ensured by securing the HAZ in the steel.

しかし、この提案は入熱が320kJ/cm以下の溶接を対象
としており、しかもHAZ靭性の保証温度は0℃迄であ
る。
However, this proposal is for welding with a heat input of 320 kJ / cm or less, and the guaranteed temperature of HAZ toughness is up to 0 ° C.

又、後者の特開昭63−103051号公報の提案は、入熱が
230kJ/cm程度の溶接を対象にしており、前記特公昭55−
26164号公報の提案と同様の理由から0.02〜0.04μmの
微細なTiNの所要量を鋼中に確保することにより、HAZ靭
性の向上を行うものである。
Also, the latter proposal of JP-A-63-103051 discloses that heat input is reduced.
It is intended for welding at 230 kJ / cm.
The HAZ toughness is improved by securing a required amount of fine TiN of 0.02 to 0.04 μm in the steel for the same reason as the proposal of Japanese Patent No. 26164.

一方、500kJ/cm〜1000kJ/cm程度の超大入熱溶接が既
に可能になっている。
On the other hand, super large heat input welding of about 500 kJ / cm to 1000 kJ / cm has already been made possible.

これ等の超大入熱溶接法は、特公昭55−26164号公
報、特開昭63−103051号公報で対象としている入熱量よ
り大きく、TiNが溶解する1350℃以上の滞留時間が大幅
に増大している。そのため、超大入熱溶接のボンド部、
及びHAZ部では微細なTiNは溶解して期待する作用をもた
らさず、HAZ靭性の確保を困難にしている。
These ultra-high heat input welding methods are larger than the heat input amounts targeted in JP-B-55-26164 and JP-A-63-103051, and the residence time at 1350 ° C or higher at which TiN dissolves significantly increases. ing. Therefore, the bond part of ultra-high heat input welding,
In the HAZ portion, fine TiN dissolves and does not bring about an expected effect, making it difficult to secure HAZ toughness.

他方、超大入熱溶接方法を用いて構築される溶接構造
物は、大入熱溶接方法を用いて構築される溶接構造物よ
り更に大型化する事から、その構造物の安全性が及ぼす
社会的影響及び経済的影響の大きさから、溶接ボンドを
含むHAZ靭性は更に厳しく要求され、これをより低い温
度迄保証する事が望まれている。
On the other hand, a welded structure constructed using the ultra-high heat input welding method is even larger than a welded structure constructed using the large heat input welding method, and the social impact of the safety of the structure is increased. Due to the size of the impact and the economic impact, HAZ toughness, including weld bonds, is more stringent and it is desirable to ensure this to lower temperatures.

[発明が解決しようとする課題] 本発明は、この要望に応え、従来の入熱量と比較にな
らない膨大な500kJ/cm〜1000kJ/cm程度の超大入熱溶接
の溶接環境条件において、超大入熱溶接特有の長い高温
滞留時間の下でも溶解消滅しない大きさのTiNをボンド
を含むHAZに確保し、このTiNを核に微細なBNを多量に析
出せしめてHAZ靭性vE−20が4.0kgf−m以上を示す溶接
構造用鋼板の製造方法を提供する事を課題とする。
[Problems to be Solved by the Invention] In response to this demand, the present invention provides an ultra-large heat input under a very large heat input welding environment of about 500 kJ / cm to 1000 kJ / cm, which is incomparable with the conventional heat input. The HAZ containing the bond is secured with TiN of a size that does not dissolve and disappear even under a long high-temperature residence time peculiar to welding, and a large amount of fine BN is precipitated using this TiN as a nucleus, and the HAZ toughness vE-20 is 4.0 kgf-m. An object of the present invention is to provide a method for manufacturing a steel plate for a welding structure as described above.

[課題を解決するための手段] 本願の低温靭性の優れた超大入熱溶接構造用鋼板の製
造方法の第1の発明は、重量%で、C:0.03〜0.18%、S
i:0.1〜1.0%、Mn:0.5〜1.8%、Al:0.005〜0.060%、T
i:0.005〜0.025%、B:0.0001〜0.0020%を含有し、EN=
N−0.292Ti−1.295Bなる式において、0<EN<0.0020
を満足するNを含有し、残部がFeおよび不可避的不純物
からなる鋼を鋳造し、1100℃迄の凝固過程の冷却速度を
5℃/分以下で冷却し、その後Ac3点〜1200℃の温度で
該鋼片を圧延することを特徴とする。
[Means for Solving the Problems] The first invention of the method for producing a steel plate for an ultra-high heat input welded structure having excellent low-temperature toughness according to the present invention is as follows: C: 0.03 to 0.18% by weight;
i: 0.1-1.0%, Mn: 0.5-1.8%, Al: 0.005-0.060%, T
i: 0.005 to 0.025%, B: 0.0001 to 0.0020%, EN =
In the formula N-0.292Ti-1.295B, 0 <EN <0.0020
Cast steel containing N satisfying the following, and the balance consisting of Fe and unavoidable impurities, and cooling at a cooling rate of 5 ° C./min or less in a solidification process up to 1100 ° C., and then a temperature of Ac 3 point to 1200 ° C. And rolling the slab.

また、第2の発明は、重量%で、C:0.03〜0.18%、S
i:0.1〜1.0%、Mn:0.5〜1.8%、Al:0.005〜0.060%、T
i:0.005〜0.025%、B:0.0001〜0.0020%を含有し、EN=
N−0.292Ti−1.295Bなる式において、0<EN<0.0020
を満足するNを含有し、残部がFeおよび不可避的不純物
からなる鋼片を1200〜1300℃に再加熱した後、1100℃ま
での冷却速度を5℃/分以下として冷却後、Ac3点〜120
0℃の温度で該鋼片を圧延することを特徴とする。
In the second invention, C: 0.03 to 0.18% by weight,
i: 0.1-1.0%, Mn: 0.5-1.8%, Al: 0.005-0.060%, T
i: 0.005 to 0.025%, B: 0.0001 to 0.0020%, EN =
In the formula N-0.292Ti-1.295B, 0 <EN <0.0020
After reheating a steel slab containing N that satisfies the following and the balance is made up of Fe and unavoidable impurities to 1200 to 1300 ° C, the cooling rate to 1100 ° C is set to 5 ° C / min or less, and after cooling, the Ac 3 point 120
The slab is rolled at a temperature of 0 ° C.

また、第3の発明は、重量%で、C:0.03〜0.18%、S
i:0.1〜1.0%、Mn:0.5〜1.8%、Al:0.005〜0.060%、T
i:0.005〜0.025%、B:0.0001〜0.0020%を含有し、さら
に、Ni≦0.9%、Cu≦0.5%、Nb≦0.014%の1種又は2
種以上を含有し、EN=N−0.292Ti−1.295Bなる式にお
いて、0<EN<0.0020を満足するNを含有し、残部がFe
および不可避的不純物からなる鋼を鋳造し、1100℃迄の
凝固過程の冷却速度を5℃/分以下で冷却し、その後Ac
3点〜1200℃の温度で該鋼片を圧延することを特徴とす
る。
In the third invention, C: 0.03 to 0.18% by weight, S:
i: 0.1-1.0%, Mn: 0.5-1.8%, Al: 0.005-0.060%, T
i: 0.005 to 0.025%, B: 0.0001 to 0.0020%, and one or more of Ni ≦ 0.9%, Cu ≦ 0.5%, Nb ≦ 0.014%
Containing N or more, and in the formula of EN = N−0.292Ti−1.295B, containing N satisfying 0 <EN <0.0020, and the balance being Fe
And a steel consisting of unavoidable impurities, and cooled at a cooling rate of 5 ° C./min or less in the solidification process up to 1100 ° C.
The slab is rolled at a temperature of 3 to 1200 ° C.

さらに、第4の発明は、重量%で、C:0.03〜0.18%、
Si:0.1〜1.0%、Mn:0.5〜1.8%、Al:0.005〜0.060%、T
i:0.005〜0.025%、B:0.0001〜0.0020%を含有し、さら
に、Ni≦0.9%、Cu≦0.5%、Nb≦0.014%の1種又は2
種以上を含有し、EN=N−0.292Ti−1.295Bなる式にお
いて、0<EN<0.0020を満足するNを含有し、残部がFe
および不可避的不純物からなる鋼片を1200〜1300℃に再
加熱した後、1100℃までの冷却速度を5℃/分以下とし
て冷却後、Ac3点〜1200℃の温度で該鋼片を圧延するこ
とを特徴とする。
Further, the fourth invention is that, by weight%, C: 0.03 to 0.18%,
Si: 0.1-1.0%, Mn: 0.5-1.8%, Al: 0.005-0.060%, T
i: 0.005 to 0.025%, B: 0.0001 to 0.0020%, and one or more of Ni ≦ 0.9%, Cu ≦ 0.5%, Nb ≦ 0.014%
Containing N or more, and in the formula of EN = N−0.292Ti−1.295B, containing N satisfying 0 <EN <0.0020, and the balance being Fe
After reheating the slab consisting of unavoidable impurities to 1200 to 1300 ° C, the cooling rate to 1100 ° C is reduced to 5 ° C / min or less, and then the slab is rolled at a temperature of Ac 3 points to 1200 ° C. It is characterized by the following.

上記の本発明鋼板の成分及び各成分量の限定理由を以
下に説明する。
The reasons for limiting the components of the steel sheet of the present invention and the amounts of the components will be described below.

Cは母材の強度確保のため添加し、上限は別途添加す
るTi、Bと反応してTiC及び又はBCを生成してHAZの靭性
を劣化するのを防止するため定めている。
C is added to ensure the strength of the base material, and the upper limit is determined to prevent TiC and / or BC from reacting with Ti and B added separately to prevent the toughness of HAZ from deteriorating.

Siは鋼の脱酸と母材強度の確保のため添加し、Mnは母
材強度の確保のため添加するが、共にHAZの靭性劣化を
防止するため上限を定めている。
Si is added to deoxidize steel and ensure base metal strength, and Mn is added to ensure base metal strength, but both have upper limits to prevent HAZ toughness degradation.

Alは、Al窒化物による鋼の微細化の他、圧延過程での
固溶、析出により、鋼の結晶方位の整合及び再結晶に有
効な働きをさせるために添加する。しかし、添加量が少
ないときにはその効果がなく、過剰の場合には鋼の靭性
を劣化させるので、それぞれ上下限を定めている。
Al is added to refine the steel by Al nitride, and also to make the steel crystal orientation and recrystallization effective by solid solution and precipitation in the rolling process. However, when the addition amount is small, there is no effect, and when it is excessive, the toughness of the steel is deteriorated.

Tiは溶接ボンドに溶融しない寸法のTiNを確保し、こ
れを核にBNの再析出を促進し、HAZの組織の微細化によ
りHAZの靭性を確保するために添加し、上限はBがBC生
成の防止から規制されて定まる固定し得るN量から、Ti
が過剰となってTiCを生成してHAZ靭性の劣化を招くのを
防止するために定めている。
Ti is added to secure TiN of a size that does not melt in the weld bond, promotes re-precipitation of BN using this as a nucleus, and secures HAZ toughness by refining the HAZ structure. From the amount of N that can be fixed and determined from the prevention of
Is specified in order to prevent the generation of TiC due to excessive amount and causing deterioration of HAZ toughness.

これ等によりHAZ結晶粒は細粒化し、HAZ組織の微細化
は促進され、ボンドを含むHAZの靭性は格段に向上す
る。従って上限はボンドを含むHAZにおけるAlNの溶融に
よる固溶Nが、BC生成から定められたBの上限に対して
過剰になってNの余剰を招き、ボンドを含むHAZに固溶
Nを残して前記靭性を劣化するのを防止するために定め
ている。
As a result, the HAZ crystal grains are refined, the refinement of the HAZ structure is promoted, and the toughness of the HAZ including the bond is remarkably improved. Therefore, the upper limit is that the solid solution N due to the melting of AlN in the HAZ containing the bond becomes excessive with respect to the upper limit of B determined from the formation of BC, causing excess N, leaving the solid solution N in the HAZ containing the bond. It is determined to prevent the toughness from deteriorating.

Bは超大入熱溶接後のHAZ組織の微細化と、固溶Nの
固定によりボンド靭性を確保するために添加し、上限は
再析出時にBCの生成によりHAZの焼入れ性を向上してHAZ
靭性を劣化するのを防止するため定めている。
B is added to secure the bond toughness by refining the HAZ structure after ultra-high heat input welding and fixing solid solution N. The upper limit is to improve the hardenability of HAZ by the formation of BC during reprecipitation.
It is specified to prevent the toughness from deteriorating.

Nは入熱500〜1000kJ/cm程度の超大入熱溶接ボンドの
高温と多大の熱容量でも溶融しない寸法のTiNを確保す
るために必要なN量を下限とし、上限は前記したBCの生
成を抑制するためのBの上限から、最終的にBNとして固
定出来なかったNが固溶してボンドの靭性を劣化するの
を防止するため鋼中のTi量、B量に応じて上限、下限を
定めている。
N is the lower limit of the amount of N necessary to secure TiN of a size that does not melt even at a high temperature and a large heat capacity of an ultra-high heat input welding bond of about 500 to 1000 kJ / cm, and the upper limit suppresses the formation of BC as described above. From the upper limit of B to determine the upper limit and lower limit according to the amount of Ti and B in steel, to prevent N which could not be fixed as BN finally form a solid solution and degrade the toughness of the bond. ing.

尚、SはMnSとして鋼中介在物を形成して母材靭性を
劣化するのを防止するため可能な限り少ないのが望まし
い。
S is desirably as small as possible to prevent MnS from forming inclusions in the steel and deteriorating the base metal toughness.

又、Ni,Cr,Mo,Cu,Nb,Vの1種又は2種以上を当業分野
で通常使用されている如く、それぞれの作用効果に応じ
て添加する事は支障がない。
Also, there is no problem in adding one or more of Ni, Cr, Mo, Cu, Nb, and V according to the respective effects as commonly used in the art.

Niは母材及びHAZの靭性向上のために添加し、上限は
焼入れ性を高めてHAZ組織をベイナイト化するのを防止
するため定めるのが望ましく、 Cr,Mo,Cuは母材の強度を向上するために添加するが、
HAZの硬化を防止するために上限に配慮が必要である。
Ni should be added to improve the toughness of the base material and HAZ, and the upper limit should be set to increase the hardenability and prevent the HAZ structure from becoming bainite.Cr, Mo, Cu improve the strength of the base material. To add
It is necessary to consider the upper limit to prevent HAZ from hardening.

Nb,Vは炭化物、窒化物を形成して母材組織の結晶粒の
細粒化を促進し、強度と靭性を高めるために添加する
が、HAZ靭性の劣化防止のために上限に注意が必要であ
る。
Nb and V form carbides and nitrides and promote the refinement of crystal grains in the base metal structure, and are added to increase strength and toughness, but care must be taken to the upper limit to prevent deterioration of HAZ toughness It is.

[作用] 第1図は、本発明の製造方法によって得た低温靭性の
優れた超大入熱溶接構造用鋼板の超大入熱溶接と片面1
層大入熱溶接法における溶接ボンド部直近の熱サイクル
の測定結果の一例を示す。
[Action] FIG. 1 is a diagram showing the ultra-high heat input welding of a steel sheet for an ultra-high heat input welding structure having excellent low-temperature toughness obtained by the production method of the present invention, and one side 1
4 shows an example of a measurement result of a heat cycle in the vicinity of a weld bond part in a large layer heat input welding method.

図から超大入熱溶接法の1400℃以上の高温に曝される
滞留時間は、片面1層溶接と比べ著しく長いことが判明
した。
From the figure, it was found that the residence time of exposure to a high temperature of 1400 ° C. or more in the ultra-high heat input welding method was significantly longer than that of single-sided, single-layer welding.

第2図は、溶接時におけるボンド部での1400℃以上の
滞留時間とその時溶解するTiN析出物の臨界寸法(析出
物形状を円相当に換算した直径)を示したものである。
FIG. 2 shows the residence time of 1400 ° C. or more at the bond portion during welding and the critical dimension (diameter obtained by converting the shape of the precipitate into a circle) of the TiN precipitate dissolved at that time.

特公昭55−26164号公報や特開昭63−103051号公報の
提案が対象としている400kJ/cm以下の溶接に対応する滞
留時間は、本発明が対象とする超大入熱溶接と比べその
滞留時間が短いため、0.05μm以下のTiN析出物が熱影
響を受けた後も存在し、HAZ組織の微細化に寄与するこ
とができるが、超大入熱溶接では0.1μm未満のTiNは溶
解消滅することを知見した。
The residence time corresponding to welding of 400 kJ / cm or less, which is proposed in Japanese Patent Publication No. 55-26164 or Japanese Patent Application Laid-Open No. 63-103051, is the residence time compared to the ultra-high heat input welding targeted by the present invention. Because of the short length, TiN precipitates of 0.05μm or less exist even after being affected by heat and can contribute to the refinement of the HAZ structure.However, in ultra-high heat input welding, TiN of less than 0.1μm will dissolve and disappear. Was found.

更に、第3図に超大入熱溶接部のHAZ靭性と、当該溶
接サイクルを受けた鋼板部分における直径0.1μm以上
のTiN析出物個数の関係を、B含有鋼とB非含有鋼につ
いて示したものである。
Furthermore, Fig. 3 shows the relationship between the HAZ toughness of the ultra-high heat input weld and the number of TiN precipitates having a diameter of 0.1 µm or more in the steel plate part subjected to the welding cycle for B-containing steel and B-free steel. It is.

この図から、B非含有鋼ではTiN析出物の個数に関係
なくHAZ靭性は不良であり、B含有鋼では EN=N−0.292Ti−1.295B なる式において0<EN<0.0020の範囲内の場合、溶接熱
サイクルを受けて溶け残った直径0.1μm以上のTiN析出
物が1mm2当たり3×105個以上存在するとHAZ靭性が超大
入熱溶接下でも確保されることが分かった。
From this figure, it can be seen that the HAZ toughness is poor for B-free steel regardless of the number of TiN precipitates, and for B-containing steel, EN = N-0.292Ti-1.295B in the case of 0 <EN <0.0020. It was found that HAZ toughness was ensured even under ultra-high heat input welding when TiN precipitates having a diameter of 0.1 μm or more remaining after the welding heat cycle were present in an amount of 3 × 10 5 or more per 1 mm 2 .

そこで、直径0.1μm以上のTiN析出物を十分に確保す
るため、表1に示す化学成分を有する鋼の凝固冷速がTi
N析出物の寸法に及ぼす影響を検討した。
Therefore, in order to sufficiently secure a TiN precipitate having a diameter of 0.1 μm or more, the solidification cooling rate of steel having the chemical components shown in Table 1 is set to Ti
The effect on the size of N precipitates was studied.

その結果を第4図,第5図に示す。 The results are shown in FIG. 4 and FIG.

第4図に明らかな様に、5℃/分以上の冷却速度では
析出TiNの直径は0.1μm未満の微細なものとなり、直径
0.1μm以上の析出TiNを確保するには、5℃/分以下の
冷却速度で凝固させる必要があることが判明した。
As is clear from FIG. 4, at a cooling rate of 5 ° C./min or more, the diameter of the precipitated TiN becomes finer than 0.1 μm,
It has been found that it is necessary to solidify at a cooling rate of 5 ° C./min or less in order to secure deposited TiN of 0.1 μm or more.

また、第5図から、凝固冷却時に5℃/分超の冷却速
度で冷却した鋼片は、1200℃〜1300℃に再加熱後、5℃
/分以下の冷却速度で冷却すれば凝固時の冷却速度の影
響を受けることなく、また、圧延に際しては、その侭圧
延するか、加熱温度をAc3点〜1200℃とすることで、直
径0.1μm以上の析出TiNが、超大入熱溶接時迄確保でき
ることを知見した。
From FIG. 5, the steel slab cooled at a cooling rate of more than 5 ° C./min during solidification cooling was reheated to 1200 ° C. to 1300 ° C.
/ Min without being affected by the cooling rate during solidification if the cooling in the following cooling rate, also during rolling, either the mom rolling, the heating temperature by the Ac 3 point to 1200 ° C., diameter 0.1 It has been found that TiN having a thickness of μm or more can be secured up to the time of ultra-high heat input welding.

第6図は、化学成分を種々変化させて凝固冷速を5℃
/分以下として製造した鋼板を用いて、化学成分の超大
入熱溶接部の靭性に及ぼす影響を調査した結果を示す。
FIG. 6 shows that the solidification cooling rate was changed to 5 ° C. by changing various chemical components.
The results of investigating the effect of chemical components on the toughness of a super-high heat input weld using a steel sheet manufactured at a rate of not more than / min are shown.

この図から、Bを含有した鋼においてNが、 EN=N−0.292Ti−1.295B なる式において0<EN<0.0020の範囲で、超大入熱溶接
相当の1400℃ピーク温度の熱サイクル靭性が高い値を確
保できることが明らかとなった。
From this figure, in the steel containing B, when N is in the range of EN <N−0.292Ti−1.295B in the range of 0 <EN <0.0020, the thermal cycle toughness at the peak temperature of 1400 ° C. equivalent to super large heat input welding is high. It became clear that the value could be secured.

これ等のHAZ組織とTiN析出物の関係を調査したとこ
ろ、直径0.1μm以上のTiN析出物によるHAZ靭性の向上
メカニズムは、従来から知られているような微細なTiN
析出物によるオーステナイト粗大化防止効果ではなく、
溶け残っている粗大TiN析出物と、このTiN析出物を核と
してフェライト変態直上の温度で析出するBNの複合析出
物を変態析出核として生成する塊状初析フェライトによ
ることが判明した。
An investigation of the relationship between these HAZ structures and TiN precipitates revealed that the mechanism of improvement in HAZ toughness due to TiN precipitates with a diameter of 0.1 μm or more was fine TiN precipitates as conventionally known.
Not the effect of preventing austenite coarsening due to precipitates,
It was found that coarse TiN precipitates remaining undissolved, and massive pro-eutectoid ferrite, which formed as a transformation nucleus a composite precipitate of BN deposited at a temperature just above the ferrite transformation using the TiN precipitate as a nucleus.

即ち、この塊状初析フェライトが存在すると板状の初
析フェライトの生成が抑制され、その結果この板状の初
析フェライトを生成サイトとして発達するフェライト・
サイド・プレート(以下FSPと稱す)の生成が抑制さ
れ、靭性に有害な前記FSPの生成が抑制されるためにHAZ
靭性が向上することがわかった。
That is, the presence of this massive pro-eutectoid ferrite suppresses the formation of plate-like pro-eutectoid ferrite, and as a result, the ferrite which develops this plate-like pro-eutectoid ferrite as a generation site
Since the formation of side plates (hereinafter referred to as FSP) is suppressed and the formation of FSP which is harmful to toughness is suppressed, HAZ
It was found that the toughness was improved.

尚、B含有鋼においても、Nが EN=N−0.292Ti−1.295B なる式においてEN>0.0020%の場合には、過剰Nにより
靭性の確保が困難となり、EN<0%の場合には、BNの析
出に必要なN量が確保されないために、BNの析出ができ
ず固溶Bによりボンド部の焼入れ性が増大し、塊状初析
フェライトが生成されずFSPが発達し、靭性の確保が困
難になることが判明した。
In the case of B-containing steel, when N is EN> 0.0020% in the equation of EN = N−0.292Ti−1.295B, it is difficult to secure toughness due to excess N. When EN <0%, Since the amount of N required for the precipitation of BN is not secured, the quenching property of the bond increases due to the solid solution B due to the inability to precipitate BN, and the bulk eutectoid ferrite is not generated, FSP develops, and the toughness is secured. It turned out to be difficult.

第7図(1)は本発明の製造方法によって得られた鋼
板において、微細なHAZ組織を形成してHAZ靭性を向上し
ている上記した塊状初析フェライトα1の組織上の位置
関係と形状の概略を示し、同図(2)は従来の鋼板にお
いて、劣悪なHAZ組織を形成してHAZ靭性を劣化している
上記した板状初析フェライトα2、及びFSP並びに上部
ベーナイトBuの組織上の位置関係と形状の概略を示した
ものである。
FIG. 7 (1) shows the positional relationship and the shape of the massive proeutectoid ferrite α1 in the steel sheet obtained by the production method of the present invention, which forms a fine HAZ structure and improves the HAZ toughness. FIG. 2 (2) schematically shows the position of the above-mentioned plate-like pro-eutectoid ferrite α2 and FSP and the upper bainite Bu on the conventional steel sheet, which form an inferior HAZ structure and deteriorate the HAZ toughness. It shows the outline of the relationship and the shape.

以上の各知見から、本発明者等は、必要な量のTiとN
とBを含有する鋼を準備し、鋳造凝固時の冷却速度、或
いはTiNの再溶解加熱後の冷却速度を5℃/分以下にす
ることにより、TiN析出物の大きさと量を前記の通り調
整し、入熱量が500〜1000kJ/cmの超大入熱により形成さ
れた高温高熱な溶接ボンドでも溶解しないTiN析出物を
確保して、それを析出サイトにしてBNをフェライト変態
直上で析出させ、超大入熱溶接時にボンドを含むHAZの
靭性を向上することに成功したのである。
From the above findings, the present inventors have found that the necessary amount of Ti and N
The size and amount of the TiN precipitates are adjusted as described above by preparing a steel containing B and B, and setting the cooling rate at the time of casting solidification or the cooling rate after re-melting and heating of TiN to 5 ° C / min or less. Then, secure a TiN precipitate that does not dissolve even with a high-temperature, high-heat weld bond formed by an ultra-high heat input with a heat input of 500 to 1000 kJ / cm, make it a precipitation site, and precipitate BN just above the ferrite transformation, It succeeded in improving the toughness of the HAZ including the bond during heat input welding.

このBNのフェライト変態促進効果により、粒界に塊状
初析フェライトα1を随所で生成させ、第7図(2)に
示す板状初析フェライトα2とFSPがなく、第7図
(1)に示す塊状初析フェライトα1に囲まれた細粒化
した結晶粒からなる微細なHAZ組織を形成し、本発明の
課題を達成したのである。
Due to the effect of BN on promoting ferrite transformation, massive pro-eutectoid ferrite α1 is formed at any part of the grain boundary, and no plate-like pro-eutectoid ferrite α2 and FSP shown in FIG. 7 (2) are present. The object of the present invention was achieved by forming a fine HAZ structure composed of refined crystal grains surrounded by massive pro-eutectoid ferrite α1.

これ等の知見から得た事実を本発明者等は解析の結
果、 Ti:0.005〜0.25%、B:0.0001〜0.0020% N:EN=N−0.292Ti−1.295B において 0<EN<0.0020 の範囲に調製した鋼を用いて、その凝固時の冷却速度、
或いはTiNが一部溶解する温度への再加熱後の冷却速度
を5℃/分以下に規制すると、直径0.1μm以上のTiN析
出物が鋼板の1mm2当たり3×105以上確保され、500kJ/c
m〜1000kJ/cm程度の超大入熱溶接において、HAZの靭性
(vE−20)が4.0kgf−m以上と高い値を示す超大入熱溶
接構造用高張力鋼板が得られることを確認した。
The present inventors have analyzed the facts obtained from these findings and found that Ti: 0.005 to 0.25%, B: 0.0001 to 0.0020% N: EN = N−0.292 Ti−1.295B, 0 <EN <0.0020 Using the steel prepared in the above, the cooling rate during its solidification,
Alternatively, if the cooling rate after reheating to a temperature at which TiN partially dissolves is regulated to 5 ° C./min or less, TiN precipitates having a diameter of 0.1 μm or more are secured at 3 × 10 5 or more per 1 mm 2 of the steel sheet, and 500 kJ / c
It was confirmed that in ultra-high heat input welding of about m to 1000 kJ / cm, a high-strength steel sheet for an ultra-high heat input welding structure showing a high value of HAZ toughness (vE-20) of 4.0 kgf-m or more was obtained.

[実施例] 供試鋼を連続鋳造により鋳片とし、それ自体公知の制
御圧延、制御冷却を施して鋼板とし、得た各鋼板をそれ
ぞれ4に示す条件の溶接に供した。
[Example] The test steel was cast into a slab by continuous casting, subjected to controlled rolling and controlled cooling known per se to form a steel sheet, and each obtained steel sheet was subjected to welding under the conditions shown in 4 respectively.

以下に結果を示す。 The results are shown below.

1.供試鋼の成分 表1に示す。1. Composition of test steel Table 1 shows.

2.鋼板製造条件 表2に示す。2. Steel plate manufacturing conditions Table 2 shows.

3.鋼板の機械的性質 表2に示す。3. Mechanical properties of steel sheet Table 2 shows.

4.溶接条件 表2に示す。4. Welding conditions Table 2 shows.

5.HAZ靭性 表2に示す。5. HAZ toughness is shown in Table 2.

表2に示す鋼番1〜12は本発明の実施例を示す。この
実施例は、500kJ/cm〜1000kJ/cmの超夫入熱溶接で示し
た各靭性vE−20は、溶接ボンド(F.L.)では4.1〜20.
9、HAZ,1mmでは6.0〜18.0、HAZ,3mmでは14.3〜27.2、HA
Z,5mmでは21.6〜27.0であり、鋼板の降伏点は32〜48kgf
/mm2であった。
Steel numbers 1 to 12 shown in Table 2 show examples of the present invention. In this example, each toughness vE-20 shown in the super-heat input welding of 500 kJ / cm to 1000 kJ / cm is 4.1 to 20 in the weld bond (FL).
9.6.0-18.0 for HAZ, 1mm, 14.3-27.2 for HAZ, 3mm, HA
21.6-27.0 for Z, 5mm, yield point of steel plate is 32-48kgf
It was / mm 2.

一方、鋼番13〜22は比較例を示す。鋼番13〜17の比較
例は、何れも凝固時、または再加熱後の冷却速度が5℃
/分以上であり、0.1μm以上のTiN析出物の個数が少な
く、鋼番18はTiが過剰でNが不足しており、鋼番19はN
が過剰であり、鋼番20〜21はNが不足して十分なTiN析
出物の個数が得られず、鋼番22はBが過剰であった。
On the other hand, steel numbers 13 to 22 show comparative examples. The comparative examples of steel numbers 13 to 17 all have a cooling rate of 5 ° C. during solidification or after reheating.
/ Min or more, the number of TiN precipitates of 0.1 μm or more is small, steel No. 18 is excessive in Ti and lacks N, and steel No. 19 is N
In steel Nos. 20-21, N was insufficient and a sufficient number of TiN precipitates could not be obtained, and in steel No. 22, B was excessive.

鋼番13〜22の比較例は、本発明例と同様の溶接条件で
ある入熱量が500kJ/cm〜1000kJ/cmの超大入熱熔接での
各靭性vE−20は、溶接ボンド(F.L.)は0.4〜3.4であ
り、HAZ,1mmはvE−20で2.1〜4.3、HAZ,3mmは3.5〜14.0
であり、課題の4.0kgf−m以上のHAZ靭性には達しなか
った。
The comparative examples of steel Nos. 13 to 22 have the toughness vE-20 in the ultra-high heat input welding of 500 kJ / cm to 1000 kJ / cm under the same welding conditions as the present invention, and the weld bond (FL) is 0.4 to 3.4, HAZ, 1 mm is 2.1 to 4.3 for vE-20, HAZ, 3 mm is 3.5 to 14.0
And did not reach the subject HAZ toughness of 4.0 kgf-m or more.

[発明の効果] 本発明の製造方法によって得られる低温靭性の優れた
超大入熱溶接構造用鋼板は、入熱量500kJ/cm〜1000kJ/c
m程度の超大入熱溶接のボンドを含むHAZに与えられた高
温で滞留時間の長い特有の環境条件に対応して、この高
温で滞留時間の長い特有の環境条件においても、溶接時
の溶接ボンドを含むHAZに、溶解しない寸法のTiN析出物
と、その所要個数を確保することにより、TiNとBNの相
乗的な作用を発揮せしめ、これにより溶接ボンドを含む
HAZ靭性が、4.0kgf−m以上を示す低温靭性の優れた超
大入熱溶接構造用鋼板の製造を可能としたもので、当該
分野にもたらす、安全性、信頼性、経済性の向上効果は
極めて大きい。
[Effect of the Invention] The ultra-large heat input welding structural steel sheet having excellent low-temperature toughness obtained by the production method of the present invention has a heat input of 500 kJ / cm to 1000 kJ / c.
Corresponding to the specific environmental conditions of high temperature and long residence time given to HAZ including the bond of ultra-high heat input welding of about m, the welding bond at the time of welding under the specific environmental condition of high temperature and long residence time By securing the required number of TiN precipitates that do not dissolve in the HAZ containing Ti and the required number, the synergistic action of TiN and BN is exhibited, thereby including the weld bond
HAZ toughness enables the production of ultra-high heat input welded structural steel sheets with excellent low-temperature toughness of 4.0 kgf-m or more.The effect of improving safety, reliability, and economic efficiency brought to the field is extremely high. large.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明が対象とする超大入熱溶接と、片面1層
大入熱溶接における溶接ボンド部直近の熱サイクル測定
結果の一例を示したものである。 第2図は溶接時におけるボンド部での1400℃以上の滞留
時間と、その時溶解するTiN析出物の臨界寸法(直径)
を示したものである。 第3図は超大入熱溶接部のHAZ靭性と、当該溶接熱サイ
クルを受けた鋼板部分での直径0.1μm以上のTiN析出物
個数との関係をB含有鋼とB非含有鋼について示したも
のである。 第4図は鋼の鋳造凝固後の冷却速度がTiN析出物の寸法
に及ぼす影響を示したものである。 第5図はTiNの一部溶融する温度に再加熱した鋼片にお
ける再加熱後の冷却速度と、TiN析出物の寸法の関係を
示したものである。 第6図は化学成分の超大入熱溶接部の靭性に及ぼす影響
を示したものである。 第7図は塊状初析フェライト、IFP及び板状フェライ
ト、FSP、Bu等の組織上の位置関係と形状の特徴の概略
を示したものである。 (1)は本発明の鋼板のものを示し、(2)は従来の鋼
板のものを示す。
FIG. 1 shows an example of a heat cycle measurement result immediately adjacent to a weld bond portion in super-large heat input welding and single-sided, single-layer large heat input welding to which the present invention is applied. Fig. 2 shows the residence time at 1400 ° C or more at the bond during welding, and the critical dimension (diameter) of the TiN precipitate dissolved at that time.
It is shown. Fig. 3 shows the relationship between the HAZ toughness of the ultra-high heat input weld and the number of TiN precipitates having a diameter of 0.1 µm or more in the steel sheet part subjected to the welding heat cycle for B-containing steel and B-free steel. It is. FIG. 4 shows the effect of the cooling rate after cast solidification of steel on the size of TiN precipitates. FIG. 5 shows the relationship between the cooling rate after reheating of a steel slab reheated to a temperature at which TiN partially melts and the size of TiN precipitates. FIG. 6 shows the effect of the chemical components on the toughness of the weld joint with a very large heat input. FIG. 7 schematically shows the positional relationship in the structure and the features of the shape of massive pro-eutectoid ferrite, IFP and plate-like ferrite, FSP, Bu and the like. (1) shows a steel plate of the present invention, and (2) shows a conventional steel plate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 土師 利昭 大分県大分市大字西ノ洲1番地 新日本 製鐵株式会社大分製鐵所内 (72)発明者 間渕 秀里 大分県大分市大字西ノ洲1番地 新日本 製鐵株式会社大分製鐵所内 (56)参考文献 特開 平2−236224(JP,A) 特開 昭61−106722(JP,A) (58)調査した分野(Int.Cl.6,DB名) C21D 8/02 B22D 11/00 - 11/22 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshiaki Hashi Oita, Oita, Oita, 1st section of Nishinosu Oita Works Inside Nippon Steel Corporation Oita Works (72) Inventor, Hidesato Mabuchi 1st section of Oaza, Oita, Oita, Oaza Nippon Steel Corporation Oita Works (56) References JP-A-2-236224 (JP, A) JP-A-61-106722 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB Name) C21D 8/02 B22D 11/00-11/22

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量%で C:0.03〜0.18% Si:0.1〜1.0% Mn:0.5〜1.8% Al:0.005〜0.060% Ti:0.005〜0.025% B:0.0001〜0.0020% を含有し、 EN=N−0.292Ti−1.295B なる式において、 0<EN<0.0020 を満足するNを含有し、残部がFeおよび不可避的不純物
からなる鋼を鋳造し、1100℃迄の凝固過程の冷却速度を
5℃/分以下で冷却し、その後Ac3点〜1200℃の温度で
該鋼片を圧延することを特徴とする低温強靭性の優れた
超大入熱溶接用鋼板の製造方法。
[Claim 1] C: 0.03 to 0.18% by weight% Si: 0.1 to 1.0% Mn: 0.5 to 1.8% Al: 0.005 to 0.060% Ti: 0.005 to 0.025% B: 0.0001 to 0.0020%, EN = In the formula N-0.292Ti-1.295B, a steel containing N satisfying 0 <EN <0.0020 and the balance being Fe and unavoidable impurities is cast, and the cooling rate during the solidification process up to 1100 ° C is 5 ° C. A method for producing a steel sheet for ultra-high heat input welding with excellent low-temperature toughness, characterized in that the steel slab is rolled at a temperature of 3 to 1200 ° C. after cooling at a temperature not higher than / min.
【請求項2】重量%で C:0.03〜0.18% Si:0.1〜1.0% Mn:0.5〜1.8% Al:0.005〜0.060% Ti:0.005〜0.025% B:0.0001〜0.0020% を含有し、 EN=N−0.292Ti−1.295B なる式において、 0<EN<0.0020 を満足するNを含有し、残部がFeおよび不可避的不純物
からなる鋼片を1200〜1300℃に再加熱した後、1100℃ま
での冷却速度を5℃/分以下として冷却後、Ac3点〜120
0℃の温度で該鋼片を圧延することを特徴とする低温強
靭性の優れた超大入熱溶接用鋼板の製造方法。
2. C: 0.03 to 0.18% by weight% Si: 0.1 to 1.0% Mn: 0.5 to 1.8% Al: 0.005 to 0.060% Ti: 0.005 to 0.025% B: 0.0001 to 0.0020%, EN = In the formula N-0.292Ti-1.295B, a steel slab containing N satisfying 0 <EN <0.0020 and the balance being Fe and unavoidable impurities is reheated to 1200 to 1300 ° C, and then heated to 1100 ° C. After cooling at a cooling rate of 5 ° C./min or less, Ac 3 points to 120
A method for producing an ultra-high heat input welding steel sheet having excellent low-temperature toughness, characterized by rolling the slab at a temperature of 0 ° C.
【請求項3】重量%で C:0.03〜0.18% Si:0.1〜1.0% Mn:0.5〜1.8% Al:0.005〜0.060% Ti:0.005〜0.025% B:0.0001〜0.0020% を含有し、さらに、Ni≦0.9%、Cu≦0.5%、Nb≦0.014
%の1種又は2種以上を含有し、 EN=N−0.292Ti−1.295B なる式において、 0<EN<0.0020 を満足するNを含有し、残部がFeおよび不可避的不純物
からなる鋼を鋳造し、1100℃迄の凝固過程の冷却速度を
5℃/分以下で冷却し、その後Ac3点〜1200℃の温度で
該鋼片を圧延することを特徴とする低温強靭性の優れた
超大入熱溶接用鋼板の製造方法。
(3) C: 0.03-0.18% Si: 0.1-1.0% Mn: 0.5-1.8% Al: 0.005-0.060% Ti: 0.005-0.025% B: 0.0001-0.0020% by weight%, Ni ≦ 0.9%, Cu ≦ 0.5%, Nb ≦ 0.014
% Of one or more types, and EN = N-0.292Ti-1.295B In the formula: 0 <EN <0.0020 N, the balance being Fe and unavoidable impurities. Then, the cooling rate in the solidification process up to 1100 ° C. is cooled at 5 ° C./min or less, and then the slab is rolled at a temperature of from Ac 3 point to 1200 ° C. Manufacturing method of steel plate for heat welding.
【請求項4】重量%で C:0.03〜0.18% Si:0.1〜1.0% Mn:0.5〜1.8% Al:0.005〜0.060% Ti:0.005〜0.025% B:0.0001〜0.0020% を含有し、さらに、Ni≦0.9%、Cu≦0.5%、Nb≦0.014
%の1種又は2種以上を含有し、 EN=N−0.292Ti−1.295B なる式において、 0<EN<0.0020 を満足するNを含有し、残部がFeおよび不可避的不純物
からなる鋼片を1200〜1300℃に再加熱した後、1100℃ま
での冷却速度を5℃/分以下として冷却後、Ac3点〜120
0℃の温度で該鋼片を圧延することを特徴とする低温強
靭性の優れた超大入熱溶接用鋼板の製造方法。
4. The composition contains C: 0.03 to 0.18% Si: 0.1 to 1.0% Mn: 0.5 to 1.8% Al: 0.005 to 0.060% Ti: 0.005 to 0.025% B: 0.0001 to 0.0020% by weight%, Ni ≦ 0.9%, Cu ≦ 0.5%, Nb ≦ 0.014
% Or more, and in the formula of EN = N-0.292Ti-1.295B, a steel slab containing N satisfying 0 <EN <0.0020 and the balance being Fe and unavoidable impurities. after re-heated to 1200 to 1300 ° C., after cooling the cooling rate to 1100 ° C. as 5 ° C. / min or less, Ac 3 point to 120
A method for producing an ultra-high heat input welding steel sheet having excellent low-temperature toughness, characterized by rolling the slab at a temperature of 0 ° C.
JP2268638A 1990-10-05 1990-10-05 Method for manufacturing ultra-high heat input welded structural steel sheet with excellent low-temperature toughness Expired - Lifetime JP2931065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2268638A JP2931065B2 (en) 1990-10-05 1990-10-05 Method for manufacturing ultra-high heat input welded structural steel sheet with excellent low-temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2268638A JP2931065B2 (en) 1990-10-05 1990-10-05 Method for manufacturing ultra-high heat input welded structural steel sheet with excellent low-temperature toughness

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP19662096A Division JPH09104949A (en) 1996-07-25 1996-07-25 Steel plate for ultralarge heat input welding structure excellent in low temperature toughness

Publications (2)

Publication Number Publication Date
JPH04143246A JPH04143246A (en) 1992-05-18
JP2931065B2 true JP2931065B2 (en) 1999-08-09

Family

ID=17461335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2268638A Expired - Lifetime JP2931065B2 (en) 1990-10-05 1990-10-05 Method for manufacturing ultra-high heat input welded structural steel sheet with excellent low-temperature toughness

Country Status (1)

Country Link
JP (1) JP2931065B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100482214B1 (en) * 2000-11-28 2005-04-21 주식회사 포스코 Method for manufacturing high strength steel plate having superior toughness in weld heat-affected zone by nitriding treatment
KR100482215B1 (en) * 2000-11-29 2005-04-21 주식회사 포스코 Method for manufacturing high strength steel plate having superior toughness in weld heat-affected zone by nitriding treatment
KR100470647B1 (en) * 2000-12-11 2005-03-07 주식회사 포스코 Method for manufacturing steel plate having superior toughness in weld heat-affected zone by controlled rolling at two phase regions
KR100482195B1 (en) * 2000-12-13 2005-04-21 주식회사 포스코 Method for manufacturing high strength steel plate having superior toughness in weld heat-affected zone by nitriding treatment and controlled rolling at two phase regions
KR100709521B1 (en) * 2001-11-13 2007-04-20 제이에프이 스틸 가부시키가이샤 Welding joint of large heat input welding and welding method thereof
CN103320693B (en) 2013-06-19 2015-11-18 宝山钢铁股份有限公司 Anti-zinc fracturing line steel plate and manufacture method thereof
BR112023004211A2 (en) * 2020-09-30 2023-04-11 Jfe Steel Corp STEEL PLATE

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5526164A (en) * 1978-08-14 1980-02-25 Fuji Kikai Seisakusho Kk Product supplying device
JPS58213855A (en) * 1982-06-02 1983-12-12 Kobe Steel Ltd Structural steel for big heat input welding
JPS61194113A (en) * 1985-02-21 1986-08-28 Sumitomo Metal Ind Ltd Manufacture of high tension steel plate for high heat input welding
JPS61253344A (en) * 1985-05-01 1986-11-11 Kawasaki Steel Corp Steel plate for high heat input welding and its manufacture
JPS6256518A (en) * 1985-09-04 1987-03-12 Sumitomo Metal Ind Ltd Production of high strength steel sheet for high heat input welding
JPS62149850A (en) * 1985-12-23 1987-07-03 Kobe Steel Ltd Weather resistant steel having excellent weldability and large heat input welded joint performance
JPS63103051A (en) * 1986-10-20 1988-05-07 Kawasaki Steel Corp High toughness steel for welding

Also Published As

Publication number Publication date
JPH04143246A (en) 1992-05-18

Similar Documents

Publication Publication Date Title
JP3990724B2 (en) High strength secondary hardened steel with excellent toughness and weldability
JP5233020B2 (en) Yield strength 800 MPa class low weld crack sensitive steel plate and method for producing the same
KR101386042B1 (en) Steel material for high heat input welding
JP4673784B2 (en) High strength steel sheet having excellent weld heat affected zone toughness and method for producing the same
US20190100818A1 (en) High-strength steel plate for pressure vessel having excellent toughness after post weld heat treatment and manufacturing method thereof
KR100868571B1 (en) High tensile steel sheet of low acoustical anisotropy excelling in weldability, and process for producing the same
JP3256401B2 (en) High heat input welding steel having heat input of 500 kJ / cm or more and method for producing the same
JP4523893B2 (en) Steel for welded structure having a tensile strength of 590 N / mm2 and excellent in toughness of base metal and weld heat-affected zone, and method for producing the same
JP5796636B2 (en) Steel material for large heat input welding
JP3719037B2 (en) Continuous cast slab having no surface crack and method for producing non-tempered high strength steel using this slab
JP2931065B2 (en) Method for manufacturing ultra-high heat input welded structural steel sheet with excellent low-temperature toughness
KR101971772B1 (en) Method of manufacturing steel plate for high-heat input welding
JP4237904B2 (en) Ferritic heat resistant steel sheet with excellent creep strength and toughness of base metal and welded joint and method for producing the same
JP3668713B2 (en) High tensile steel plate with excellent weldability and uniform elongation
JP2776174B2 (en) Manufacturing method of high tensile strength and high toughness fine bainite steel
JPS605822A (en) Low alloy steel sheet and manufacture
JPS62170459A (en) High tension steel plate for high heat input welding
JP7410438B2 (en) steel plate
JP2020204091A (en) High strength steel sheet for high heat input welding
JPH05222450A (en) Production of high tensile steel plate
JPH059570A (en) Production of high weldability and high strength steel
JPH09104949A (en) Steel plate for ultralarge heat input welding structure excellent in low temperature toughness
JP3739997B2 (en) High-tensile steel plate with excellent weldability
JPS6256518A (en) Production of high strength steel sheet for high heat input welding
JPS6156268A (en) High toughness and high tensile steel and its manufacture