JP4523893B2 - Steel for welded structure having a tensile strength of 590 N / mm2 and excellent in toughness of base metal and weld heat-affected zone, and method for producing the same - Google Patents

Steel for welded structure having a tensile strength of 590 N / mm2 and excellent in toughness of base metal and weld heat-affected zone, and method for producing the same Download PDF

Info

Publication number
JP4523893B2
JP4523893B2 JP2005239501A JP2005239501A JP4523893B2 JP 4523893 B2 JP4523893 B2 JP 4523893B2 JP 2005239501 A JP2005239501 A JP 2005239501A JP 2005239501 A JP2005239501 A JP 2005239501A JP 4523893 B2 JP4523893 B2 JP 4523893B2
Authority
JP
Japan
Prior art keywords
steel
toughness
less
base material
tensile strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005239501A
Other languages
Japanese (ja)
Other versions
JP2007056279A (en
Inventor
和洋 福永
龍治 植森
義之 渡部
力雄 千々岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005239501A priority Critical patent/JP4523893B2/en
Publication of JP2007056279A publication Critical patent/JP2007056279A/en
Application granted granted Critical
Publication of JP4523893B2 publication Critical patent/JP4523893B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、母材及び溶接熱影響部の靱性に優れた引張強度590N/mm級の溶接構造用鋼およびその製造方法に関するものである。本発明の溶接構造用鋼は、海洋構造物および橋梁向け高強度厚鋼板として適用される他、建築、造船、建機といった分野にも広く適用できる。 The present invention relates to a welded structural steel having a tensile strength of 590 N / mm 2 and excellent in toughness of a base material and a weld heat-affected zone, and a method for producing the same. The welded structural steel of the present invention can be widely applied to fields such as construction, shipbuilding and construction machinery as well as high strength thick steel plates for offshore structures and bridges.

従来、厚鋼板における溶接部の靱性を高める手段として、結晶粒微細化が有効であると考えられており、その方法として、凝固中の酸化物等の介在物を制御し、溶接等の再加熱時に介在物が粒成長のピン止め効果及びフェライトの核生成サイトとして作用するような技術の開発が進められてきた。   Conventionally, it has been considered that grain refinement is effective as a means to increase the toughness of welds in thick steel plates. As a method for this, the inclusions such as oxides during solidification are controlled and reheating such as welding is performed. At times, technology has been developed in which inclusions act as a pinning effect for grain growth and as a nucleation site for ferrite.

上述のような技術として、鋼材にTiを添加することによって、Ti酸化物(以下、TiOと略称することがある)を核として粒内フェライト(Intragranular Ferrite;IGF)の生成を促進させてなる鋼が提案されている(例えば、特許文献1)。   As described above, steel that promotes the formation of intragranular ferrite (IGF) using Ti oxide (hereinafter sometimes abbreviated as TiO) as a nucleus by adding Ti to the steel material. Has been proposed (for example, Patent Document 1).

また、Ti窒化物(以下、TiNと略称することがある)をマトリックスに分散させることで、再熱時の粒成長をピン止め効果によって抑制し、溶接熱影響部(Heat Affected Zone;HAZ)の靱性を確保した鋼が提案されている(例えば、特許文献2、3)。   Further, by dispersing Ti nitride (hereinafter sometimes abbreviated as “TiN”) in the matrix, grain growth during reheating is suppressed by a pinning effect, and the heat affected zone (HAZ) of the weld heat affected zone (HAZ) Steels that ensure toughness have been proposed (for example, Patent Documents 2 and 3).

また、マトリックス中に分散させたTi−Mg酸化物が、ピン止め効果によって再加熱時の粒成長を抑制し、IGFの生成促進効果によってフェライトを微細化させ、HAZの靱性を確保した鋼が提案されている(例えば、特許文献4)。   In addition, Ti-Mg oxide dispersed in the matrix suppresses grain growth during reheating by the pinning effect, refines the ferrite by the effect of promoting the formation of IGF, and proposes a steel that secures the toughness of HAZ (For example, Patent Document 4).

しかしながら、特許文献1〜4に記載の鋼は、HAZの靱性に優れた鋼を製造するための非常に複雑なプロセスを要し、且つ高価であるという問題があり、また、製造時の各元素の添加量の見極めや析出物の制御が困難であるため、細粒化による効果には限界がある。   However, the steels described in Patent Documents 1 to 4 have a problem that they require a very complicated process for producing a steel having excellent HAZ toughness, and are expensive. Since it is difficult to determine the amount of addition and control of precipitates, the effect of fine graining is limited.

一方、MnSを用いることもHAZの微細化に有効であることから、MnSを生成させ該MnSを核としてIGFの生成を促進し、実効的に結晶粒径が微細化することによって靱性を確保した鋼が提案されている(例えば、特許文献5)。   On the other hand, the use of MnS is also effective for miniaturization of HAZ, so MnS is generated and IGF formation is promoted using MnS as a nucleus, and toughness is ensured by effectively reducing the crystal grain size. Steel has been proposed (for example, Patent Document 5).

しかしながら、特許文献5に記載の鋼は、製造時の各元素の添加量の見極めや析出物の制御が困難であるため、細粒化による効果には限界がある。   However, in the steel described in Patent Document 5, it is difficult to determine the amount of each element added at the time of production and to control the precipitates, and thus there is a limit to the effect of refinement.

また、厚鋼板に3.0%程度の多量のMnを添加することによって強度及び靱性が向上することから、3.5%迄のMnを添加することにより、高強度及び高靱性を向上させた鋼が提案されている(例えば、特許文献6)。   In addition, the strength and toughness are improved by adding a large amount of Mn of about 3.0% to the thick steel plate. By adding Mn up to 3.5%, the high strength and the high toughness are improved. Steel has been proposed (for example, Patent Document 6).

しかしながら、特許文献6に記載の鋼は、連続鋳造にて溶鋼をスラブとする場合に、Mnの中心偏析が起こりやすいといった問題がある。この弊害の一つとして、割れの起因となり得る粗大なMnSが生成することが挙げられ、Mnの添加量が増加されることによって粗大なMnSの量が増大するため、割れの原因となる。
上述の理由により、板厚が大きく圧延などで偏析を完全になくすことが困難な厚鋼板においては、Mnを多量に添加することは避けられてきた。
特開平5−171341号公報 特公昭55−26164号公報 特開2001−164333号公報 特開平11−279684号公報 特開平7−252586号公報 特開平9−3595号公報
However, the steel described in Patent Document 6 has a problem that center segregation of Mn tends to occur when molten steel is used as a slab by continuous casting. One of the adverse effects is the generation of coarse MnS that can cause cracks, and the amount of coarse MnS increases as the amount of Mn added increases, causing cracks.
For the above-mentioned reasons, it has been avoided to add a large amount of Mn in a thick steel plate having a large thickness and it is difficult to completely eliminate segregation by rolling or the like.
JP-A-5-171341 Japanese Patent Publication No.55-26164 JP 2001-164333 A JP 11-279684 A Japanese Patent Laid-Open No. 7-252586 JP-A-9-3595

本発明は上記事情に鑑みてなされたものであり、溶接性に優れ、複雑な工程や方法を用いずに低コストで製造できる母材及び溶接熱影響部の靱性に優れた引張強度590N/mm級の溶接構造用鋼およびその製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and is excellent in weldability, and can be manufactured at a low cost without using complicated processes and methods, and a tensile strength of 590 N / mm excellent in the toughness of the weld heat affected zone. An object of the present invention is to provide a second grade welded structural steel and a method for producing the same.

本発明の要旨とするところは、以下の通りである。
(1)質量%で、C:0.03〜0.12%、Si:0.05〜0.30%、Mn:1.6〜3.00%、P:0.015%以下、S:0.001〜0.015%、Cu+Ni:0.10%以下、Al:0.005%以下、Ti:0.005〜0.030%、Nb:0.005〜0.100%、N:0.0025〜0.0060%、O:0.0035%以下、REM:0.001〜0.020%を含有し、残部が鉄および不可避的不純物からなり、母材のベイナイト組織分率が80%以上であり、前記S、O、及びREMの関係が、次式(1)
0.007≦2.7×([S](%)+[O](%))−0.6×[REM](%)≦0.015 ・・・(1)
で表されることを特徴とする母材及び溶接熱影響部の靱性に優れた引張強度590N/mm級の溶接構造用鋼。
(2)更に、質量%で、Mo:0.2%以下、V:0.1%以下、Cr:0.5%以下、Ca:0.0035%以下、Mg:0.0050%以下、B:0.002%以下の群から選択される少なくとも一種又は二種以上を含有することを特徴とする(1)に記載の母材及び溶接熱影響部の靱性に優れた引張強度590N/mm級の溶接構造用鋼。
(3)(1)または(2)に記載の母材及び溶接熱影響部の靱性が優れた引張強度590N/mm級の溶接構造用鋼の成分組成を有する鋼片を、1200℃以下の温度に加熱し、次いで未再結晶温度域において累積圧下率で40%以上の熱間圧延を行い、850℃以上の温度で熱間圧延を完了させた後、800℃以上の温度から5℃/sec以上の冷却速度で400℃以下まで冷却することを特徴とする母材及び溶接熱影響部の靱性に優れた引張強度590N/mm級の溶接構造用鋼の製造方法。
(4)(3)に記載の母材及び溶接熱影響部の靱性が優れた引張強度590N/mm級の溶接構造用鋼の製造方法で得られた鋼を再加熱し、400〜650℃で焼戻し処理を施すことを特徴とする母材及び溶接熱影響部の靱性に優れた引張強度590N/mm級の溶接構造用鋼の製造方法。
The gist of the present invention is as follows.
(1) By mass%, C: 0.03 to 0.12%, Si: 0.05 to 0.30%, Mn: 1.6 to 3.00%, P: 0.015% or less, S: 0.001 to 0.015%, Cu + Ni: 0.10% or less, Al: 0.005% or less, Ti: 0.005 to 0.030%, Nb: 0.005 to 0.100%, N: 0 .0025 to 0.0060%, O: 0.0035% or less, REM: 0.001 to 0.020%, the balance is made of iron and inevitable impurities, and the bainite structure fraction of the base material is 80% The relationship between S, O, and REM is as follows:
0.007 ≦ 2.7 × ([S] (%) + [O] (%)) − 0.6 × [REM] (%) ≦ 0.015 (1)
A welded structural steel having a tensile strength of 590 N / mm 2 and excellent in toughness of a base material and a weld heat-affected zone, characterized by:
(2) Further, in mass%, Mo: 0.2% or less, V: 0.1% or less, Cr: 0.5% or less, Ca: 0.0035% or less, Mg: 0.0050% or less, B : Containing at least one selected from the group of 0.002% or less or two or more, tensile strength of 590 N / mm 2 excellent in toughness of base material and weld heat affected zone according to (1) Grade welded structural steel.
(3) A steel slab having a component composition of a tensile strength of 590 N / mm grade 2 welded structural steel excellent in the toughness of the base material and welding heat-affected zone described in (1) or (2) is 1200 ° C. or less. After heating to a temperature and then performing hot rolling at a cumulative reduction ratio of 40% or more in the non-recrystallization temperature range and completing the hot rolling at a temperature of 850 ° C. or higher, the temperature is increased from 800 ° C. or higher to 5 ° C. / A method for producing a welded structural steel having a tensile strength of 590 N / mm 2 and excellent in toughness of a base material and a weld heat-affected zone, characterized by cooling to 400 ° C. or lower at a cooling rate of at least sec.
(4) Reheating the steel obtained by the method for producing a welded structural steel having a tensile strength of 590 N / mm 2 class excellent in toughness of the base material and the weld heat-affected zone described in (3), and a temperature of 400 to 650 ° C. A method for producing a steel for welded structure having a tensile strength of 590 N / mm 2 and excellent in toughness of a base material and a weld heat-affected zone, characterized by subjecting to tempering.

本発明の母材及び溶接熱影響部の靱性に優れた引張強度590N/mm級の溶接構造用鋼によれば、質量%で、C:0.03〜0.12%、Si:0.05〜0.30%、Mn:1.6〜3.00%、P:0.015%以下、S:0.001〜0.015%、Cu+Ni:0.10%以下、Al:0.005%以下、Ti:0.005〜0.030%、Nb:0.005〜0.100%、N:0.0025〜0.0060%、O:0.0035%以下、REM:0.001〜0.020%を含有し、残部が鉄および不可避的不純物からなり、母材のベイナイト組織分率が80%以上であり、前記S、O、及びREMの関係が、式(0.007≦2.7×([S](%)+[O](%))−0.6×[REM](%)≦0.015)で表される関係としている。
成分組成を上述の範囲内とし、また、S、O、及びREMの関係を上述の式で表される範囲内とすることにより、多量のMnを添加する際に問題となる中心偏析の影響を緩和することができ、且つ、溶接によるHAZの結晶粒粗大化を抑制できる。
これにより、鋼材の靱性が安定するとともに溶接性が向上し、複雑な工程や方法を用いずに、低コストで、母材及び溶接熱影響部の靱性に優れた引張強度590N/mm級の溶接構造用鋼が得られ、産業上、極めて有用である。
According to the welded structural steel having a tensile strength of 590 N / mm 2 and excellent in toughness of the base material and the weld heat-affected zone of the present invention, C: 0.03 to 0.12%, Si: 0.00. 05 to 0.30%, Mn: 1.6 to 3.00%, P: 0.015% or less, S: 0.001 to 0.015%, Cu + Ni: 0.10% or less, Al: 0.005 %: Ti: 0.005-0.030%, Nb: 0.005-0.100%, N: 0.0025-0.0060%, O: 0.0035% or less, REM: 0.001- 0.020% is contained, the balance is made of iron and inevitable impurities, the base material has a bainite structure fraction of 80% or more, and the relationship between the S, O, and REM is expressed by the formula (0.007 ≦ 2 0.7 × ([S] (%) + [O] (%)) − 0.6 × [REM] (%) ≦ 0.015) Have a relationship.
By making the component composition within the above range and the relationship between S, O, and REM within the range represented by the above formula, the effect of central segregation, which is a problem when adding a large amount of Mn, is reduced. It can be mitigated and HAZ crystal grain coarsening due to welding can be suppressed.
As a result, the toughness of the steel material is stabilized and the weldability is improved. The tensile strength of 590 N / mm 2 class, which is excellent in the toughness of the base material and the weld heat affected zone, is low-cost without using complicated processes and methods. A welded structural steel is obtained, which is extremely useful industrially.

以下、本発明に係る母材及び溶接熱影響部の靱性に優れた引張強度590N/mm級の溶接構造用鋼の実施の形態について説明する。
なお、この実施の形態は、発明の趣旨をより良く理解させるために詳細に説明するものであるから、特に指定の無い限り、本発明を限定するものではない。
Hereinafter, an embodiment of a welded structural steel having a tensile strength of 590 N / mm 2 and excellent in toughness of the base material and the weld heat affected zone according to the present invention will be described.
Note that this embodiment is described in detail for better understanding of the gist of the invention, and thus does not limit the present invention unless otherwise specified.

本実施形態の母材及び溶接熱影響部の靱性に優れた引張強度590N/mm級の溶接構造用鋼では、質量%で、C:0.03〜0.12%、Si:0.05〜0.30%、Mn:1.6〜3.00%、P:0.015%以下、S:0.001〜0.015%、Cu+Ni:0.10%以下、Al:0.005%以下、Ti:0.005〜0.030%、Nb:0.005〜0.100%、N:0.0025〜0.0060%、O:0.0035%以下、REM:0.001〜0.020%を含有し、残部が鉄および不可避的不純物からなり、母材のベイナイト組織分率が80%以上であり、前記S、O、及びREMの関係が、次式(1)
0.007≦2.7×([S](%)+[O](%))−0.6×[REM](%)≦0.015 ・・・(1)
で表される成分組成としている。
In the steel for welded structure having a tensile strength of 590 N / mm 2 and excellent in toughness of the base material and the weld heat-affected zone of the present embodiment, C: 0.03 to 0.12%, Si: 0.05 ˜0.30%, Mn: 1.6 to 3.00%, P: 0.015% or less, S: 0.001 to 0.015%, Cu + Ni: 0.10% or less, Al: 0.005% Ti: 0.005 to 0.030%, Nb: 0.005 to 0.100%, N: 0.0025 to 0.0060%, O: 0.0035% or less, REM: 0.001 to 0 0.020%, the balance is made of iron and inevitable impurities, the base material has a bainite structure fraction of 80% or more, and the relationship between S, O, and REM is expressed by the following formula (1):
0.007 ≦ 2.7 × ([S] (%) + [O] (%)) − 0.6 × [REM] (%) ≦ 0.015 (1)
It is set as the component composition represented by these.

また、本実施形態の母材及び溶接熱影響部の靱性に優れた引張強度590N/mm級の溶接構造用鋼では、さらに、質量%で、Mo:0.2%以下、V:0.1%以下、Cr:0.5%以下、Ca:0.0035%以下、Mg:0.0050%以下、B:0.002%以下の群の内から選択される少なくとも一種又は二種以上を含有する成分組成とすることができる。 Further, in the welded structural steel having a tensile strength of 590 N / mm 2 which is excellent in the toughness of the base material and the weld heat affected zone of the present embodiment, Mo: 0.2% or less, V: 0.00%. 1% or less, Cr: 0.5% or less, Ca: 0.0035% or less, Mg: 0.0050% or less, B: 0.002% or less It can be set as the component composition to contain.

本実施形態の母材及び溶接熱影響部の靱性に優れた引張強度590N/mm級の溶接構造用鋼では、上述した課題を解決するため、比較的合金コストの低いMnを多量添加することにより、低コストで且つ強度靱性を確保しながら、REM添加によって生成するREM酸化物及び硫化物を微細分散させることで母材の結晶粒径を微細化させ、更に、連続鋳造時に生じる中心偏析に起因して生成するMnSを低減することで、均一な材質を有し、且つ母材靱性の優れた鋼が得られる。また、TiO及びMnSによるIGF生成促進作用を複合的に用いることにより、優れたHAZの靱性が得られる。 In order to solve the above-mentioned problems, a large amount of Mn having a relatively low alloy cost is added to the welded structural steel having a tensile strength of 590 N / mm 2 that is excellent in the toughness of the base material and the weld heat affected zone of the present embodiment. This makes it possible to reduce the crystal grain size of the base material by finely dispersing the REM oxide and sulfide produced by the addition of REM while ensuring the strength and toughness at a low cost. By reducing the resulting MnS, a steel having a uniform material and excellent base material toughness can be obtained. In addition, by combining the IGF generation promoting action by TiO and MnS, excellent HAZ toughness can be obtained.

溶接部の靱性を高めるためには、溶接部のミクロ組織の微細化が有効である。ミクロ組織微細化の手段として、溶接熱による結晶粒の粗大化を抑制すること、及び冷却時の変態核生成サイトを増加し、最終的に得られるミクロ組織の有効結晶粒径を細かくすることが挙げられる。溶接熱による結晶粒の粗大化を抑制するためには、溶鋼段階において、できる限り多くの介在物や析出物を微細に分散させることが有効である。このため、溶鋼中において微細析出が可能な元素を添加することが重要である。   In order to increase the toughness of the welded portion, it is effective to refine the microstructure of the welded portion. As means for refining the microstructure, it is possible to suppress the coarsening of crystal grains due to welding heat, increase the number of transformation nucleation sites during cooling, and reduce the effective crystal grain size of the finally obtained microstructure. Can be mentioned. In order to suppress the coarsening of crystal grains due to welding heat, it is effective to finely disperse as many inclusions and precipitates as possible in the molten steel stage. For this reason, it is important to add an element capable of fine precipitation in the molten steel.

高温において微細に析出可能な化合物の一つとして、REM(希土類元素)化合物が挙げられる。REMは、主にOやSと結合して微細な析出物を形成する。REMは、OやSとの結合力が非常に強く、高温域において酸化物および硫化物を生成するため、溶鋼中に充分に分散し、割れの原因となる有害な硫化物のMnS生成量が低減する。また、REM酸化物、及び硫化物は融点が高いため、一度、酸化物及び硫化物として生成した場合には、熱間圧延程度の温度、及び溶接等の高温加熱でも溶解せず、鋼中に存在する。
上述により、REMの添加によって、Mnの中心偏析に起因した粗大なMnS生成による割れ発生を回避し、かつ母材の結晶粒の微細化の作用を得ることができる。
One of the compounds that can be finely precipitated at high temperature is a REM (rare earth element) compound. REM mainly combines with O and S to form fine precipitates. REM has a very strong bonding force with O and S, and generates oxides and sulfides at high temperatures. Therefore, REM has a sufficient amount of MnS generation of harmful sulfides that are sufficiently dispersed in molten steel and cause cracks. To reduce. Also, since REM oxides and sulfides have a high melting point, once they are produced as oxides and sulfides, they do not dissolve even at high temperatures such as hot rolling and high temperature heating such as welding, and in steel. Exists.
As described above, the addition of REM can avoid the generation of cracks due to coarse MnS generation due to the central segregation of Mn, and can obtain the effect of refining the crystal grains of the base material.

MnSは、HAZにおいてIGFの生成核となり、HAZの有効結晶粒径を微細化する効果があることから、MnSが完全に生成しなくなることは好ましくない。しかしながら、1.6〜3.00%程度のMnを添加した際に、0.001〜0.020%程度のREMを添加しておけば、S量を積極的に低減することなく、従来鋼と同程度の量のMnSを得ることができる。   Since MnS serves as a nucleation of IGF in HAZ and has an effect of reducing the effective crystal grain size of HAZ, it is not preferable that MnS is not completely generated. However, when about 1.6 to 3.00% of Mn is added, if about 0.001 to 0.020% of REM is added, the conventional steel can be obtained without actively reducing the amount of S. The same amount of MnS can be obtained.

上述により、3.00%程度迄のMn添加によって懸念されているMnSによる割れを回避することができる。また、Mnの添加によって十分な強度靱性を確保できることから、従来、高強度鋼等に添加されていたNiやCuとの代替も可能となるため、鋼材特性の向上や製造コスト削減に対して非常に有効である。   As described above, it is possible to avoid cracking due to MnS, which is concerned by adding Mn up to about 3.00%. In addition, since sufficient strength and toughness can be secured by adding Mn, it is possible to replace Ni and Cu that have been added to high-strength steel and the like. It is effective for.

また、従来、REM添加は、介在物の形態制御に利用されており、この点からも靱性の改善に対してREM添加が有効である。   Conventionally, REM addition has been used for shape control of inclusions, and from this point, REM addition is effective for improving toughness.

高強度、且つ高靱性を有する厚板の製造には様々な方法があげられるが、その一つとして熱間圧延後直接焼入れ(DQ)した後に焼戻し(T)処理を施すDQT法がある。
しかしながら、T処理は、一旦冷却した後に再加熱し、その温度で一定時間保持する工程のため、コストが上昇する。コスト低減の観点からは、可能な限りT処理は避けたい処理である。本実施形態では、T処理を施すことなく優れた靱性を確保できるために、コストを上昇させることなく高特性の鋼材を製造することができる。また、特に靱性を要求される場合は、T処理を施すことにより、より優れた靱性を有する鋼材を得ることができる。
There are various methods for producing a thick plate having high strength and high toughness. One of them is a DQT method in which tempering (T) treatment is performed after direct quenching (DQ) after hot rolling.
However, the T treatment increases the cost because it is once cooled and then reheated and held at that temperature for a certain period of time. From the viewpoint of cost reduction, the T process should be avoided as much as possible. In this embodiment, since excellent toughness can be ensured without performing the T treatment, a high-quality steel material can be manufactured without increasing costs. Moreover, when toughness is especially requested | required, the steel material which has the more superior toughness can be obtained by performing T process.

[鋼材の成分組成]
以下、本実施形態の母材及び溶接熱影響部の靱性に優れた引張強度590N/mm級の溶接構造用鋼の、成分組成の限定理由について説明する。以下の説明において、組成についての「%」は、質量%を意味する。
[Component composition of steel materials]
Hereinafter, the reasons for limiting the component composition of the steel for welded structure having a tensile strength of 590 N / mm 2 and excellent in the toughness of the base material and the weld heat affected zone of the present embodiment will be described. In the following description, “%” for the composition means mass%.

「C:炭素」0.03〜0.12%
Cは、強度を確保するために必要な元素である。
強度向上の効果を得るためには、Cを0.03%以上添加することが必要であるが、過剰添加は、HAZの靱性低下を招く虞があるため、上限値を0.12%とした。
"C: Carbon" 0.03-0.12%
C is an element necessary for ensuring strength.
In order to obtain the effect of improving the strength, it is necessary to add 0.03% or more of C. However, since excessive addition may cause a reduction in the toughness of HAZ, the upper limit is set to 0.12%. .

「Si:ケイ素」0.05〜0.30%
Siは、脱酸剤として有効であり、また、固溶強化によって鋼の強度を向上させるのに有効な元素である。
Siの含有量が0.05%未満だと、上述の効果が低下し、また、含有量が0.30%を超えると、HAZの靱性を劣化させる。
このため、Siの含有量を0.05〜0.30%の範囲に限定した。
"Si: silicon" 0.05-0.30%
Si is effective as a deoxidizer and is an element effective for improving the strength of steel by solid solution strengthening.
When the Si content is less than 0.05%, the above-described effects are reduced, and when the Si content exceeds 0.30%, the toughness of the HAZ is deteriorated.
For this reason, the Si content is limited to a range of 0.05 to 0.30%.

「Mn:マンガン」1.6〜3.00%
Mnは、鋼の強度を増加するため、高強度化に有効な元素である。また、MnはSと結合してMnSを形成するが、これがIGFの生成核となり、HAZの有効結晶粒径微細化を促進することで、HAZ靱性の劣化を抑制する。
高い強度を維持しながら溶接熱影響部の靱性を確保するためには、Mnの含有量を1.6%以上とする必要がある。但し、Mnを、3.00%を超えて添加すると、靱性が劣化する。
このため、Mnの含有量を1.6〜3.00%の範囲に限定した。
“Mn: Manganese” 1.6 to 3.00%
Mn is an element effective for increasing the strength because it increases the strength of the steel. Mn combines with S to form MnS, which serves as a nucleation of IGF and promotes refinement of the effective crystal grain size of HAZ, thereby suppressing degradation of HAZ toughness.
In order to secure the toughness of the weld heat affected zone while maintaining high strength, the Mn content needs to be 1.6% or more. However, if Mn is added in excess of 3.00%, the toughness deteriorates.
For this reason, content of Mn was limited to 1.6 to 3.00% of range.

「P:リン」0.015%以下
Pは、粒界に偏析して鋼の靱性を劣化させるので、その含有量をできるだけ低減することが好ましいが、0.015%までは許容できるため、含有量を0.015%以下とした。
“P: Phosphorus” 0.015% or less P is segregated at the grain boundary and deteriorates the toughness of the steel. Therefore, it is preferable to reduce its content as much as possible, but up to 0.015% is acceptable. The amount was set to 0.015% or less.

「S:硫黄」0.001〜0.015%
Sは、REMと硫化物を形成し、母材の結晶粒を微細化する作用を有する。また、MnSとして鋼中に存在し、HAZの組織を微細化する作用も有するため、0.001%以上の含有量を必要とする。一方、Sの含有量が0.015%を超えると、板厚方向の靱性や延性を低下させるので、Sは0.015%以下に制限する必要がある。
このため、Sの含有量を0.001〜0.015%の範囲に限定した。
“S: Sulfur” 0.001 to 0.015%
S forms sulfides with REM and has the effect of refining the crystal grains of the base material. Moreover, since it exists in steel as MnS and has the effect | action which refines | miniaturizes the structure of HAZ, content of 0.001% or more is required. On the other hand, if the S content exceeds 0.015%, the toughness and ductility in the thickness direction are reduced, so S needs to be limited to 0.015% or less.
For this reason, content of S was limited to 0.001 to 0.015% of range.

「Cu+Ni:銅+ニッケル」0.10%以下
Cuは、従来、強度を確保するために有効な元素であるが、Cuの添加による熱間加工性の低下を回避するため、Cu添加量とほぼ同量のNiを添加することが必須となる。
しかし、Niは非常にコストの高い元素であるため、Niを多量に添加することは本発明鋼の目的の一つである低コスト化を阻む要因となってしまう虞がある。このため、CuおよびNiはできる限り添加しないことが好ましい。しかし、スクラップを用いてスラブを製造する場合、Cu及びNiが、それぞれ0.05%程度は不可避的に混入してしまう虞があるため、Cu及びNiの総量の上限値を0.10%とした。
“Cu + Ni: Copper + Nickel” 0.10% or less Conventionally, Cu is an element effective for securing strength, but in order to avoid a decrease in hot workability due to the addition of Cu, It is essential to add the same amount of Ni.
However, since Ni is an extremely expensive element, adding a large amount of Ni may hinder cost reduction, which is one of the purposes of the steel of the present invention. For this reason, it is preferable not to add Cu and Ni as much as possible. However, when manufacturing slabs using scrap, Cu and Ni may inevitably be mixed by about 0.05%, so the upper limit of the total amount of Cu and Ni is 0.10%. did.

「Al:アルミニウム」0.005%以下
Alは、TiOを生成させるためには含有量が少ない方が好ましく、実質的に、Alを含有しないようにする必要がある。
しかしながら、Alを含有しない成分組成とすることは工業生産的に制約があり、質量%で0.005%程度の含有量が、TiOの生成を阻害しない許容範囲であることから、Alの含有量は0.005%以下とした。
“Al: aluminum” 0.005% or less In order to generate TiO, it is preferable that the content of Al is small, and it is necessary to substantially prevent Al from being contained.
However, the component composition not containing Al is limited in industrial production, and the content of about 0.005% by mass is an allowable range that does not hinder the generation of TiO. Was 0.005% or less.

「Ti:チタン」0.005〜0.030%
Tiは、Oと結合してTiOをなし、IGFの生成を促進するとともに、Nと結合して鋼中にTiNを形成する。
上述の作用を得るためには、Tiを0.005%以上添加することが必要である。
Tiの含有量が0.030%を超えると、母材靱性を劣化させる虞があるため、Tiの含有量を0.005〜0.030%の範囲に限定した。
"Ti: Titanium" 0.005-0.030%
Ti combines with O to form TiO, promotes the formation of IGF, and combines with N to form TiN in the steel.
In order to obtain the above-mentioned action, it is necessary to add 0.005% or more of Ti.
If the Ti content exceeds 0.030%, the base material toughness may be deteriorated, so the Ti content is limited to a range of 0.005 to 0.030%.

「Nb:ニオブ」0.005〜0.100%
Nbは、オーステナイトの未再結晶域を拡大して、フェライトの細粒化を促進する効果があり、また、Nb炭化物を生成して強度の確保を図ることができる元素である。
上述の作用を得るためには、Nbを0.005%以上添加する必要がある。
Nbの含有量が0.100%を超えると、Nb炭化物によるHAZ脆化が生じやすくなるため、Nbの含有量を0.005〜0.100%の範囲に限定した。
“Nb: Niobium” 0.005 to 0.100%
Nb is an element that has the effect of enlarging the non-recrystallized region of austenite and promoting the refinement of ferrite, and can generate Nb carbide to ensure the strength.
In order to obtain the above-described action, Nb needs to be added in an amount of 0.005% or more.
If the Nb content exceeds 0.100%, HAZ embrittlement is likely to occur due to Nb carbide, so the Nb content is limited to a range of 0.005 to 0.100%.

「N:窒素」0.0025〜0.0060%
Nは、Tiと結合して鋼中にTiNを形成させるために、0.0025%以上の添加が必要である。ただし、Nは固溶強化元素としても非常に大きな効果があるため、多量に添加するとHAZ靱性を劣化するおそれが考えられる。そのため、HAZ靱性に大きな影響を与えずTiNの効果を最大限に得られるように、Nの上限を0.0060%とした。
“N: Nitrogen” 0.0025 to 0.0060%
N needs to be added in an amount of 0.0025% or more in order to combine with Ti to form TiN in the steel. However, since N has a very large effect as a solid solution strengthening element, adding a large amount of N may possibly deteriorate the HAZ toughness. Therefore, the upper limit of N is set to 0.0060% so that the effect of TiN can be maximized without significantly affecting the HAZ toughness.

「O:酸素」0.0035%以下
Oは、TiOを形成するために必要であるが、含有量が0.0035%を超えると、粗大なTiOを生成し、靱性を劣化するおそれが考えられる。
このため、Oの上限を0.0035%とした。
"O: Oxygen" 0.0035% or less O is necessary to form TiO, but if the content exceeds 0.0035%, coarse TiO may be generated and toughness may be deteriorated. .
For this reason, the upper limit of O was made 0.0035%.

「REM:希土類元素」0.001〜0.020%
REMは、溶鋼中に酸化物及び硫化物を微細分散晶出させ、Mnの中心偏析に起因した粗大なMnSの生成を阻止し、また、晶出物のピン止めによって凝固組織を微細にする効果がある。
上述の効果を得るためには、REMを0.001%以上添加することが必要となる。
REMの含有量が0.020%を超えると、晶出物の生成量が多くなり、鋳造時に鍋絞りが起こるため、上限値を0.020%に限定した。さらに好ましい上限値は、0.010%である。
“REM: rare earth element” 0.001 to 0.020%
REM has the effect of finely dispersing and crystallization of oxides and sulfides in molten steel, preventing the formation of coarse MnS due to the central segregation of Mn, and the effect of making the solidified structure fine by pinning the crystallized matter. There is.
In order to acquire the above-mentioned effect, it is necessary to add REM 0.001% or more.
If the content of REM exceeds 0.020%, the amount of crystallized product increases, and panning occurs during casting. Therefore, the upper limit value is limited to 0.020%. A more preferable upper limit value is 0.010%.

本実施形態の母材及び溶接熱影響部の靱性に優れた引張強度590N/mm級の溶接構造用鋼は、上述の成分を基本組成とするものであるが、更に強度、靭性、延性等の機械的特性の向上を目的として、以下に説明する選択的許容添加元素を1種または2種以上、積極的に含有した成分組成としても良い。 The tensile strength 590 N / mm grade 2 welded structural steel with excellent toughness of the base material and weld heat affected zone of the present embodiment is based on the above-mentioned components, but further has strength, toughness, ductility, etc. For the purpose of improving the mechanical properties, a component composition may be used that actively contains one or more selectively permissible additive elements described below.

「Mo:モリブデン、V:バナジウム、Cr:クロム、Ca:カルシウム、Mg:マグネシウム、B:ホウ素」
Mo、V、Crは、何れも焼入れ性向上に有効な元素であり、必要に応じ一種または二種以上を選択して含有することができる。この中で、Vは、VNを生成して組織微細化効果を最適化することができ、VNによる析出強化を促進させる効果を有する。
また、Mo、V、Crの含有によってAr点が低下することから、フェライト粒の微細化効果がより大きくなる。
また、Caを添加することにより、MnSの形態を制御し、低温靱性をさらに向上させることができるため、厳しいHAZ特性が要求される場合には、選択して添加することができる。
また、Mgは、HAZにおけるオーステナイトの粒成長を抑制し、細粒化させる作用があり、これによってHAZ靱性が向上することから、厳しいHAZ靱性が要求される場合には、選択して添加することができる。
Bは、少量を添加することで焼入性を大きく向上させる元素であり、極厚手鋼板のように冷却速度を確保するのが困難な場合には、選択して添加することができる。
“Mo: molybdenum, V: vanadium, Cr: chromium, Ca: calcium, Mg: magnesium, B: boron”
Mo, V, and Cr are all effective elements for improving the hardenability, and one or more kinds can be selected and contained as required. In this, V can produce | generate VN and can optimize the structure refinement | miniaturization effect, and has the effect of promoting the precipitation strengthening by VN.
Moreover, since the Ar 3 point is lowered due to the inclusion of Mo, V, and Cr, the effect of refining ferrite grains is further increased.
Further, by adding Ca, the form of MnS can be controlled and the low-temperature toughness can be further improved. Therefore, when severe HAZ characteristics are required, it can be selectively added.
In addition, Mg has the effect of suppressing austenite grain growth in HAZ and making it finer, and this improves HAZ toughness. Therefore, when severe HAZ toughness is required, it should be selected and added. Can do.
B is an element that greatly improves the hardenability by adding a small amount, and can be selected and added when it is difficult to secure a cooling rate as in the case of an extremely thick steel plate.

上述の効果を得るため、各元素の含有量は、質量%で、Mo:0.2%以下、V:0.1%以下、Cr:0.5%以下、Ca:0.0035%以下、Mg:0.0050%以下、B:0.002%以下とすることが好ましい。
なお、0.2%を超えるMo、又は0.5%を超えるCrを添加した場合には、溶接性や靱性を損ない、且つコストが上昇する虞がある。
また、0.03%を超えるVを添加した場合には、溶接性や靱性を損なう虞がある。
また、0.0035%を超えるCaを添加した場合には、鋼の清浄度が損なわれ、靱性の劣化や水素誘起割れ感受性を高めてしまう虞がある。
また、0.0050%を超えるMgを添加した場合には、オーステナイト細粒化効果代が小さく、コスト上、得策ではない。
また、0.0002%を超えるBを添加した場合には、鋼の靱性を損なう虞がある。
In order to obtain the effects described above, the content of each element is, in mass%, Mo: 0.2% or less, V: 0.1% or less, Cr: 0.5% or less, Ca: 0.0035% or less, Mg: 0.0050% or less and B: 0.002% or less are preferable.
In addition, when Mo exceeding 0.2% or Cr exceeding 0.5% is added, the weldability and toughness may be impaired, and the cost may increase.
Moreover, when V exceeding 0.03% is added, there exists a possibility that weldability and toughness may be impaired.
Further, when Ca exceeding 0.0035% is added, the cleanliness of the steel is impaired, and there is a possibility that the toughness is deteriorated and the sensitivity to hydrogen-induced cracking is increased.
Further, when Mg exceeding 0.0050% is added, the austenite refining effect margin is small, and this is not a good measure in terms of cost.
Moreover, when adding B exceeding 0.0002%, there exists a possibility of impairing the toughness of steel.

[鋼材の組織]
以下に、母材のベイナイト組織分率の限定理由について説明する。
低合金鋼にて母材、及びHAZの靱性を確保しながら、590N/mm級の引張強度を得るためには、ベイナイト組織分率が80%以上であることが必要となる。
また、ベイナイト組織分率は、上記強度を得るため、85%以上であることが好ましく、90%以上であることがより好ましい。
なお、ここで述べるベイナイト組織とは、上部ベイナイト組織、下部ベイナイト組織に加え、アシキュラーフェライトから構成される組織を指す。
[Steel structure]
The reason for limiting the bainite structure fraction of the base material will be described below.
In order to obtain a tensile strength of 590 N / mm 2 while securing the toughness of the base material and HAZ with the low alloy steel, the bainite structure fraction needs to be 80% or more.
Moreover, in order to obtain the said intensity | strength, the bainite structure fraction is preferably 85% or more, and more preferably 90% or more.
The bainite structure described here refers to a structure composed of acicular ferrite in addition to the upper bainite structure and the lower bainite structure.

[S、O、及びREMの関係の規定理由]
S、O、及びREMの関係を、(1)式によって規定する理由について説明する。
S、O、及びREMを、(1)式に表される関係とすることにより、過剰なMnSが生成されるのを抑制することができる。
MnSは、IGFの生成核として働くため有効であるが、粗大なMnSが過剰に生成すると割れの原因となり、有害である。このため、MnSの最適範囲を考えなければならないが、Sは、MnよりもREMとの結合力の方が大きいため、MnSよりもREM硫化物が先に生成することを考慮しなければならない。また、REMは、Oとの結合力がより強いため、REM酸化物形成後に残ったREMにより、REM硫化物が生成されることを考慮する必要がある。
これらの作用を考慮した、有効なMnS(eff・MnS)と、S、O、及びREMの関係を(2)式で表す。
[Reason for defining the relationship between S, O, and REM]
The reason why the relationship between S, O, and REM is defined by equation (1) will be described.
By making S, O, and REM into the relationship represented by Formula (1), it is possible to suppress the generation of excessive MnS.
MnS is effective because it acts as a nucleus for IGF formation, but excessive production of coarse MnS causes cracking and is harmful. For this reason, the optimum range of MnS must be considered. However, since S has a stronger binding force with REM than Mn, it must be considered that REM sulfide is generated earlier than MnS. Moreover, since REM has a stronger bonding force with O, it is necessary to consider that REM sulfide is generated by REM remaining after REM oxide formation.
Considering these actions, the relationship between effective MnS (eff · MnS), S, O, and REM is expressed by equation (2).

0.007≦2.7×([S](%)+[O](%))−0.6×[REM](%)≦0.015 ・・・(1) 0.007 ≦ 2.7 × ([S] (%) + [O] (%)) − 0.6 × [REM] (%) ≦ 0.015 (1)

eff・MnS=2.7×([S](%)+[O](%))−0.6×[REM](%) ・・・(2) eff · MnS = 2.7 × ([S] (%) + [O] (%)) − 0.6 × [REM] (%) (2)

上記(2)式で算出される有効なMnSの含有量(eff・MnS)が0.007%未満の場合、MnS生成量が少ないために靱性改善効果が小さく、0.015%超の場合には、REM酸化物及び硫化物の過剰生成によって靱性が悪くなるという問題がある。
このため、S、O、及びREMの含有量が、(1)式に表される関係を満たすことを条件とした。
When the effective MnS content (eff · MnS) calculated by the above formula (2) is less than 0.007%, the effect of improving toughness is small because the amount of MnS produced is small. Has a problem that toughness deteriorates due to excessive formation of REM oxides and sulfides.
For this reason, it was made into conditions that content of S, O, and REM satisfy | fills the relationship represented by (1) Formula.

[鋼材の製造条件]
以下に、本実施形態の母材及び溶接熱影響部の靱性に優れた引張強度590N/mm級の溶接構造用鋼の製造方法について説明する。
本実施形態では、上述した成分組成を有する鋼片を、1200℃以下の温度に加熱し、次いで、未再結晶温度域において累積圧下率で40%以上の熱間圧延を行い、850℃以上の温度で熱間圧延を完了させた後、800℃以上の温度から5℃/sec以上の冷却速度で400℃以下まで冷却することにより、母材及び溶接熱影響部の靱性に優れた引張強度590N/mm級の溶接構造用鋼を得る方法としている。
さらに、得られた鋼を再加熱し、400〜650℃で焼戻し処理を施す方法としても良い。
以下に、各製造条件の限定理由について説明する。
[Production conditions for steel]
Below, the manufacturing method of the steel for structural welds of the tensile strength 590N / mm 2 excellent in the toughness of the base material of this embodiment and a welding heat affected zone is demonstrated.
In this embodiment, the steel slab having the above-described component composition is heated to a temperature of 1200 ° C. or lower, and then hot-rolled at a cumulative reduction ratio of 40% or higher in an unrecrystallized temperature range, and 850 ° C. or higher. After completing the hot rolling at a temperature, the tensile strength of 590 N excellent in the toughness of the base material and the weld heat affected zone is obtained by cooling from a temperature of 800 ° C. or more to 400 ° C. or less at a cooling rate of 5 ° C./sec or more. / Mm A method for obtaining a grade 2 welded structural steel.
Furthermore, it is good also as the method of reheating the obtained steel and performing a tempering process at 400-650 degreeC.
Below, the reason for limitation of each manufacturing condition is demonstrated.

加熱温度については、1200℃以下の温度とすることが必要である。
加熱温度を1200℃以下とする理由としては、高温加熱すると、凝固時に冷却速度を制御して造り込んだ析出物を再溶解させてしまう可能性があることが挙げられる。
また、相変態を完了させるには、加熱温度は1200℃で充分であり、加熱の際に生じると考えられる結晶粒の粗大化も、予め防ぐことができる。
以上の理由により、加熱温度を1200℃以下に限定した。
About heating temperature, it is necessary to set it as the temperature of 1200 degrees C or less.
The reason for setting the heating temperature to 1200 ° C. or less is that, when heated at a high temperature, the precipitate formed by controlling the cooling rate during solidification may be redissolved.
Moreover, in order to complete the phase transformation, a heating temperature of 1200 ° C. is sufficient, and it is possible to prevent the coarsening of crystal grains considered to occur during heating in advance.
For the above reason, the heating temperature is limited to 1200 ° C. or less.

次いで、未再結晶温度域において、累積圧下率で40%以上の熱間圧延を行う必要がある。
未再結晶温度域における圧下量の増加は、圧延中のオーステナイト粒の微細化に寄与し、結果としてフェライト粒を微細化し、機械的性質を向上させる効果がある。このような効果は、未再結晶域での累積圧下率が40%以上で顕著になる。
以上の理由により、未再結晶域での累積圧下量を40%以上に限定した。
Next, it is necessary to perform hot rolling with a cumulative rolling reduction of 40% or more in the non-recrystallization temperature range.
The increase in the amount of reduction in the non-recrystallization temperature region contributes to the refinement of austenite grains during rolling, and as a result, has the effect of refining the ferrite grains and improving the mechanical properties. Such an effect becomes remarkable when the cumulative rolling reduction in the non-recrystallized region is 40% or more.
For the above reasons, the cumulative reduction amount in the non-recrystallized region is limited to 40% or more.

鋼片は850℃以上で熱間圧延を完了させた後、800℃以上の温度から5℃/sec以上の冷却速度で400℃以下まで冷却する必要がある。
800℃以上の温度から冷却する理由として、800℃未満の温度から冷却を開始すると、焼入れ性の観点から不利となり、所要の強度が得られない可能性があることが挙げられる。
また、冷却速度が5℃/sec未満では、均一なミクロ組織を有した鋼を得ることが期待できず、結果として加速冷却の効果が小さくなる。
また、一般に鋼を400℃以下の温度まで冷却すれば、変態は充分に完了する。本実施形態では、鋼を5℃/sec以上の冷却速度にて400℃以下まで冷却を続けることで充分な靱性を確保できるため、T処理を施さずに鋼材として使用することができる。
以上の理由により、鋼片を850℃以上の温度で熱間圧延を完了させた後、800℃以上の温度から5℃/sec以上の冷却速度で400℃以下の温度まで冷却する条件に限定した。
The steel slab needs to be hot-rolled at 850 ° C. or higher and then cooled from a temperature of 800 ° C. or higher to 400 ° C. or lower at a cooling rate of 5 ° C./sec or higher.
The reason for cooling from a temperature of 800 ° C. or higher is that starting from a temperature of less than 800 ° C. is disadvantageous from the viewpoint of hardenability, and the required strength may not be obtained.
If the cooling rate is less than 5 ° C./sec, it cannot be expected to obtain a steel having a uniform microstructure, and as a result, the effect of accelerated cooling is reduced.
In general, if the steel is cooled to a temperature of 400 ° C. or lower, the transformation is fully completed. In this embodiment, since sufficient toughness can be ensured by continuously cooling the steel to 400 ° C. or lower at a cooling rate of 5 ° C./sec or higher, it can be used as a steel material without performing T treatment.
For the above reasons, the steel slab is limited to the conditions for cooling the steel slab at a temperature of 850 ° C. or higher to a temperature of 800 ° C. or higher to a temperature of 400 ° C. or lower at a cooling rate of 5 ° C./sec or higher .

また、特に優れた靱性値が要求され、熱間圧延、加速冷却後に焼戻し処理を施す場合には、焼戻し処理温度を400〜650℃の範囲内とする必要がある。
焼戻し処理を行う場合、焼戻し処理温度が高温になるほど結晶粒成長の駆動力が大きくなるが、焼き戻し処理温度が650℃を超えるとそれが顕著になる。
また、400℃未満の焼戻し処理温度では、上述の効果が充分に得られなくなる虞がある。
以上の理由により、熱間圧延後に焼戻し処理をする場合は、400〜650℃の焼戻し処理温度にて行うことに限定した。
Further, particularly excellent toughness values are required, and when tempering is performed after hot rolling and accelerated cooling, the tempering temperature needs to be within a range of 400 to 650 ° C.
When performing the tempering treatment, the driving force for crystal grain growth increases as the tempering treatment temperature increases, but this becomes significant when the tempering treatment temperature exceeds 650 ° C.
Further, at the tempering temperature of less than 400 ° C., there is a possibility that the above-mentioned effect cannot be obtained sufficiently.
For the above reasons, when tempering after hot rolling, it is limited to tempering at 400 to 650 ° C.

以上、説明したように、本実施形態の母材及び溶接熱影響部の靱性に優れた引張強度590N/mm級の溶接構造用鋼によれば、質量%で、C:0.03〜0.12%、Si:0.05〜0.30%、Mn:1.6〜3.00%、P:0.015%以下、S:0.001〜0.015%、Cu+Ni:0.10%以下、Al:0.005%以下、Ti:0.005〜0.030%、Nb:0.005〜0.100%、N:0.0025〜0.0060%、O:0.0035%以下、REM:0.001〜0.020%を含有し、残部が鉄および不可避的不純物からなり、母材のベイナイト組織分率が80%以上であり、前記S、O、及びREMの関係が、式(0.007≦2.7×([S](%)+[O](%))−0.6×[REM](%)≦0.015)で表される関係としている。
成分組成を上述の範囲内とし、また、S、O、及びREMの関係を上述の式で表される範囲内とすることにより、Mnを添加する際に問題となる中心偏析の影響を緩和することができ、且つ、溶接によるHAZの結晶粒粗大化を抑制できる。
これにより、鋼材の靱性が安定するとともに溶接性が向上し、複雑な工程や方法を用いずに、低コストで、母材及び溶接熱影響部の靱性に優れた引張強度590N/mm級の溶接構造用鋼が得られる。
As described above, according to the welded structural steel having a tensile strength of 590 N / mm 2 that is excellent in the toughness of the base material and the welding heat-affected zone according to the present embodiment, C: 0.03 to 0 in mass%. .12%, Si: 0.05 to 0.30%, Mn: 1.6 to 3.00%, P: 0.015% or less, S: 0.001 to 0.015%, Cu + Ni: 0.10 %: Al: 0.005% or less, Ti: 0.005-0.030%, Nb: 0.005-0.100%, N: 0.0025-0.0060%, O: 0.0035% Hereinafter, REM: 0.001 to 0.020% is contained, the balance is made of iron and inevitable impurities, the bainite structure fraction of the base material is 80% or more, and the relationship between S, O, and REM is , Formula (0.007 ≦ 2.7 × ([S] (%) + [O] (%)) − 0.6 × [REM] ( ) Is a relationship expressed by ≦ 0.015).
The component composition is within the above range, and the relationship between S, O, and REM is within the range represented by the above formula, thereby mitigating the influence of central segregation which becomes a problem when Mn is added. In addition, the HAZ crystal grain coarsening due to welding can be suppressed.
As a result, the toughness of the steel material is stabilized and the weldability is improved. The tensile strength of 590 N / mm 2 class, which is excellent in the toughness of the base material and the weld heat affected zone, is low-cost without using complicated processes and methods. A welded structural steel is obtained.

以下、本発明に係る母材及び溶接熱影響部の靱性に優れた引張強度590N/mm級の溶接構造用鋼の実施例を挙げ、本発明をより具体的に説明するが、本発明は、もとより下記実施例に限定されるものではなく、前、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれるものである。 Hereinafter, the present invention will be described in more detail by giving examples of welded structural steels having a tensile strength of 590 N / mm class 2 excellent in the toughness of the base material and the weld heat affected zone according to the present invention. However, the present invention is not limited to the following examples, and can be implemented with appropriate modifications within a range that can meet the gist of the preceding and following descriptions, all of which are included in the technical scope of the present invention. It is what

[サンプル作製]
表1及び表2に示すような、各成分組成を有するスラブを用い、表3に示す各条件にて熱間圧延処理を行うことにより、本発明の母材及び溶接熱影響部の靱性に優れた引張強度590N/mm級の溶接構造用鋼(表1の本発明鋼1〜16)、及び従来の溶接構造用鋼(表2の比較鋼17〜31)を得た。
[Sample preparation]
By using a slab having each component composition as shown in Table 1 and Table 2 and performing hot rolling treatment under each condition shown in Table 3, the base material of the present invention and the toughness of the weld heat affected zone are excellent. Further, a welded structural steel having a tensile strength of 590 N / mm 2 (invention steels 1 to 16 in Table 1) and a conventional welded structural steel (comparative steels 17 to 31 in Table 2) were obtained.

Figure 0004523893
Figure 0004523893

Figure 0004523893
Figure 0004523893

Figure 0004523893
Figure 0004523893

[評価試験]
上記各サンプルの機械的性質を評価するため、以下の各評価試験を行った。
まず、上記各鋼板の板厚の1/4部位からJIS4号試験片を採取し、この試験片を用いて、引張強度TS(N/mm)、降伏強度YS(0.2%耐力)(N/mm)、全延びEl(%)を測定した。
また、母材靱性の評価試験として、各鋼板の板厚の1/4tより2mmVノッチ試験片を採取し、この試験片を用いて、−5℃の温度下でシャルピー衝撃試験を行い、これによって得られる衝撃吸収エネルギー値を測定した。
また、HAZ靱性の評価試験として、溶接入熱10(kJ/mm)相当の再現熱サイクル試験を実施した鋼材を、−5℃の温度下でシャルピー衝撃試験を行い、これによって得られる衝撃吸収エネルギー値を測定した。
ベイナイト組織分率は、ナイタールにてエッチングした鋼材の組織を光学顕微鏡で観察することによって評価した。
評価結果を表4に示す。
[Evaluation test]
In order to evaluate the mechanical properties of the samples, the following evaluation tests were performed.
First, a JIS No. 4 test piece was sampled from ¼ part of the thickness of each steel sheet, and using this test piece, tensile strength TS (N / mm 2 ), yield strength YS (0.2% proof stress) ( N / mm 2 ) and total elongation El (%) were measured.
Also, as a base material toughness evaluation test, a 2 mm V notch test piece was taken from 1/4 t of the thickness of each steel plate, and a Charpy impact test was performed at a temperature of −5 ° C. using this test piece. The obtained impact absorption energy value was measured.
In addition, as a HAZ toughness evaluation test, a steel material subjected to a reproducible thermal cycle test corresponding to a welding heat input of 10 (kJ / mm) is subjected to a Charpy impact test at a temperature of -5 ° C., and the impact absorption energy obtained thereby. The value was measured.
The bainite structure fraction was evaluated by observing the structure of a steel material etched with nital with an optical microscope.
The evaluation results are shown in Table 4.

Figure 0004523893
Figure 0004523893

[評価試験結果]
表1〜表4において、「本発明鋼」及び「比較鋼」の各欄に記載された番号は、各々符合させて示している。
各表において、1〜16(本発明鋼)が、本発明の溶接構造用鋼の実施例であり、17〜31(比較鋼)が、従来の溶接構造用鋼の比較例である。
[Evaluation test results]
In Tables 1 to 4, the numbers described in the columns of “Invention Steel” and “Comparative Steel” are shown in the same manner.
In each table, 1 to 16 (invention steel) are examples of the welded structural steel of the present invention, and 17 to 31 (comparative steel) are comparative examples of conventional welded structural steel.

本発明の溶接構造用鋼(本発明鋼)では、鋼材を表1に示す成分組成とし、表3に示す各条件にて熱間圧延処理を行うことにより、成分組成と製造条件の各々を満足している。
この結果、表4に示すように、全てのサンプルにおいて、(1)式(0.007≦2.7×([S](%)+[O](%))−0.6×[REM](%)≦0.015)で表される関係を満足しており、また、ベイナイト組織分率が80%以上となっている。
また、母材特性の欄に示すように、全てのサンプルの引張強度TSが590(N/mm)以上であり、大入熱溶接においても、−5℃でのシャルピー衝撃エネルギー値は100J以上と高靱性を有しており、母材としての特性が非常に優れていることが明らかである。
また、規定範囲内であれば、Mo、V、Cr、Ca、Mgを添加しても、焼戻し処理を施しても良好な靱性が得られることがわかる。
In the steel for welded structure (steel according to the present invention) of the present invention, the steel material has the component composition shown in Table 1, and the hot rolling treatment is performed under the conditions shown in Table 3, thereby satisfying each of the component composition and production conditions. is doing.
As a result, as shown in Table 4, in all samples, the expression (1) (0.007 ≦ 2.7 × ([S] (%) + [O] (%)) − 0.6 × [REM] ] (%) ≦ 0.015) is satisfied, and the bainite structure fraction is 80% or more.
Moreover, as shown in the column of base material characteristics, the tensile strength TS of all the samples is 590 (N / mm 2 ) or more, and the Charpy impact energy value at −5 ° C. is 100 J or more even in high heat input welding. It is clear that the characteristics as a base material are very excellent.
Moreover, if it is in a regulation range, even if it adds Mo, V, Cr, Ca, Mg, it turns out that favorable toughness is acquired even if it performs a tempering process.

これに対し、比較鋼17〜31に示す従来の溶接構造用鋼(比較鋼)では、それぞれMn量(比較鋼19)、C量(比較鋼17)、Nb量(比較鋼22)、Ti量(比較鋼21)、Si量(比較鋼18)、Al量(比較鋼20)、N量(比較鋼27)、Mo、V量(比較鋼23)、Cr量(比較鋼26)、Ca、Mg量(比較鋼25)、O量(比較鋼24)、REM量(比較鋼28、29)、Cu+Ni量(比較鋼30)、B量(比較鋼31)、熱間圧延後の冷却速度(比較鋼27)、焼戻し処理(比較鋼24)、累積圧下率(比較鋼26)、再加熱温度(比較鋼25)、圧延後の冷却開始温度(比較鋼30)の条件が、本発明で規定した範囲外となっているため、HAZ靱性が劣っている。また、比較鋼29に関してはREMを添加しなかったため、硫化物が粗大となり、その結果靱性が劣位であった。   On the other hand, in the conventional welded structural steels (comparative steels) shown in comparative steels 17 to 31, the amount of Mn (comparative steel 19), the amount of C (comparative steel 17), the amount of Nb (comparative steel 22), the amount of Ti, respectively. (Comparative Steel 21), Si amount (Comparative Steel 18), Al amount (Comparative Steel 20), N amount (Comparative Steel 27), Mo, V amount (Comparative Steel 23), Cr amount (Comparative Steel 26), Ca, Mg amount (Comparative steel 25), O amount (Comparative steel 24), REM amount (Comparative steels 28 and 29), Cu + Ni amount (Comparative steel 30), B amount (Comparative steel 31), Cooling after hot rolling Conditions of speed (comparative steel 27), tempering treatment (comparative steel 24), cumulative rolling reduction (comparative steel 26), reheating temperature (comparative steel 25), and cooling start temperature after rolling (comparative steel 30) are the present invention. Therefore, the HAZ toughness is inferior. Moreover, since REM was not added regarding the comparative steel 29, the sulfide became coarse, and as a result, the toughness was inferior.

上記結果により、本発明に係る母材及び溶接熱影響部の靱性に優れた引張強度590N/mm級の溶接構造用鋼が、高い機械的特性を有していることが明らかとなった。
From the above results, it became clear that the steel for welded structure having a tensile strength of 590 N / mm 2 and excellent in toughness of the base material and the weld heat affected zone according to the present invention has high mechanical properties.

Claims (4)

質量%で、C:0.03〜0.12%、Si:0.05〜0.30%、Mn:1.6〜3.00%、P:0.015%以下、S:0.001〜0.015%、Cu+Ni:0.10%以下、Al:0.005%以下、Ti:0.005〜0.030%、Nb:0.005〜0.100%、N:0.0025〜0.0060%、O:0.0035%以下、REM:0.001〜0.020%を含有し、残部が鉄および不可避的不純物からなり、母材のベイナイト組織分率が80%以上であり、
前記S、O、及びREMの関係が、次式(1)
0.007≦2.7×([S](%)+[O](%))−0.6×[REM](%)≦0.015 ・・・(1)
で表されることを特徴とする母材及び溶接熱影響部の靱性に優れた引張強度590N/mm級の溶接構造用鋼。
In mass%, C: 0.03 to 0.12%, Si: 0.05 to 0.30%, Mn: 1.6 to 3.00%, P: 0.015% or less, S: 0.001 -0.015%, Cu + Ni: 0.10% or less, Al: 0.005% or less, Ti: 0.005-0.030%, Nb: 0.005-0.100%, N: 0.0025 0.0060%, O: 0.0035% or less, REM: 0.001 to 0.020%, the balance is made of iron and inevitable impurities, and the bainite structure fraction of the base material is 80% or more ,
The relationship between S, O, and REM is expressed by the following formula (1).
0.007 ≦ 2.7 × ([S] (%) + [O] (%)) − 0.6 × [REM] (%) ≦ 0.015 (1)
A welded structural steel having a tensile strength of 590 N / mm 2 and excellent in toughness of a base material and a weld heat-affected zone, characterized by:
更に、質量%で、Mo:0.2%以下、V:0.1%以下、Cr:0.5%以下、Ca:0.0035%以下、Mg:0.0050%以下、B:0.002%以下の群から選択される少なくとも一種または二種以上を含有することを特徴とする請求項1に記載の母材及び溶接熱影響部の靱性に優れた引張強度590N/mm級の溶接構造用鋼。 Further, in terms of mass%, Mo: 0.2% or less, V: 0.1% or less, Cr: 0.5% or less, Ca: 0.0035% or less, Mg: 0.0050% or less, B: 0.0. It contains at least one kind selected from the group of 002% or less, or two or more kinds, and has a tensile strength of 590 N / mm 2 class excellent in toughness of the base material and the weld heat-affected zone according to claim 1. Structural steel. 請求項1または2に記載の成分組成を有する鋼片を1200℃以下の温度に加熱し、次いで未再結晶温度域において累積圧下率で40%以上の熱間圧延を行い、850℃以上の温度で熱間圧延を完了させた後、800℃以上の温度から5℃/sec以上の冷却速度で400℃以下まで冷却することを特徴とする母材及び溶接熱影響部の靱性に優れた引張強度590N/mm級の溶接構造用鋼の製造方法。 The steel slab having the component composition according to claim 1 or 2 is heated to a temperature of 1200 ° C or lower, and then hot-rolled at a cumulative reduction ratio of 40% or higher in a non-recrystallization temperature range, and a temperature of 850 ° C or higher. After completing the hot rolling in step 1, the tensile strength is excellent in the toughness of the base material and the weld heat affected zone, characterized by cooling from a temperature of 800 ° C. to 400 ° C. at a cooling rate of 5 ° C./sec or more. 590 N / mm Grade 2 welded structural steel manufacturing method. 請求項3に記載の母材及び溶接熱影響部の靱性が優れた引張強度590N/mm級の溶接構造用鋼の製造方法で得られた鋼を再加熱し、400〜650℃で焼戻し処理を施すことを特徴とする母材及び溶接熱影響部の靱性に優れた引張強度590N/mm級の溶接構造用鋼の製造方法。

The steel obtained by the method for producing a welded structural steel having a tensile strength of 590 N / mm 2 with excellent toughness of the base material and the weld heat-affected zone according to claim 3 is reheated and tempered at 400 to 650 ° C. A method for producing a welded structural steel having a tensile strength of 590 N / mm 2 and excellent in toughness of a base material and a weld heat-affected zone.

JP2005239501A 2005-08-22 2005-08-22 Steel for welded structure having a tensile strength of 590 N / mm2 and excellent in toughness of base metal and weld heat-affected zone, and method for producing the same Expired - Fee Related JP4523893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005239501A JP4523893B2 (en) 2005-08-22 2005-08-22 Steel for welded structure having a tensile strength of 590 N / mm2 and excellent in toughness of base metal and weld heat-affected zone, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005239501A JP4523893B2 (en) 2005-08-22 2005-08-22 Steel for welded structure having a tensile strength of 590 N / mm2 and excellent in toughness of base metal and weld heat-affected zone, and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007056279A JP2007056279A (en) 2007-03-08
JP4523893B2 true JP4523893B2 (en) 2010-08-11

Family

ID=37920013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005239501A Expired - Fee Related JP4523893B2 (en) 2005-08-22 2005-08-22 Steel for welded structure having a tensile strength of 590 N / mm2 and excellent in toughness of base metal and weld heat-affected zone, and method for producing the same

Country Status (1)

Country Link
JP (1) JP4523893B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104145038A (en) * 2012-03-01 2014-11-12 杰富意钢铁株式会社 Steel material for high-heat-input welding

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5085364B2 (en) * 2007-02-09 2012-11-28 新日本製鐵株式会社 Manufacturing method of thick high-strength steel plate with excellent brittle fracture propagation stop characteristics and high heat input weld heat affected zone toughness, and thick high strength steel plate with excellent brittle fracture propagation stop characteristics and high heat input weld heat affected zone toughness
AU2008247365B2 (en) * 2007-05-06 2013-05-16 Nucor Corporation A thin cast strip product with microalloy additions, and method for making the same
JP5079419B2 (en) * 2007-08-09 2012-11-21 新日本製鐵株式会社 Steel for welded structure with excellent toughness of weld heat affected zone, method for producing the same, and method for producing welded structure
JP5031531B2 (en) * 2007-11-20 2012-09-19 新日本製鐵株式会社 Low yield ratio high strength steel sheet excellent in base metal low temperature toughness and HAZ low temperature toughness and its manufacturing method
WO2010143726A1 (en) * 2009-06-11 2010-12-16 新日本製鐵株式会社 Process for producing thick high-strength steel plate with excellent toughness of heat-affected zone in high heat input welding and thick high-strength steel plate with excellent toughness of heat-affected zone in high heat input welding
JP5126375B2 (en) * 2011-02-09 2013-01-23 Jfeスチール株式会社 Steel material for large heat input welding
TWI551387B (en) * 2012-03-01 2016-10-01 Jfe Steel Corp Large heat into the welding steel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55100924A (en) * 1979-01-25 1980-08-01 Nippon Steel Corp Production of high toughness bainite high tension steel plate having excellent weldability
JPH08232043A (en) * 1995-02-27 1996-09-10 Kawasaki Steel Corp Steel for large heat input welding at heat input of 500kj/ cm or more and its production
JP2004204342A (en) * 2002-10-28 2004-07-22 Nippon Steel Corp 590 MPa CLASS HIGH-TENSION STEEL EXCELLENT IN HIGH-TEMPERATURE STRENGTH AND ITS PRODUCTION METHOD
JP2004339550A (en) * 2003-05-14 2004-12-02 Nippon Steel Corp LOW YIELD RATIO 570 MPa CLASS HIGH-TENSILE STRENGTH STEEL HAVING EXCELLENT WELD ZONE TOUGHNESS AND THREAD CUTTABILITY, AND ITS PRODUCTION METHOD

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55100924A (en) * 1979-01-25 1980-08-01 Nippon Steel Corp Production of high toughness bainite high tension steel plate having excellent weldability
JPH08232043A (en) * 1995-02-27 1996-09-10 Kawasaki Steel Corp Steel for large heat input welding at heat input of 500kj/ cm or more and its production
JP2004204342A (en) * 2002-10-28 2004-07-22 Nippon Steel Corp 590 MPa CLASS HIGH-TENSION STEEL EXCELLENT IN HIGH-TEMPERATURE STRENGTH AND ITS PRODUCTION METHOD
JP2004339550A (en) * 2003-05-14 2004-12-02 Nippon Steel Corp LOW YIELD RATIO 570 MPa CLASS HIGH-TENSILE STRENGTH STEEL HAVING EXCELLENT WELD ZONE TOUGHNESS AND THREAD CUTTABILITY, AND ITS PRODUCTION METHOD

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104145038A (en) * 2012-03-01 2014-11-12 杰富意钢铁株式会社 Steel material for high-heat-input welding
CN104145038B (en) * 2012-03-01 2016-12-21 杰富意钢铁株式会社 High input energy welding steel material

Also Published As

Publication number Publication date
JP2007056279A (en) 2007-03-08

Similar Documents

Publication Publication Date Title
JP5267297B2 (en) Steel plate for welded structure with excellent low-temperature toughness of weld heat affected zone
JP4673784B2 (en) High strength steel sheet having excellent weld heat affected zone toughness and method for producing the same
JP4874434B1 (en) Thick steel plate manufacturing method
KR101386042B1 (en) Steel material for high heat input welding
JP5079419B2 (en) Steel for welded structure with excellent toughness of weld heat affected zone, method for producing the same, and method for producing welded structure
JP4523893B2 (en) Steel for welded structure having a tensile strength of 590 N / mm2 and excellent in toughness of base metal and weld heat-affected zone, and method for producing the same
JP4926447B2 (en) Manufacturing method of high strength steel with excellent weld crack resistance
JP5842574B2 (en) Manufacturing method of steel for large heat input welding
JP6308151B2 (en) Low yield ratio high strength thick steel plate for building structures with excellent toughness of super high heat input welds and its manufacturing method
JP2005068519A (en) Method for producing high strength thick steel plate for building structure, having excellent toughness to super-large heat input welding-affected zone
JP2011214053A (en) Low-yield-ratio thick steel plate for building structure superior in toughness at ultrahigh-heat-input weld zone, and method for manufacturing the same
JP4096839B2 (en) Manufacturing method of high yield thick steel plate with low yield ratio and excellent toughness of heat affected zone
CN113166884A (en) Steel material having excellent toughness in weld heat affected zone and method for producing same
JP2005187853A (en) Method for producing high strength thick steel plate excellent in toughness in extra-high heat input welded-heat affected part
JP4842402B2 (en) Manufacturing method of high production type 780 MPa class high strength steel sheet with excellent low temperature toughness
JP4673785B2 (en) High-productivity high-strength steel sheet having excellent base material and weld heat-affected zone toughness and method for producing the same
JP5130472B2 (en) Method for producing high-tensile steel material with excellent weld crack resistance
JP6921198B2 (en) High-strength hot-rolled steel sheet with excellent weldability and ductility and its manufacturing method
JP5233364B2 (en) Steel material for large heat input welding
JP2005213534A (en) Method for producing steel material excellent in toughness at welding heat affected zone
JP4133175B2 (en) Non-water cooled thin low yield ratio high strength steel with excellent toughness and method for producing the same
JP2011074448A (en) Steel for high heat input welding
JP6226163B2 (en) High-tensile steel plate with excellent low-temperature toughness in heat affected zone and its manufacturing method
JP4539100B2 (en) Super high heat input welded heat affected zone
JP6308148B2 (en) Ultra-high heat input welding heat-affected zone toughness excellent low-yield-ratio high-strength steel sheet for building structures and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100528

R151 Written notification of patent or utility model registration

Ref document number: 4523893

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees