JPH0873966A - 電気接点材料の製造方法 - Google Patents

電気接点材料の製造方法

Info

Publication number
JPH0873966A
JPH0873966A JP7072487A JP7248795A JPH0873966A JP H0873966 A JPH0873966 A JP H0873966A JP 7072487 A JP7072487 A JP 7072487A JP 7248795 A JP7248795 A JP 7248795A JP H0873966 A JPH0873966 A JP H0873966A
Authority
JP
Japan
Prior art keywords
internal oxidation
heat treatment
electrical contact
contact material
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7072487A
Other languages
English (en)
Inventor
Noriyuki Nakayama
徳行 中山
Michio Honma
倫夫 本間
Kazuhito Ichinose
一仁 一之瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP7072487A priority Critical patent/JPH0873966A/ja
Publication of JPH0873966A publication Critical patent/JPH0873966A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Contacts (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Manufacture Of Switches (AREA)

Abstract

(57)【要約】 【目的】 導電率と硬さを制御して、開閉器のリレーや
スイッチなどに適した銀−酸化物電気接点材料を提供す
る。 【構成】 銀合金に、温度400〜600℃および酸素
分圧100〜400atmの条件の高圧内部酸化を施し
た後に、酸素分圧50atm以下、温度600〜100
0℃の条件で熱処理を施すことを特徴とする銀−酸化物
系電気接点材料の製造方法。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は電気接点材料の製造方法
に関し、具体的には内部酸化による銀−酸化物系電気接
点材料の製造方法に関する。
【0002】
【従来の技術】電気回路に使用される開閉器にはリレ
ー、スイッチ、コンタクター、ブレーカーなどがある。
各開閉器の接触部分に使用される電気接点材料は、接触
抵抗、耐アーク性、耐溶着性、耐消耗性などの電気的機
械的特性が優れていることが求められる。電気接点材料
の1つとして銀−酸化物系の材料が知られ、その例とし
てAg−CdO系、Ag−SnO2 系、Ag−In23
系などがある。また、銀−酸化物系のような電気接点材
料の製法として、内部酸化法がある。内部酸化法は、銀
中を酸素が拡散してSnなどの溶質元素を酸化させ、銀
マトリックス中にSnなどの溶質元素の酸化物を分散し
て析出させる方法である。
【0003】銀−酸化物系電気接点材料のなかでもAg
−CdO系はCdO特有の昇華性により優れた性能を発
揮するため、多くの用途で使用されてきた。さらに、A
g−CdO系材料は、Ag−Cd合金を大気圧から30
atm程度の酸素分圧下で、温度600〜800℃の範
囲において内部酸化(以下、常圧内部酸化と呼ぶ)して
簡単に得られるため、10数wt%のCdOを含むAg
−CdO系電気接点材料の製造が簡単である点でも有利
である。このようにAg−CdO系電気接点材料は利点
が多いが、近年Cdの有毒性が問題となり、代替材料の
開発が進められている。その中で、特にAg−SnO2
系電気接点材料は遮断特性、耐消耗性ではAg−CdO
系材料を凌ぐものがあり、その期待度は高い。
【0004】ところが、Ag−SnO2 系材料の元とな
るAg−Sn合金の場合、外部酸化皮膜が形成されやす
く、Sn量が3wt%を越えると、常圧内部酸化は不可
能である。このため、100〜450atmの高酸素分
圧下で、温度350〜830℃の範囲において内部酸化
する方法(以下、高圧内部酸化と呼ぶ)が開発され(特
開平5−9622号公報、同5−9623号公報)、こ
れによって酸素の合金内への拡散を速めることができ、
3wt%以上のSnを含むAg合金でも内部酸化が可能
となっている。換言すると、Ag−Sn合金にかぎら
ず、一般的に、常圧内部酸化後の組織には中心部に酸化
物希薄層が形成されるのに対し、高圧内部酸化では酸化
物希薄層が形成されず、材料全体に均一微細な酸化物が
折出する。従って、常圧内部酸化の場合は、電気接点材
料の厚みの半分しか使用できないのに対し、高圧内部酸
化の場合は、全厚みを使用することができる。なお、こ
のような組織の差が生じる原因は、常圧内部酸化とは異
なり、高圧内部酸化では、溶質元素の材料表面への拡散
が無視できるほど酸素の合金内への拡散が速いためであ
る。かくして、高圧内部酸化による電気接点材料の製造
は、歩留まりの向上や電気機器の小型化という点でも有
利であり、コストダウンを実現する。
【0005】高圧内部酸化で作製した銀−酸化物系電気
接点材料は、微細な酸化物が均一に分散されているた
め、耐消耗性および耐溶着性という点では非常に優れて
いる。しかし高圧内部酸化で製造したが故の欠点があ
る。すなわち、常圧内部酸化では80%Cu導電率であ
るのに対し、高圧内部酸化では20〜40%Cu導電率
と低い。また、常圧内部酸化では100〜120Hvに
対し、高圧内部酸化では200〜250Hvと極めて硬
さが高い。用途によっては、これらが高い接触抵抗、高
い温度上昇の原因となって深刻な問題を生じる。すなわ
ち、導電率が低いと材料の固有抵抗が増大し、接触抵抗
と温度上昇との関係から、温度上昇を大きくすることが
考えられる。また、硬さが極端に高いと、接触面積の低
さに起因する接触抵抗の増加による温度上昇、もしくは
バウンスの増加による温度上昇を大きくする。このよう
な特性劣化の結果、耐溶着性、耐消耗性の低下を生じる
ことも予想される。
【0006】
【発明が解決しようとする課題】高圧内部酸化で製造し
た銀−酸化物系電気接点材料は、極端な低導電率と高硬
度のため充分な電気試験評価が得られない場合がある。
ゆえに銀−酸化物系電気接点材料の導電率と硬さを制御
し、開閉器に適した銀−酸化物系電気接点材料を製造す
ることが本発明の課題である。
【0007】
【課題を解決するための手段】本発明に係る銀−酸化物
系電気接点材料の製造方法では、銀合金に、温度350
〜830℃、好ましくは400〜600℃および酸素分
圧100〜450atm、好ましくは100〜400a
tmの条件の高圧内部酸化を施した後に、前記高圧内部
酸化におけるよりも低い酸素分圧と高い温度で熱処理を
施す。本発明において、高圧内部酸化を行った後の材料
特性を制御し、電気的機械的特性を向上させるために
は、次のような条件が特に効果的である。 (1)高圧内部酸化の後に、酸素存在下で熱処理を施
す。熱処理条件は酸素分圧50atm以下の範囲で、し
かも高圧内部酸化におけるより低くし、温度は600〜
1000℃の範囲で熱処理を施す。 (2)さらに、好ましくは、高圧内部酸化の後に、非酸
素存在下で熱処理を施す。熱処理雰囲気は酸素分圧0.
21atm未満の真空中、もしくは窒素、Ar等の不活
性ガス中である。また、熱処理温度は800〜960℃
の範囲とする。
【0008】
【作用】従来技術に関し述べた通り、各開閉器に適した
電気接点材料を製造するためには硬さや導電率を制御す
る必要がある。理論的には内部酸化時の酸素分圧と温度
の条件を変化させれば、酸化物粒子のサイズ、形状、分
散状態を制御でき、結果として硬さや導電率を制御でき
る。しかし、高圧内部酸化による実操業の場合、内部酸
化条件をその都度変更することは大量生産に向いている
とはいえない。また内部酸化可能な合金の組成範囲が狭
くなったり、分散状態の均一性が保たれなくなったり、
酸化物の形態が変化するなど、材料特性にまで新たな問
題が生じる。従って、高圧内部酸化のみで目的とする特
性を得るのは困難である。
【0009】本発明では、高圧内部酸化で製造した電気
接点材料に、高圧内部酸化におけるより酸素分圧が低
く、温度が高い条件で熱処理を加えることによって、目
的とする特性を得る。すなわちこの熱処理にり、酸化物
粒子は平衡状態に達するまで成長し、その結果、電気接
点材料の導電率の上昇と硬さの低下が可能になる。すな
わち、酸素分圧50atm以下、温度600〜1000
℃の条件で熱処理を施すことにより、酸化物粒子の成長
が容易になり、導電率を上昇させ、硬さを低下させるこ
とができる。さらに、酸素分圧を0.21atm未満、
温度を800℃以上にすると、いっそう酸化物粒子の成
長が促進されるため、導電率の上昇と硬さの低下に対し
てより効果的である。
【0010】一般的な熱処理においては、材料特性を制
御するための重要な因子は、温度および時間とされてい
る。しかし、本発明では、内部酸化現象によって折出し
た酸化物粒子の成長によっても材料特性が変化すると考
えられる。上述のように、高圧内部酸化後の熱処理条件
において、酸素分圧をより低く、温度をより高くするこ
とが酸化物粒子の成長、つまりは材料特性の改善に効果
的である。したがって、この場合の材料特性制御の重要
な因子は、温度、時間および酸素分圧といえる。本発明
は高圧内部酸化後の熱処理にかかるため、高圧内部酸化
の条件をその都度変更する必要がない。よって、同一条
件で大量に高圧内部酸化処理し、その後各用途向けに適
した熱処理を加えればよいため、大量生産という点でも
実操業に適している。なお、本発明はAg−Sn系合金
に限らず、Ag−In、Ag−Znなどの合金系にも適
用可能かつ有効である。
【0011】
【実施例】
(実施例1:材料特性に対する熱処理の評価)Ag−6
wt%Sn、Ag−10wt%Sn、Ag−12wt%
Snの3組成の合金を溶解、鋳造し、均質化処理を施し
た後、熱間加工および冷間加工により約1mm厚さの板
材を作製した。これらの板材に510℃の温度、300
atmの酸素分圧で高圧内部酸化処理を施した。高圧内
部酸化後の各板材の導電率と硬さを表1に示す。以上の
ように作製した高圧内部酸化材に対し、次に示すとおり
の雰囲気1〜3において900℃で熱処理を施した。 雰囲気1:大気中(酸素分圧 P=0.21atm) 雰囲気2:管状炉で約1リットル/分の窒素気流中(酸
素分圧 P〈0.21atm) 雰囲気3:高真空炉で約1×10-7Torrまで真空度
に到達後、2回の窒素パージを行い、約1リットル/分
でフロー(酸素分圧 P=0atm) 各雰囲気1〜3について、熱処理を2時間および16時
間行った後の導電率と硬さを表2に示す。
【0012】
【表1】
【0013】
【表2】 熱処理時間2hr 熱処理時間16hr 導電率 硬さ 導電率 硬さ (%ACS) Hv (%ACS) Hv Ag− 雰囲気1 45.4 177 46.3 173 6wt%Sn 雰囲気2 47.3 169 54.2 153 雰囲気3 48.9 158 64.6 110 Ag− 雰囲気1 33.8 187 34.6 178 10wt%Sn 雰囲気2 36.1 173 45.7 152 雰囲気3 40.2 159 59.3 118 Ag− 雰囲気1 31.2 178 33.1 171 12wt%Sn 雰囲気2 32.7 183 40.6 154 雰囲気3 33.1 174 55.6 121
【0014】表2において、いずれの場合も、高圧内部
酸化後の熱処理により、導電率が上昇し、かつ、硬さが
低下したことがわかる。さらに、高圧内部酸化後の熱処
理温度を変化させると、特定の導電率および硬さに達す
るまでに必要とする熱処理時間が異なる。すなわち、熱
処理温度を上げれば、より短時間で到達可能であるが、
温度を下げれば、更に長時間を要する。また窒素の代用
としてArなどの不活性ガス、または真空中でも同様の
値が得られている。
【0015】(実施例2:電気試験にみられる材料特性
の評価)Ag−10wt%SnおよびAg−12wt%
Snの2種類の合金を溶解、鋳造し、均質処理を行った
後、熱間加工および冷間加工した板材から、プレス加工
にて約6mm経、約1mm厚さのデイスク状に打ち抜い
て接点材料を作り、510℃の温度および300atm
の酸素分圧で、高圧内部酸化処理を施した。その後、表
3に示す条件で熱処理を施し、これにACコンタクター
による電気試験を行った。電気試験の内容は、以下の通
りである。 〈AC4級評価の開閉試験〉 AC220V、60Hz、150A、pf=0.35 開閉頻度;0.1秒ON−2.9秒OFF 開閉回数;100000回 駆動系;定格25A電磁接触器 〈温度上昇試験〉 AC220V、60Hz、25A、pf=0.5 5000回の開閉試験前後の端子の飽和温度を測定し
た。測定は、クロメル−アルメル熱電対を端子に挿入し
て行った。
【0016】本実施例における熱処理と電気試験の結果
について、以下に詳述する。 (a)開閉試験前後の接触抵抗および温度上昇に与える
熱処理の効果 前出の材料特性のデータを参考にし、表3に示す条件で
高圧内部酸化後の熱処理を施して電気試験評価を行っ
た。雰囲気1〜3は、実施例1におけるものと同じであ
る。また、表3の処理を行った後の接点材料の導電率と
硬さを表4に示す。
【0017】
【表3】
【0018】
【表4】 Ag−10wt%Sn Ag−12wt%Sn 導電率 硬さ 導電率 硬さ (%IACS) (Hv) (%IACS) (Hv) 熱処理A 約34 約180 約32 約190 熱処理B 約45 約150 約40 約160 熱処理C 約55 約120 約45 約130
【0019】次に5000回の開閉試験前後の接触抵抗
および温度上昇の変化を表5〜表7に示す。高圧内部酸
化後の熱処理を行わなかった接点材料を「未処理」の欄
に示す。開閉試験前後の接触抵抗および温度上昇の低下
に対し、高圧内部酸化後の熱処理が効果的であることが
わかる。
【0020】
【表5】 接触抵抗(mΩ) 未処理 熱処理A 熱処理B 熱処理C Ag− 開閉前 1.92 1.88 1.77 0.80 10wt%Sn 5千回開閉後 − 4.49 3.12 3.14 Ag− 開閉前 2.21 2.57 2.11 1.27 12wt%Sn 5千回開閉後 − 6.09 3.99 3.26
【0021】
【表6】 温度上昇(℃) 未処理 熱処理A Ag− 開閉前 28.6〜35.7 21.5〜36.3 10wt%Sn 5千回開閉後 − 37.4〜70.9 Ag− 開閉前 36.1〜45.1 24.6〜39.6 12wt%Sn 5千回開閉後 − 45.5〜83.2
【0022】
【表7】 温度上昇(℃) 熱処理B 熱処理C Ag− 開閉前 22.8〜35.0 15.7〜23.5 10wt%Sn 5千回開閉後 26.3〜54.2 25.2〜42.7 Ag− 開閉前 22.3〜30.4 21.1〜33.1 12wt%Sn 5千回開閉後 33.3〜65.6 31.4〜45.9
【0023】表5において、未処理の場合には、500
0回の開閉に耐えられなかった。表6において、未処理
の場合には、温度が上昇し続けて飽和しないため、熱処
理A、B、Cで十分に飽和した時間での温度上昇値を示
した。
【0024】(b)溶着までの開閉回数に与える熱処理
の効果 高圧内部酸化後の熱処理を行った接点材料(未処理)
と、熱処理A、B、Cを施した接点材料とのAC4級評
価の開閉試験における溶着までの開閉回数を表8に示
す。導電率の上昇と硬さの低下とにより、溶着までの開
閉回数が増加することから、高圧内部酸化後の熱処理が
効果的であることがわかる。
【0025】
【表8】 溶着までの開閉回数(千回) 未処理 熱処理A 熱処理B 熱処理C Ag−10wt%Sn 約4 約70 約85 約100 Ag−12wt%Sn 約4 約65 約100 約95
【0026】
【発明の効果】本発明は以上のように構成されているの
で、高圧内部酸化およびその後の熱処理条件を最適に選
択することにより、電気接点材料の導電率および硬さを
制御し、各開閉器に適した電気接点材料を作製できるだ
けでなく、大量生産という点でも実操業に有効である。

Claims (4)

    【特許請求の範囲】
  1. 【請求項1】 銀合金に、温度350〜830℃および
    酸素分圧100〜450atmの条件の高圧内部酸化を
    施した後に、前記高圧内部酸化におけるよりも低い酸素
    分圧と高い温度で熱処理を施すことを特徴とする銀−酸
    化物系電気接点材料の製造方法。
  2. 【請求項2】 銀合金に、温度400〜600℃および
    酸素分圧100〜400atmの条件の高圧内部酸化を
    施した後に、前記高圧内部酸化におけるよりも低い酸素
    分圧と高い温度で熱処理を施すことを特徴とする銀−酸
    化物系電気接点材料の製造方法。
  3. 【請求項3】 高圧内部酸化後の熱処理を酸素分圧50
    atm以下、温度600〜1000℃の条件で施すこと
    を特徴とする請求項1または2に記載の銀−酸化物系電
    気接点材料の製造方法。
  4. 【請求項4】 高圧内部酸化後の熱処理を酸素分圧0.
    21atm未満、温度800〜960℃の条件で施すこ
    とを特徴とする請求項3に記載の銀−酸化物系電気接点
    材料の製造方法。
JP7072487A 1994-06-27 1995-03-07 電気接点材料の製造方法 Pending JPH0873966A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7072487A JPH0873966A (ja) 1994-06-27 1995-03-07 電気接点材料の製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP14371594 1994-06-27
JP6-143715 1994-06-27
JP7072487A JPH0873966A (ja) 1994-06-27 1995-03-07 電気接点材料の製造方法

Publications (1)

Publication Number Publication Date
JPH0873966A true JPH0873966A (ja) 1996-03-19

Family

ID=26413624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7072487A Pending JPH0873966A (ja) 1994-06-27 1995-03-07 電気接点材料の製造方法

Country Status (1)

Country Link
JP (1) JPH0873966A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003009323A1 (fr) * 2001-07-18 2003-01-30 Nec Schott Components Corporation Fusible thermique
US8187395B2 (en) 2003-08-08 2012-05-29 Mitsubishi Materials C.M.I. Corporation Electrical contact having high electrical conductivity made of internally oxidized silver-oxide material for compact electromagnetic relay

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003009323A1 (fr) * 2001-07-18 2003-01-30 Nec Schott Components Corporation Fusible thermique
US6724292B2 (en) 2001-07-18 2004-04-20 Nec Schott Components Corporation Thermal fuse
US8187395B2 (en) 2003-08-08 2012-05-29 Mitsubishi Materials C.M.I. Corporation Electrical contact having high electrical conductivity made of internally oxidized silver-oxide material for compact electromagnetic relay

Similar Documents

Publication Publication Date Title
US4162160A (en) Electrical contact material and method for making the same
US4072515A (en) Electrical contact material
US4279649A (en) Electrical contact material
JPH04311543A (ja) Ag−SnO−InO電気接点材料とその製法
JPH0873966A (ja) 電気接点材料の製造方法
CA1066926A (en) Method of preparation of dispersion strengthened silver electrical contacts
EP0460680B1 (en) Contact for a vacuum interrupter
US4330331A (en) Electric contact material and method of producing the same
JP4947850B2 (ja) Ag−酸化物系電気接点材料の製造方法
JP2831834B2 (ja) 真空バルブ用接点材料の製造方法
JPH09194967A (ja) 銀−酸化物系焼結電気接点材料およびその製造方法
US4249944A (en) Method of making electrical contact material
JP3833519B2 (ja) 真空遮断器
JPH0463137B2 (ja)
JP4357131B2 (ja) 真空遮断器
JPH03223433A (ja) Ag―SnO―CdO電気接点材料とその製法
JPS61246337A (ja) 接点材料
JPH06184664A (ja) 銀−酸化物複合材料の製造方法
JP4156867B2 (ja) 接点及びそれを搭載した真空遮断器
JPH09312111A (ja) 電気接点材料及びその製造方法
JPH101730A (ja) 銀−酸化物系焼結電気接点材料の製造方法
JPS6013039A (ja) 接点材料
JPH04314837A (ja) 銀−酸化物系電気接点材料
JPS60155635A (ja) 電気接点材料の製法
JP2001243857A (ja) 真空バルブ