JPH0870118A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0870118A
JPH0870118A JP6206415A JP20641594A JPH0870118A JP H0870118 A JPH0870118 A JP H0870118A JP 6206415 A JP6206415 A JP 6206415A JP 20641594 A JP20641594 A JP 20641594A JP H0870118 A JPH0870118 A JP H0870118A
Authority
JP
Japan
Prior art keywords
drain
region
conductivity type
drain electrode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6206415A
Other languages
Japanese (ja)
Other versions
JP3137840B2 (en
Inventor
Toshihiko Uno
利彦 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP06206415A priority Critical patent/JP3137840B2/en
Publication of JPH0870118A publication Critical patent/JPH0870118A/en
Application granted granted Critical
Publication of JP3137840B2 publication Critical patent/JP3137840B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41758Source or drain electrodes for field effect devices for lateral devices with structured layout for source or drain region, i.e. the source or drain region having cellular, interdigitated or ring structure or being curved or angular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1041Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface
    • H01L29/1045Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface the doping structure being parallel to the channel length, e.g. DMOS like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE: To enhance the drain-source breakdown strength by the relaxing concentration of field at the tip of a drain region in the longitudinal direction. CONSTITUTION: In a lateral MOSFHT transistor having high breakdown strength, an elongated drain electrode 12a is extended in the longitudinal direction. The distance L1 between the longitudinal end of the drain electrode 12a and the drain contact region 1 is set longer than the distance L2 between the lateral end of the drain electrode 12a and the drain contact region 1. Consequently, the concentration of field at the longitudinal end of a drain region formed beneath the drain electrode 12a and an interlayer insulation film 13 is relaxed by so-called field plate effect and the drain-source breakdown strength is enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は高耐圧横型MOS電界
効果トランジスタ等の半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device such as a high voltage lateral MOS field effect transistor.

【0002】[0002]

【従来の技術】従来の半導体装置として、高耐圧横型M
OS電界効果トランジスタについて説明する。図5は従
来の半導体装置の平面図であり、図6は図5におけるC
−C断面図である。また、図5におけるD−D断面図は
実施例の図3と同様であるので、図5,図6および図3
を参照しながら説明する。図3,図5,図6において、
1は第2導電型の高濃度のドレインコンタクト領域、2
は第2導電型のドレイン領域、3は第1導電型領域(以
下「PT領域」と称する)、4は第1導電型のシリコン
基板、5はチャンネル部、6はゲート酸化膜、7はゲー
ト電極、8は第2導電型のソース領域、9は第1導電型
の高濃度のチャンネルストッパ、10は第1導電型の高
濃度領域、11はソース電極、12はドレイン電極、1
3は層間絶縁膜、14はフィールド酸化膜である。な
お、第1導電型をp型,第2導電型をn型としてもよい
し、第1導電型をn型,第2導電型をp型としてもよ
い。
2. Description of the Related Art As a conventional semiconductor device, a high withstand voltage lateral type M
The OS field effect transistor will be described. FIG. 5 is a plan view of a conventional semiconductor device, and FIG. 6 is C in FIG.
FIG. Further, the sectional view taken along the line D-D in FIG. 5 is similar to that of the embodiment shown in FIG.
Will be described with reference to. In FIGS. 3, 5 and 6,
1 is a high-concentration drain contact region of the second conductivity type, 2
Is a second conductivity type drain region, 3 is a first conductivity type region (hereinafter referred to as “PT region”), 4 is a first conductivity type silicon substrate, 5 is a channel portion, 6 is a gate oxide film, and 7 is a gate. Electrode, 8 is a second conductivity type source region, 9 is a first conductivity type high concentration channel stopper, 10 is a first conductivity type high concentration region, 11 is a source electrode, 12 is a drain electrode, 1
Reference numeral 3 is an interlayer insulating film, and 14 is a field oxide film. The first conductivity type may be p-type and the second conductivity type may be n-type, or the first conductivity type may be n-type and the second conductivity type may be p-type.

【0003】高濃度のドレインコンタクト領域1は、ド
レイン領域2上に形成されるとともに、ドレイン領域2
上に形成されたPT領域3に周囲を取り囲まれている。
ドレイン領域2とシリコン基板4との接合部におけるシ
リコン基板4の側の表面にはチャンネル部5が形成さ
れ、チャンネル部5の上にはゲート酸化膜6および多結
晶シリコン膜からなるゲート電極7が形成されている。
チャンネル部5の横にはドレイン領域2に相対して第2
導電型のソース領域8が形成されており、またソース領
域8を取り囲むようにして高濃度の第1導電型のチャン
ネルストッパ9が形成されている。さらにチャンネル部
5の基板バイアス効果を抑制するため、ソース領域8に
隣接して第1導電型の高濃度領域10を設け、ソース領
域8と同様にソース電極11と電気的に接続されてい
る。またPT領域3は、図6に示すように、その一部が
シリコン基板4と電気的に接続されるとともに、第1導
電型の高濃度のチャンネルストッパ9および第1導電型
の高濃度領域10を介してソース電極11と電気的に接
続されている。
The high-concentration drain contact region 1 is formed on the drain region 2, and the drain region 2 is also formed.
It is surrounded by the PT region 3 formed above.
A channel portion 5 is formed on the surface of the junction of the drain region 2 and the silicon substrate 4 on the silicon substrate 4 side, and a gate oxide film 6 and a gate electrode 7 made of a polycrystalline silicon film are formed on the channel portion 5. Has been formed.
Next to the drain region 2 is a second side of the channel portion 5.
A conductive type source region 8 is formed, and a high-concentration first conductive type channel stopper 9 is formed so as to surround the source region 8. Further, in order to suppress the substrate bias effect of the channel portion 5, a high-concentration region 10 of the first conductivity type is provided adjacent to the source region 8 and is electrically connected to the source electrode 11 like the source region 8. As shown in FIG. 6, a part of the PT region 3 is electrically connected to the silicon substrate 4, and the first conductivity type high concentration channel stopper 9 and the first conductivity type high concentration region 10 are provided. Is electrically connected to the source electrode 11 via.

【0004】[0004]

【発明が解決しようとする課題】しかしながら上記従来
の構成では、図6に示すドレイン領域2の長手方向(図
5のC−C方向)先端部において電界集中が起こり、ド
レイン・ソース間耐圧を低下させてしまうという課題を
有していた。この発明は上記従来の課題を解決するもの
で、ドレイン領域の長手方向先端部での電界の集中を緩
和し、ドレイン・ソース間耐圧を向上することのできる
半導体装置を提供することを目的とする。
However, in the above conventional structure, electric field concentration occurs at the tip of the drain region 2 shown in FIG. 6 in the longitudinal direction (CC direction in FIG. 5), and the drain-source breakdown voltage is lowered. There was a problem of causing it. The present invention solves the above-described conventional problems, and an object of the present invention is to provide a semiconductor device capable of alleviating the concentration of an electric field at the tip of the drain region in the longitudinal direction and improving the drain-source breakdown voltage. .

【0005】[0005]

【課題を解決するための手段】請求項1記載の半導体装
置は、第1導電型の半導体基板上に細長形状の第2導電
型のドレイン領域を形成し、ドレイン領域上の内部に細
長形状の高濃度第2導電型のドレインコンタクト領域を
介して細長形状のドレイン電極を形成し、ドレイン領域
上のドレインコンタクト領域の周囲に半導体基板と電気
的に接続された第1導電型領域を形成し、ドレイン領域
の両側にチャンネル部を介して第2導電型のソース領域
をドレイン領域の長手方向と略平行に形成し、ドレイン
領域の両側のソース領域上にソース電極を形成し、チャ
ンネル部の上にゲート絶縁膜を介してゲート電極を形成
し、細長形状のドレイン電極はその輪郭が細長形状のド
レインコンタクト領域の輪郭の外側になるように形成さ
れた半導体装置であって、ドレイン電極を長手方向に延
伸し、ドレイン電極の長手方向端部のドレインコンタク
ト領域からの距離を、ドレイン電極の幅方向端部のドレ
インコンタクト領域からの距離よりも長くしたことを特
徴とする。
According to another aspect of the present invention, there is provided a semiconductor device having a first conductivity type semiconductor substrate, an elongated second conductivity type drain region formed on the first conductivity type semiconductor substrate, and an elongated shape drain region formed inside the drain region. An elongated drain electrode is formed through the high-concentration second conductivity type drain contact region, and a first conductivity type region electrically connected to the semiconductor substrate is formed on the drain region around the drain contact region. A source region of the second conductivity type is formed on both sides of the drain region substantially parallel to the longitudinal direction of the drain region, and source electrodes are formed on the source regions on both sides of the drain region. In a semiconductor device in which a gate electrode is formed through a gate insulating film, the elongated drain electrode is formed so that its contour is outside the contour of the elongated drain contact region. Therefore, the drain electrode is extended in the longitudinal direction, and the distance from the drain contact region at the longitudinal end of the drain electrode is longer than the distance from the drain contact region at the lateral end of the drain electrode. To do.

【0006】請求項2記載の半導体装置は、請求項1記
載の半導体装置において、ドレイン電極の長手方向端部
のドレインコンタクト領域からの距離を20μmよりも
長くしている。
According to a second aspect of the present invention, in the semiconductor device according to the first aspect, the distance from the drain contact region at the longitudinal end of the drain electrode is longer than 20 μm.

【0007】[0007]

【作用】この発明の構成によれば、細長形状のドレイン
電極を長手方向に延伸し、ドレイン電極の長手方向端部
のドレインコンタクト領域からの距離を、ドレイン電極
の幅方向端部のドレインコンタクト領域からの距離より
も長くしたことにより、いわゆるフィールドプレートの
効果により、ドレイン領域の長手方向先端部での電界の
集中を緩和し、ドレイン領域の長手方向先端部における
ドレイン・ソース間耐圧を向上することができる。
According to the structure of the present invention, the elongated drain electrode is elongated in the longitudinal direction, and the distance from the drain contact region at the longitudinal end of the drain electrode is defined as the drain contact region at the lateral end of the drain electrode. By increasing the distance from, the concentration of the electric field at the tip of the drain region in the longitudinal direction is relieved and the breakdown voltage between the drain and the source at the tip of the drain region in the longitudinal direction is improved due to the so-called field plate effect. You can

【0008】[0008]

【実施例】以下、この発明の一実施例について、図面を
参照しながら説明する。図1はこの発明の一実施例の半
導体装置(高耐圧横型MOS電界効果トランジスタ)の
平面図、図2は図1におけるA−A断面図、図3は図1
におけるB−B断面図である。図1,図2,図3におい
て、12aはドレイン電極であり、その他の構成は従来
例と同様であるので図5,図6と同一符号を付し、その
説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. 1 is a plan view of a semiconductor device (high breakdown voltage lateral MOS field effect transistor) according to an embodiment of the present invention, FIG. 2 is a sectional view taken along line AA in FIG. 1, and FIG.
6 is a sectional view taken along line BB in FIG. 1, FIG. 2, and FIG. 3, reference numeral 12a is a drain electrode, and the other configurations are similar to those of the conventional example, and therefore, the same reference numerals as those in FIGS.

【0009】この実施例の半導体装置は、従来例同様、
シリコン基板(半導体基板)4上に、細長形状のドレイ
ン領域2を形成してあり、ドレイン領域2上の内部に、
細長形状のドレインコンタクト領域1を介して、細長形
状のドレイン電極12aを形成している。ドレイン領域
2上のドレインコンタクト領域1の周囲にシリコン基板
4と電気的に接続されたPT領域(第1導電型領域)3
を形成している。また、ドレイン領域2の両側にチャン
ネル部5を介して、ソース領域8をドレイン領域2の長
手方向と略平行に形成してある。そして、両側に形成さ
れた2つのソース領域8はソース電極11に接続されて
いる。また、チャンネル部5の上にゲート酸化膜(ゲー
ト絶縁膜)6を介してゲート電極7を形成してある。そ
して、細長形状のドレイン電極12aはその輪郭が細長
形状のドレインコンタクト領域1の輪郭の外側になるよ
うに形成されている。
The semiconductor device of this embodiment is similar to the conventional example.
An elongated drain region 2 is formed on a silicon substrate (semiconductor substrate) 4, and inside the drain region 2,
An elongated drain electrode 12a is formed via the elongated drain contact region 1. A PT region (first conductivity type region) 3 electrically connected to the silicon substrate 4 around the drain contact region 1 on the drain region 2.
Is formed. A source region 8 is formed on both sides of the drain region 2 with a channel portion 5 interposed therebetween and is substantially parallel to the longitudinal direction of the drain region 2. The two source regions 8 formed on both sides are connected to the source electrode 11. A gate electrode 7 is formed on the channel portion 5 with a gate oxide film (gate insulating film) 6 interposed therebetween. The elongated drain electrode 12a is formed so that its contour is outside the contour of the elongated drain contact region 1.

【0010】この実施例の特徴は、ドレイン電極12a
を、図1におけるA−A方向に延伸したことである。す
なわち、ドレイン電極12aの長手方向(A−A方向)
端部のドレインコンタクト領域1からの距離L1 を、ド
レイン電極12aの幅方向(B−B方向)端部のドレイ
ンコンタクト領域1からの距離L2 よりも大きくしてい
る。また、この実施例では距離L2 を20μmとし、距
離L1 を20μmより長くしている。なお、図5に示す
従来例ではL1 =L2 =20μmである。また、この実
施例では、ドレイン電極12aの長手方向におけるドレ
イン電極12aとソース電極11との距離L3 を、ドレ
イン電極12aの幅方向におけるドレイン電極12aと
ソース電極11との距離L4 よりも長くしている。
The feature of this embodiment is that the drain electrode 12a is formed.
Was stretched in the AA direction in FIG. That is, the longitudinal direction of the drain electrode 12a (A-A direction)
The distance L 1 from the drain contact region 1 of the end portion is made larger than the distance L 2 from the drain contact region 1 in the width direction (B-B direction) end portion of the drain electrode 12a. Further, in this embodiment, the distance L 2 is 20 μm and the distance L 1 is longer than 20 μm. In the conventional example shown in FIG. 5, L 1 = L 2 = 20 μm. In this embodiment, the distance L 3 between the drain electrode 12a and the source electrode 11 in the longitudinal direction of the drain electrode 12a is longer than the distance L 4 between the drain electrode 12a and the source electrode 11 in the width direction of the drain electrode 12a. are doing.

【0011】図4は距離L1 とドレイン・ソース間耐圧
の関係を示す図である。この図4からわかるように、ド
レイン電極12aを、その長手方向端部のドレインコン
タクト領域1からの距離L1 を20μm(=L2 )より
長く形成することで、いわゆるフィールドプレートの効
果により、ドレイン領域2の長手方向先端部での電界の
集中を緩和し、ドレイン・ソース間耐圧を向上させるこ
とが可能となる。これは、逆バイアスされたとき、ドレ
イン領域2の長手方向先端部の曲率を有する部分で、空
乏層の伸びが滑らかとなり、電界強度を緩和することが
できるからである。
FIG. 4 is a diagram showing the relationship between the distance L 1 and the drain-source breakdown voltage. As can be seen from FIG. 4, by forming the drain electrode 12a at a distance L 1 from the drain contact region 1 at the end in the longitudinal direction longer than 20 μm (= L 2 ), a so-called field plate effect is provided. It is possible to reduce the concentration of the electric field at the tip of the region 2 in the longitudinal direction and improve the drain-source breakdown voltage. This is because the extension of the depletion layer becomes smooth and the electric field strength can be relaxed in the portion having the curvature at the tip of the drain region 2 in the longitudinal direction when reverse biased.

【0012】なお、ドレイン電極12aを幅方向(図1
のB−B方向)に拡大させる、すなわちL2 を大きくす
ると、ドレイン・ソース電極12a,11間の間隔が短
くなり、ドレイン領域2の内部にて、電界集中が発生
し、耐圧を低下させてしまうことになる。したがって、
この実施例ではL2 を大きくせず、ドレイン領域2内部
の耐圧を低下させることなく、ドレイン領域2の長手方
向先端部での耐圧を向上させている。
The drain electrode 12a is formed in the width direction (see FIG.
In the BB direction), that is, when L 2 is increased, the distance between the drain and source electrodes 12a and 11 is shortened, electric field concentration occurs inside the drain region 2, and the breakdown voltage is lowered. Will end up. Therefore,
In this embodiment, L 2 is not increased, the breakdown voltage inside the drain region 2 is not lowered, and the breakdown voltage at the tip portion in the longitudinal direction of the drain region 2 is improved.

【0013】[0013]

【発明の効果】以上のようにこの発明は、細長形状のド
レイン電極を長手方向に延伸し、ドレイン電極の長手方
向端部のドレインコンタクト領域からの距離を、ドレイ
ン電極の幅方向端部のドレインコンタクト領域からの距
離よりも長くしたことにより、いわゆるフィールドプレ
ートの効果により、ドレイン領域の長手方向先端部での
電界の集中を緩和し、ドレイン領域の長手方向先端部に
おけるドレイン・ソース間耐圧を向上することができ
る。
As described above, according to the present invention, the elongated drain electrode is extended in the longitudinal direction, and the distance from the drain contact region at the end of the drain electrode in the longitudinal direction is defined as the drain at the end of the drain electrode in the width direction. By making it longer than the distance from the contact region, the so-called field plate effect reduces the concentration of the electric field at the tip of the drain region in the longitudinal direction and improves the breakdown voltage between the drain and source at the tip of the drain region in the longitudinal direction. can do.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例の半導体装置の平面図であ
る。
FIG. 1 is a plan view of a semiconductor device according to an embodiment of the present invention.

【図2】この発明の一実施例の半導体装置のA−A断面
図である。
FIG. 2 is a sectional view taken along the line AA of the semiconductor device of the embodiment of the present invention.

【図3】この発明の一実施例の半導体装置のB−B断面
図である。
FIG. 3 is a sectional view taken along line BB of the semiconductor device of the embodiment of the present invention.

【図4】この発明の一実施例におけるドレイン電極の先
端部の長さL1 とドレイン・ソース間耐圧との関係を示
す図である。
FIG. 4 is a diagram showing the relationship between the length L 1 of the tip of the drain electrode and the drain-source breakdown voltage in one embodiment of the present invention.

【図5】従来の半導体装置の平面図である。FIG. 5 is a plan view of a conventional semiconductor device.

【図6】従来の半導体装置の断面図である。FIG. 6 is a cross-sectional view of a conventional semiconductor device.

【符号の説明】[Explanation of symbols]

1 ドレインコンタクト領域 2 ドレイン領域 3 PT領域(第1導電型領域) 4 シリコン基板(半導体基板) 5 チャンネル部 6 ゲート酸化膜(ゲート絶縁膜) 7 ゲート電極 8 ソース領域 9 高濃度第1導電型のチャンネルストッパ 10 第1導電型の高濃度領域 11 ソース電極 12a ドレイン電極 13 層間絶縁膜 1 Drain contact region 2 Drain region 3 PT region (first conductivity type region) 4 Silicon substrate (semiconductor substrate) 5 Channel portion 6 Gate oxide film (gate insulating film) 7 Gate electrode 8 Source region 9 High concentration first conductivity type Channel stopper 10 High-concentration region of the first conductivity type 11 Source electrode 12a Drain electrode 13 Interlayer insulating film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 第1導電型の半導体基板上に細長形状の
第2導電型のドレイン領域を形成し、前記ドレイン領域
上の内部に細長形状の高濃度第2導電型のドレインコン
タクト領域を介して細長形状のドレイン電極を形成し、
前記ドレイン領域上の前記ドレインコンタクト領域の周
囲に前記半導体基板と電気的に接続された第1導電型領
域を形成し、前記ドレイン領域の両側にチャンネル部を
介して第2導電型のソース領域を前記ドレイン領域の長
手方向と略平行に形成し、前記ドレイン領域の両側のソ
ース領域上にソース電極を形成し、前記チャンネル部の
上にゲート絶縁膜を介してゲート電極を形成し、前記細
長形状のドレイン電極はその輪郭が前記細長形状のドレ
インコンタクト領域の輪郭の外側になるように形成され
た半導体装置であって、 前記ドレイン電極を長手方向に延伸し、前記ドレイン電
極の長手方向端部の前記ドレインコンタクト領域からの
距離を、前記ドレイン電極の幅方向端部の前記ドレイン
コンタクト領域からの距離よりも長くしたことを特徴と
する半導体装置。
1. An elongated second conductivity type drain region is formed on a first conductivity type semiconductor substrate, and an elongated high concentration second conductivity type drain contact region is provided inside the drain region. To form an elongated drain electrode,
A first conductivity type region electrically connected to the semiconductor substrate is formed around the drain contact region on the drain region, and a second conductivity type source region is formed on both sides of the drain region through a channel portion. The elongated shape is formed substantially parallel to the longitudinal direction of the drain region, the source electrodes are formed on the source regions on both sides of the drain region, and the gate electrode is formed on the channel portion via a gate insulating film. Is a semiconductor device formed such that the contour thereof is outside the contour of the elongated drain contact region, the drain electrode being extended in the longitudinal direction, and The distance from the drain contact region is set to be longer than the distance from the drain contact region at the widthwise end of the drain electrode. Characteristic semiconductor device.
【請求項2】 ドレイン電極の長手方向端部のドレイン
コンタクト領域からの距離を20μmよりも長くした請
求項1記載の半導体装置。
2. The semiconductor device according to claim 1, wherein the distance from the drain contact region at the longitudinal end of the drain electrode is longer than 20 μm.
JP06206415A 1994-08-31 1994-08-31 Semiconductor device Expired - Fee Related JP3137840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06206415A JP3137840B2 (en) 1994-08-31 1994-08-31 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06206415A JP3137840B2 (en) 1994-08-31 1994-08-31 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH0870118A true JPH0870118A (en) 1996-03-12
JP3137840B2 JP3137840B2 (en) 2001-02-26

Family

ID=16522996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06206415A Expired - Fee Related JP3137840B2 (en) 1994-08-31 1994-08-31 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3137840B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013254857A (en) * 2012-06-07 2013-12-19 Fuji Electric Co Ltd Semiconductor device and manufacturing method therefor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010118419A (en) * 2008-11-12 2010-05-27 Sharp Corp Semiconductor device
JP6092805B2 (en) * 2014-04-03 2017-03-08 中村 弘之 Acupressure aids
CN107546267A (en) * 2016-06-29 2018-01-05 北大方正集团有限公司 A kind of super-pressure lateral double diffusion metal oxide semiconductor structure and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013254857A (en) * 2012-06-07 2013-12-19 Fuji Electric Co Ltd Semiconductor device and manufacturing method therefor

Also Published As

Publication number Publication date
JP3137840B2 (en) 2001-02-26

Similar Documents

Publication Publication Date Title
US6555883B1 (en) Lateral power MOSFET for high switching speeds
KR100652449B1 (en) Lateral thin-film silicon-on-insulator soi jfet device
JP2022043062A5 (en)
KR950034767A (en) MIS semiconductor device
JPS60249367A (en) Insulation gate transistor
JPH0334466A (en) Vertical-type double diffused mosfet
JPS63266882A (en) Vertical-type insulated-gate field-effect transistor
KR20030097017A (en) Power Semiconductor device having high breakdown voltage, low on-resistance and small switching loss
JP3137840B2 (en) Semiconductor device
JPH04363069A (en) Vertical semiconductor device
JP3402043B2 (en) Field effect transistor
JP2689874B2 (en) High voltage MOS transistor
JPS6136389B2 (en)
JPH0222868A (en) Insulated-gate field-effect transistor
JP2004288873A (en) Semiconductor device
JP3201719B2 (en) Semiconductor device and manufacturing method thereof
JPH05218403A (en) Semiconductor device
JPS63254769A (en) Vertical insulated-gate type field effect transistor
JP3064872B2 (en) Field effect transistor
JPS60107866A (en) Semiconductor device
JP3385835B2 (en) Dielectric separated type semiconductor device
JP3233002B2 (en) Field effect transistor
JPH0669508A (en) Double-diffused field-effect transistor
JP3074065B2 (en) Lateral MOS field effect transistor
JPS6298777A (en) Field-effect semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071208

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081208

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees