JPH0861940A - Surface roughness inspecting device - Google Patents

Surface roughness inspecting device

Info

Publication number
JPH0861940A
JPH0861940A JP21820694A JP21820694A JPH0861940A JP H0861940 A JPH0861940 A JP H0861940A JP 21820694 A JP21820694 A JP 21820694A JP 21820694 A JP21820694 A JP 21820694A JP H0861940 A JPH0861940 A JP H0861940A
Authority
JP
Japan
Prior art keywords
inspected
light
surface roughness
lens
reflected light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21820694A
Other languages
Japanese (ja)
Inventor
Katsushige Yanagisawa
克重 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Instruments Corp
Original Assignee
Sankyo Seiki Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Seiki Manufacturing Co Ltd filed Critical Sankyo Seiki Manufacturing Co Ltd
Priority to JP21820694A priority Critical patent/JPH0861940A/en
Publication of JPH0861940A publication Critical patent/JPH0861940A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE: To provide a surface roughness inspecting device having a simple structure, easy to be assembled, having a small size and light weight, and requiring a low cost. CONSTITUTION: A laser beam 13 is made incident slantedly on an surface to be inspected 1, and the reflected light thereof is condensed through a lens 3. In addition, regular reflected light 14 is deflected by a mirror 6 laid at a lens focal position, and made incident on the first light receiving element 7. Also, scattered light 15 generated by the surface roughness of the surface 1 is imaged on an image surface, and made incident on the second light receiving element 9. In this case, the surface roughness rms of the surface 1 can be obtained from the equation λ/(4πcosθ)}√(IS/IT), where λ represents laser beam wavelength, θ, an incidence angle on the surface 1, and IS and IT, the output current of each of the elements 7 and 9. Also, the value of θ is set to satisfy the relationships of 2θ.cosθ>λ.fs , and (θ-π/2)cosθ>λ.fs .

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高精度な表面である被
検面にレーザ光を入射し、その反射光について、総反射
光量と被検面の表面粗さによって発生する散乱光の光量
を測定して、両者の比をとることで被検面の表面粗さを
測定する表面粗さ検査装置の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention provides a highly accurate surface to which a laser beam is incident, and the reflected light is the total reflected light amount and the scattered light amount generated by the surface roughness of the tested surface. The present invention relates to an improvement of a surface roughness inspecting device that measures the surface roughness of a surface to be measured by measuring and measuring the ratio of the two.

【0002】[0002]

【従来の技術】従来、この種の表面粗さ検査装置とし
て、図9及び図10に示した粗さ計が知られている。
2. Description of the Related Art Conventionally, a roughness meter shown in FIGS. 9 and 10 has been known as a surface roughness inspection apparatus of this type.

【0003】図9の粗さ計では、被検面に積分球を接触
して固定し、積分球に設けた第1の穴を通してレーザ光
を被検面に入射し、その正反射光を積分球に設けた第2
の穴を通して積分球の外に逃がすことで、散乱光のみを
積分球により検出し、入射光量と比較し、表面粗さを求
めている。
In the roughness meter of FIG. 9, an integrating sphere is brought into contact with and fixed to the surface to be inspected, a laser beam is incident on the surface to be inspected through a first hole provided in the integrating sphere, and the specularly reflected light is integrated. Second on the sphere
Only the scattered light is detected by the integrating sphere by letting it escape to the outside of the integrating sphere through the hole of, and the surface roughness is obtained by comparing with the amount of incident light.

【0004】図10の粗さ計では、レーザ光が被検面に
入射し、その反射光の正反射光と散乱光の光量分布を、
光検出器を走査することで測定し、全反射光量と散乱光
量を演算することで比較し、表面粗さを求めている。い
ずれの場合も、被検面に入射角度θで入射した波長λの
レーザ光の総反射光量IT、被検面の表面粗さにより発
生する散乱光量ISとすると、表面粗さのrms値σ
は、公知の関係として、
In the roughness meter of FIG. 10, laser light is incident on the surface to be inspected, and the light quantity distribution of specular reflection light and scattered light of the reflected light is
The surface roughness is calculated by scanning the photodetector and comparing the amounts of total reflected light and scattered light by calculation. In any case, assuming that the total reflected light amount I T of the laser light of the wavelength λ incident on the surface to be inspected at the incident angle θ and the scattered light amount I S generated by the surface roughness of the surface to be inspected are rms values of the surface roughness. σ
Is a well-known relationship

【数1】σ={λ/(4πcosθ)}√(IS/IT) から求められる。## EQU1 ## σ = {λ / (4πcos θ)} √ (I S / I T )

【0005】[0005]

【発明が解決しようとする課題】図9の粗さ計では、全
散乱光量を検査するために、積分球を用いているが、正
反射光を積分球外に逃がすために第2の穴を設けてい
る。こうした構成では、散乱光の散乱角度(正反射光と
散乱光のなす角)が大きい場合は、散乱光は積分球の内
壁に当たり、光検出器に検出されるが、散乱角度が小さ
い場合は、正反射光を逃がす第2の穴から積分球外に逃
げてしまい、散乱光として検出されなくなる。ちなみ
に、散乱角度をω、被検面の表面粗さの空間周波数をν
とすれば、
In the roughness meter of FIG. 9, an integrating sphere is used to inspect the total amount of scattered light, but a second hole is provided to allow specular reflected light to escape to the outside of the integrating sphere. It is provided. In such a configuration, when the scattering angle of scattered light (the angle formed by the specularly reflected light and the scattered light) is large, the scattered light hits the inner wall of the integrating sphere and is detected by the photodetector, but when the scattering angle is small, The specularly reflected light escapes from the second hole through the second hole and is not detected as scattered light. By the way, ω is the scattering angle and ν is the spatial frequency of the surface roughness of the test surface.
given that,

【数2】ω≒ν・λ/cosθ (rad) として計算できる。仮に光源にHe−Neレーザ(λ=
0.633μm)を用い、入射角度θ=30°とする
と、空間周波数が25(mm-1)の場合に散乱角度は1°
である。入射光の光束幅を考慮すると、この散乱光と正
反射光を完全に分離することは困難である。更に、高精
度な表面である被検面では散乱光は微小光量であるが、
積分球方式では、光検出器に導かれる光量は更に減少す
るため、散乱光を集めにくく、ホトマルチメータなどの
高性能の検出器が必要となる。例えば、ポリゴンミラー
等の超精密切削加工面の場合、散乱光は約2%程度の微
小光量であり、集めにくい。加えて積分球自体も高価で
ある。
Equation 2 can be calculated as ω≈ν · λ / cos θ (rad). If the light source is a He-Ne laser (λ =
0.633 μm) and the incident angle θ = 30 °, the scattering angle is 1 ° when the spatial frequency is 25 (mm −1 ).
Is. Considering the luminous flux width of the incident light, it is difficult to completely separate the scattered light and the specularly reflected light. In addition, the amount of scattered light is very small on the surface to be inspected, which is a highly accurate surface,
In the integrating sphere method, the amount of light guided to the photodetector is further reduced, so it is difficult to collect scattered light, and a high-performance detector such as a photomultimeter is required. For example, in the case of an ultra-precision cut surface such as a polygon mirror, scattered light has a minute light amount of about 2% and is difficult to collect. In addition, the integrating sphere itself is expensive.

【0006】図10の粗さ計は、検出器(受光素子)を
半球状または半円状に走査して受光量を積分する構成と
しているので、装置の大型化を招来し、測定するのに時
間がかかり、リアルタイムの測定はできない。また、測
定位置を高精度に制御する必要がある上に、データの信
頼性を得るための繰返し測定が困難であるなどの問題が
あった。
The roughness meter of FIG. 10 has a structure in which the detector (light receiving element) is scanned in a hemispherical or semicircular shape to integrate the amount of received light, which causes an increase in the size of the device and makes a measurement. It takes time and cannot measure in real time. Further, there is a problem that it is necessary to control the measurement position with high accuracy, and it is difficult to perform repeated measurement to obtain data reliability.

【0007】このため本発明者は先に実願平5−489
16号において、構造が極めて簡単で、組み立ても容易
で、小型、軽量で低コストの表面粗さ検査装置を提案し
た。図6及び図7は該表面粗さ検査装置で、1は被検体
の被検面、2は被検面にレーザ光を入射させるハーフミ
ラー、3は被検面からの反射光を集光するレンズ、4は
レンズの焦平面5におかれた絞り板、6は絞り板の開口
部にあって、集光レンズの焦点位置に配置され、被検面
からの正反射光成分を偏向させるミラー、7は正反射光
成分を検出するホトダイオードからなる第1の受光素
子、8は被検面1の像面、9は前記像面に設けられ、散
乱光成分を検出するホトダイオードからなる第2の受光
素子であり、10,11は増幅器、12はデータ出力回
路である。
For this reason, the present inventor has previously filed Japanese Patent Application No. 5-489.
In No. 16, we proposed a surface roughness inspection device that is extremely simple in structure, easy to assemble, compact, lightweight, and low cost. 6 and 7 show the surface roughness inspecting apparatus, wherein 1 is the surface to be inspected of the object, 2 is a half mirror for making laser light incident on the surface to be inspected, and 3 is light reflected from the surface to be inspected. A lens 4 is an aperture plate placed on the focal plane 5 of the lens, and 6 is a mirror which is located at the focal position of the condenser lens in the aperture of the aperture plate and which deflects the specular reflection light component from the surface to be inspected. , 7 is a first light receiving element composed of a photodiode for detecting a specular reflection light component, 8 is an image plane of the surface 1 to be inspected, 9 is a second photodiode which is provided on the image plane and is composed of a photodiode for detecting a scattered light component. Light receiving elements 10, 10 are amplifiers, and 12 is a data output circuit.

【0008】上記構成において、被検面1に平行レーザ
光13がハーフミラー2を介して入射されると、その反
射光はレンズ3で集光される。その反射光のうち正反射
光14はレンズ3の焦点位置に配置したミラー6により
偏向され、第1の受光素子7に入射する。被検面1の表
面粗さのために発生した散乱光15はレンズ焦平面5上
では正反射光のスポットから離れた位置を通るため、ミ
ラー6で反射されず、像面8に被検面1の像を結像する
ので、そこに設置された受光素子9に全て入射する。
In the above structure, when the parallel laser light 13 is incident on the surface 1 to be inspected through the half mirror 2, the reflected light is condensed by the lens 3. The specularly reflected light 14 of the reflected light is deflected by the mirror 6 arranged at the focal position of the lens 3 and enters the first light receiving element 7. The scattered light 15 generated due to the surface roughness of the surface 1 to be inspected passes on the focal plane 5 of the lens away from the spot of the specularly reflected light, so that it is not reflected by the mirror 6 and is reflected on the image plane 8 as the surface to be inspected. Since the image of No. 1 is formed, it is incident on all the light receiving elements 9 installed therein.

【0009】上記構成では、レンズ3の焦平面5には、
被検面1のラウンホーファ回析像(図7を参照)が現わ
れる。ここでは、被検面1の表面による正反射光と、被
検面1の表面形状(起伏)の空間周波数の極低周波成分
の散乱光16aのみがミラー6により偏向される。ミラ
ー6とその保持部6aで偏向、または、けられずに像面
8の結像に寄与した散乱光16bは、被検面1の表面形
状の高周波数成分(表面粗さ)によるものである。した
がって、ミラー6とその保持部6aの開口を正反射光の
集光スポットに近い大きさまで、小さくすることで、正
反射光と散乱光を分離することが可能となる。なお、検
出できる空間周波数の上限は、焦平面5の絞り板4の開
口で決定される。その場合、レンズ3の開口等は、絞り
板4の開口より充分大きいことが必要である。
In the above structure, the focal plane 5 of the lens 3 has
A Raunhofer diffraction image of the surface to be inspected 1 (see FIG. 7) appears. Here, only the specular reflection light from the surface of the surface to be inspected 1 and the scattered light 16 a of the extremely low frequency component of the spatial frequency of the surface shape (undulation) of the surface to be inspected 1 are deflected by the mirror 6. The scattered light 16b that has been deflected by the mirror 6 and its holding portion 6a or has not contributed to the image formation of the image plane 8 is due to the high frequency component (surface roughness) of the surface shape of the surface 1 to be inspected. Therefore, by reducing the size of the opening of the mirror 6 and its holding portion 6a to a size close to the converging spot of specular reflection light, specular reflection light and scattered light can be separated. The upper limit of the spatial frequency that can be detected is determined by the aperture of the diaphragm plate 4 on the focal plane 5. In that case, the aperture of the lens 3 and the like need to be sufficiently larger than the aperture of the diaphragm plate 4.

【0010】ここで、正反射光14を受ける第1受光素
子7で検出された光量Io、散乱光を受ける第2の受光
素子9で検出された光量ISとすれば、検出した散乱光
の全反射光に対する割合は、IS/(IS+Io)で近似
的に示せる。更にISが充分小さい場合はIS/Ioとし
ても実用上問題はない。
[0010] Here, if the positive reflected light 14 receives detected by the first light receiving element 7 light quantity I o, and light quantity I S detected by the second light receiving element 9 for receiving the scattered light, the detected scattered light The ratio of to the total reflected light can be approximately represented by I S / (I S + I o ). Further, when I S is sufficiently small, there is no practical problem even if I S / I o .

【0011】図8は図6の装置において、レンズ3の後
方部位に、レンズ17を設け、レンズ3とレンズ17に
よる被検面1の像面8に第2の受光素子9を設けたもの
である。この構成の場合、被検面1と第2の受光素子9
の位置がレンズ3とレンズ17によって共役関係になる
が、このレンズ系の横倍率の絶対値を小さくすることが
容易なので、小さいものを選択できる利点がある。
FIG. 8 shows the apparatus of FIG. 6 in which a lens 17 is provided behind the lens 3 and a second light receiving element 9 is provided on the image plane 8 of the surface 3 to be inspected by the lens 3 and the lens 17. is there. In the case of this configuration, the surface to be inspected 1 and the second light receiving element 9
Although the position of 1 has a conjugate relationship with the lens 3 and the lens 17, it is easy to reduce the absolute value of the lateral magnification of this lens system, so there is an advantage that a small one can be selected.

【0012】而して上記先願の装置によれば、前述した
従来技術の課題は解決されるが、なおまだ改良の余地を
残している。即ち、レーザ光13を被検面1へ垂直入射
させるためハーフミラー2を使用しているが、かかる構
成とするとレーザ光の散乱角度によってハーフミラー2
の透過率に差が出てしまうことになる。また正反射光成
分14のみ反射するミラー6の構造として支持部とミラ
ー支持枠を設けると、この部分で散乱光を一部遮光して
しまう。本発明の目的はこのような先願装置の課題を更
に解決することにある。
[0012] Thus, according to the device of the above-mentioned prior application, the above-mentioned problems of the prior art can be solved, but there is still room for improvement. That is, although the half mirror 2 is used to make the laser light 13 vertically incident on the surface 1 to be inspected, with such a configuration, the half mirror 2 depends on the scattering angle of the laser light.
There will be a difference in transmittance. Further, when the support portion and the mirror support frame are provided as the structure of the mirror 6 that reflects only the specular reflection light component 14, the scattered light is partially shielded at this portion. An object of the present invention is to further solve the problems of the prior application device.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するた
め、第1の発明は、被検面にレーザ光を入射し、被検面
の表面粗さによって発生する散乱光の光量を測定して被
検面の表面粗さを測定する表面粗さ検査装置において、
被検面からの反射光を集光するレンズと、このレンズの
焦点位置に配置され、正反射光成分を偏向させる偏向手
段と、前記正反射光成分を検出する第1の受光素子と、
前記被検面の像を結像する、前記レンズを含めた結像光
学系の像面に設けられた散乱光成分を検出する第2の受
光素子とを有し、被検面に対しレーザ光を斜めに入射さ
せるように構成したことを特徴とする。
In order to achieve the above object, the first invention is that laser light is incident on a surface to be inspected and the amount of scattered light generated by the surface roughness of the surface to be inspected is measured. In a surface roughness inspection device that measures the surface roughness of the surface to be inspected,
A lens that collects the reflected light from the surface to be inspected, a deflection unit that is arranged at the focal position of the lens and that deflects the specular reflected light component, and a first light receiving element that detects the specular reflected light component,
A second light receiving element which forms an image of the surface to be inspected and which is provided on the image surface of the imaging optical system including the lens, and which detects a scattered light component; Is configured so as to be incident obliquely.

【0014】第2の発明は、第1の発明において、被検
面に対するレーザ光の入射角度θが、レーザ光波長λ、
測定したい空間周波数の最大値fsとして2θ・cosθ
>λ・fs及び(θ−π/2)cosθ>λ・fsとなる
ようにしたことを特徴とする。
In a second aspect based on the first aspect, the incident angle θ of the laser beam with respect to the surface to be inspected is the laser beam wavelength λ,
2θ · cosθ as maximum value fs of spatial frequency to be measured
> Λ · fs and (θ−π / 2) cos θ> λ · fs.

【0015】第3の発明は、第1又は第2の発明におい
て、前記偏向手段を中心に配置した全透明板を被検面か
らの反射光に対して所定の角度をつけて配設したことを
特徴とする。
According to a third aspect of the present invention, in the first or second aspect of the invention, the all-transparent plate centered on the deflecting means is arranged at a predetermined angle with respect to the light reflected from the surface to be inspected. Is characterized by.

【0016】第4の発明は、第3の発明において、前記
全透明板の偏向手段は正反射光を反射する全反射膜であ
り、該全反射膜以外の散乱光透過部には角度依存性の反
射防止膜を設けたことを特徴とする。
In a fourth aspect based on the third aspect, the deflecting means of the total transparent plate is a total reflection film that reflects specularly reflected light, and the scattered light transmitting portion other than the total reflection film has angle dependence. The anti-reflection film is provided.

【0017】また第5の発明は、被検面にレーザ光を入
射し、被検面の表面粗さによって発生する散乱光の光量
を測定して被検面の表面粗さを測定する表面粗さ検査装
置において、被検面からの反射光を焦光するレンズと、
このレンズとその焦点位置との間に配置され正反射光成
分を偏向させる偏向手段と、上記焦点位置で正反射光成
分の透過を防止する透過防止手段と、前記正反射光成分
を検出する第1の受光素子と、前記被検面の像を結像す
る前記レンズを含めた結像光学系の像面に設けられた散
乱光成分を検出する第2の受光素子と、を有し、被検面
に対しレーザ光を斜めに入射させるように構成したこと
を特徴とする。
A fifth aspect of the present invention is a surface roughness measuring method for measuring a surface roughness of a surface to be inspected by injecting a laser beam onto the surface to be inspected and measuring an amount of scattered light generated by the surface roughness of the surface to be inspected. In the inspection device, a lens that focuses the light reflected from the surface to be inspected,
Deflection means disposed between the lens and its focal position for deflecting the specular reflection light component, transmission preventing means for preventing transmission of the specular reflection light component at the focal position, and first detecting the specular reflection light component. 1 and a second light receiving element for detecting a scattered light component provided on the image surface of the imaging optical system including the lens for forming an image of the surface to be inspected, It is characterized in that the laser beam is obliquely incident on the inspection surface.

【0018】第6の発明は、第5の発明において、前記
偏向手段はハーフミラーであり、かつ前記透過防止手段
が光軸に対し垂直に設けた透明板の中心に設けた透過防
止パターンであることを特徴とする。
In a sixth aspect based on the fifth aspect, the deflecting means is a half mirror, and the transmission preventing means is a transmission preventing pattern provided at the center of a transparent plate provided perpendicularly to the optical axis. It is characterized by

【0019】[0019]

【作用】第1乃至第4の発明の装置において、レーザ光
は被検面に対し、斜めに入射され、第1の受光素子は正
反射光成分に応じた出力信号を、第2の受光素子は散乱
光成分に応じた出力信号、をそれぞれ発生し、これら信
号から被検面の表面粗さが求められる。第5及び第6の
発明の装置では、正反射光成分がレンズとその焦点位置
の間に配置された偏向手段で偏向され、かつ焦点位置に
おいて正反射光成分の透過が防止される。
In the apparatus of the first to fourth inventions, the laser light is obliquely incident on the surface to be inspected, and the first light receiving element outputs the output signal according to the specular reflection light component to the second light receiving element. Generates an output signal corresponding to the scattered light component, and the surface roughness of the surface to be inspected is obtained from these signals. In the devices of the fifth and sixth inventions, the specular reflection light component is deflected by the deflecting means arranged between the lens and its focal position, and the transmission of the specular reflection light component is prevented at the focal position.

【0020】[0020]

【実施例】以下図面に示す本発明の実施例を説明する。
図1は本発明の表面粗さ検査装置の一実施例で、図6と
同一符号は同一又は類似の装置をあらわし、特に本実施
例の装置ではレーザ光13が被検面1に対し斜めに入射
するように構成することによりハーフミラー2を不要と
している。この場合、レーザ光の入射角度θを下式の如
く設定することが好適である。
Embodiments of the present invention shown in the drawings will be described below.
FIG. 1 shows an embodiment of the surface roughness inspection apparatus of the present invention. The same reference numerals as those in FIG. 6 represent the same or similar apparatuses. In particular, in the apparatus of this embodiment, the laser beam 13 is oblique to the surface 1 to be inspected. The half mirror 2 is not necessary because the light is incident. In this case, it is preferable to set the incident angle θ of the laser light according to the following equation.

【数3】2θ・cosθ>λ・fs (θ−π/2)cosθ>λ・fs ここでλはレーザ光の波長、fsは測定したい空間周波
数の最大値(例えば、fs=500(mm-1)程度)
Equation 3] 2θ · cosθ> λ · fs ( θ-π / 2) cosθ> λ · fs wavelengths where lambda is the laser beam, fs is the maximum value of the spatial frequency to be measured (e.g., fs = 500 (mm - 1 ) degree)

【0021】次に上記式の成立する根拠について説明す
る。本発明において、被検面でのレーザ光の入射・反射
の角度関係を図11に示す。ここで、被検面への入射光
の入射角度:θ(rad) 被検面の表面粗さの空間周波数:ν(1/mm) とすると、散乱光の散乱角度(正反射光から散乱光まで
の角度)ω(rad)は、
Next, the grounds for establishing the above equation will be described. In the present invention, FIG. 11 shows an angular relationship between incidence and reflection of laser light on the surface to be inspected. Here, when the incident angle of incident light on the surface to be inspected: θ (rad) and the spatial frequency of surface roughness of the surface to be inspected: ν (1 / mm), the scattering angle of scattered light (from specularly reflected light to scattered light Angle ω (rad) is

【数4】 ω=ν・λ/cosθ (0≦ν≦fs (1) である。散乱光としては±1次光が発生する。本発明の
表面粗さ検査装置で表面粗さを測定するために測光(検
出)する散乱光の角度をωmaxとすると、
Ω = ν · λ / cos θ (0 ≦ ν ≦ f s (1). ± 1st order light is generated as scattered light. Surface roughness is measured by the surface roughness inspection device of the present invention. In order to do this, let ω max be the angle of the scattered light to be measured (detected),

【数5】 ωmax=fs・λ/cosθ (2) である。従って光学系としては散乱角度が−ωmax〜ω
maxの範囲の散乱光は全て検出することが必要である。
Ω max = f s · λ / cos θ (2) Therefore, the scattering angle of the optical system is -ω max ~ ω
It is necessary to detect all scattered light in the max range.

【0022】ところで、図11の+1次光の散乱光につ
いて、散乱光が入射光と重なる方向であれば散乱光の検
出は不可能である。従って、
Incidentally, with respect to the scattered light of the + 1st-order light in FIG. 11, if the scattered light is in the direction in which it overlaps with the incident light, the scattered light cannot be detected. Therefore,

【数6】 ωmax<2θ (3) であることが必要である。また、−1次光の散乱光につ
いては、被検面の表面と平行になっては測光できないの
で、
It is necessary that ω max <2θ (3). In addition, the scattered light of the −1st order light cannot be measured when it is parallel to the surface of the test surface,

【数7】 ωmax<(π/2)−θ (4) であることが必要である。It is necessary that ω max <(π / 2) −θ (4).

【0023】式(3)に式(2)を代入すると、 fs・λ<2θ・cosθ (5) 式(4)に式(2)を代入する、 fs・λ<((π/2)−θ)cosθ (6) であり、前記式が成立する。Substituting equation (2) into equation (3), f s · λ <2θ · cos θ (5) Substituting equation (2) into equation (4), f s · λ <((π / 2 ) −θ) cosθ (6), and the above equation holds.

【0024】図2は本発明の他の実施例で、レンズ3の
焦点を中心に透明板21を光軸に対して傾けて設けてい
る。透明板21は、例えば図3に示すように構成され、
その中心部には正反射光成分14を反射する全反射膜2
1aを、所定のマスクパターンにより設け、この全反射
膜以外の散乱光透過部には角度依存性の反射防止膜21
bを設けている。
FIG. 2 shows another embodiment of the present invention in which a transparent plate 21 is provided so as to be tilted with respect to the optical axis with the focal point of the lens 3 as the center. The transparent plate 21 is configured, for example, as shown in FIG.
The total reflection film 2 that reflects the specularly reflected light component 14 is provided in the center thereof.
1a is provided by a predetermined mask pattern, and the scattered light transmitting portion other than the total reflection film has an angle-dependent antireflection film 21.
b is provided.

【0025】図4は更に本発明の他の実施例で、22は
正反射光成分14の偏向手段としてのハーフミラーであ
り、該ハーフミラー22はレンズ3とその焦点位置との
間に設けられている。ハーフミラー22で反射された正
反射光成分14はレンズ18で受光素子7に焦光され
る。またレンズ3の焦点を中心に透明板23が光軸に対
し垂直に設けられている。この透明板23は図5に示す
ように、その中心部(焦点位置)には透過防止パターン
(光吸収膜等)23aが設けられ、他の部分には垂直入
射される散乱光成分の反射防止膜23bが設けられてい
る。
FIG. 4 shows another embodiment of the present invention, in which 22 is a half mirror as a deflecting means for the specular reflection light component 14, and the half mirror 22 is provided between the lens 3 and its focal position. ing. The specular reflection light component 14 reflected by the half mirror 22 is focused on the light receiving element 7 by the lens 18. A transparent plate 23 is provided perpendicular to the optical axis with the focal point of the lens 3 as the center. As shown in FIG. 5, the transparent plate 23 is provided with a transmission preventing pattern (light absorbing film or the like) 23a at its central portion (focal point position) and prevents reflection of scattered light components vertically incident on other portions. A film 23b is provided.

【0026】[0026]

【発明の効果】以上説明したように本発明によれば、被
検面からの全反射光を、正反射光成分と散乱光成分とに
分け、それぞれを受光素子で検出し、しかもレーザ光を
被検面に斜めに入射させているので、先願装置において
レーザ光を被検面に垂直に入射させるために使用されて
いるハーフミラーを不要とすることができるので、ハー
フミラーへの入射角度による透過率歪みを考慮しなくて
もよく、信頼性ある測定が可能であると共に空間周波数
sによる散乱光成分が第2の受光素子へ支障なく到達
する。また偏向手段としてのミラーの支持部による散乱
光成分の遮光もなく、微小な散乱光量の有効利用が可能
である。更に偏向手段を反射膜で形成した場合でも、反
射率、透過率等の不安定さが改善される。
As described above, according to the present invention, the total reflection light from the surface to be inspected is divided into the specular reflection light component and the scattered light component, which are detected by the light receiving element, and the laser light is emitted. Since the light is incident on the surface to be inspected at an angle, it is possible to eliminate the need for the half mirror used in the prior application device to make the laser light incident vertically on the surface to be inspected. It is not necessary to consider the transmittance distortion due to the measurement, reliable measurement is possible, and the scattered light component due to the spatial frequency f s reaches the second light receiving element without any trouble. Further, since the scattered light component is not blocked by the supporting portion of the mirror as the deflecting means, it is possible to effectively use the minute scattered light amount. Further, even when the deflecting means is formed of a reflective film, instability such as reflectance and transmittance is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す概略構成図である。FIG. 1 is a schematic configuration diagram showing an embodiment of the present invention.

【図2】本発明の他の実施例を示す概略構成図である。FIG. 2 is a schematic configuration diagram showing another embodiment of the present invention.

【図3】図2の実施例における透明板の構成図である。FIG. 3 is a configuration diagram of a transparent plate in the embodiment of FIG.

【図4】本発明の更に他の実施例を示す概略構成図であ
る。
FIG. 4 is a schematic configuration diagram showing still another embodiment of the present invention.

【図5】図4の実施例における透明板の構成図である。5 is a configuration diagram of a transparent plate in the embodiment of FIG.

【図6】先願の表面粗さ検査装置の構成図である。FIG. 6 is a configuration diagram of a surface roughness inspection device of the prior application.

【図7】焦平面に現われたラウンホーファ回析像の説明
図である。
FIG. 7 is an explanatory diagram of a Raunhofer diffraction image that appears on the focal plane.

【図8】先願の他の表面粗さ検査装置の構成図である。FIG. 8 is a configuration diagram of another surface roughness inspection apparatus of the prior application.

【図9】従来の表面粗さ計の構成説明図である。FIG. 9 is an explanatory diagram of a configuration of a conventional surface roughness meter.

【図10】従来の他の表面粗さ計の構成説明図である。FIG. 10 is an explanatory diagram of a configuration of another conventional surface roughness meter.

【図11】本発明において、被検面におけるレーザ光の
入射、反射の角度関係を示す図である。
FIG. 11 is a diagram showing an angular relationship between incidence and reflection of laser light on a surface to be tested in the present invention.

【符号の説明】[Explanation of symbols]

1 被検体の被検面 2 ハーフミラー 3 集光レンズ 4 絞り板 5 焦平面 6 ミラー 6a ミラー保持部 7 第1の受光素子 8 像面 9 第2の受光素子 13 レーザ光 14 正反射光成分 15 散乱光成分 21,23 透明板 22 ハーフミラー 1 Test Surface of Subject 2 Half Mirror 3 Condenser Lens 4 Aperture Plate 5 Focal Plane 6 Mirror 6a Mirror Holder 7 First Light-Receiving Element 8 Image Surface 9 Second Light-Receiving Element 13 Laser Light 14 Specular Reflection Light Component 15 Scattered light component 21,23 Transparent plate 22 Half mirror

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年7月27日[Submission date] July 27, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項2[Name of item to be corrected] Claim 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0014】第2の発明は、第1の発明において、被検
面に対するレーザ光の入射角度θが、レーザ光波長λ、
測定したい空間周波数の最大値fsとして2θ・cos
θ>λ・fs及び(π/2−θ)cosθ>λ・fsと
なるようにしたことを特徴とする。
In a second aspect based on the first aspect, the incident angle θ of the laser beam with respect to the surface to be inspected is the laser beam wavelength λ,
2θ · cos as the maximum value fs of the spatial frequency to be measured
It is characterized in that θ> λ · fs and ( π / 2−θ ) cos θ> λ · fs.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0020[Correction target item name] 0020

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0020】[0020]

【実施例】以下図面に示す本発明の実施例を説明する。
図1は本発明の表面粗さ検査装置の一実施例で、図6と
同一符号は同一又は類似の装置をあらわし、特に本実施
例の装置ではレーザ光13が被検面1に対し斜めに入射
するように構成することによりハーフミラー2を不要と
している。この場合、レーザ光の入射角度θを下式の如
く設定することが好適である。
Embodiments of the present invention shown in the drawings will be described below.
FIG. 1 shows an embodiment of the surface roughness inspection apparatus of the present invention. The same reference numerals as those in FIG. 6 represent the same or similar apparatuses. In particular, in the apparatus of this embodiment, the laser beam 13 is oblique to the surface 1 to be inspected. The half mirror 2 is not necessary because the light is incident. In this case, it is preferable to set the incident angle θ of the laser light according to the following equation.

【数3】2θ・cosθ>λ・fs (π/2−θ)eosθ>λ・fs ここでλはレーザ光の波長、fsは測定したい空間周波
数の最大値(例えば、fs=500(mm−1)程度)
Equation 3] 2θ · cosθ> λ · fs ( π / 2θ) eosθ> λ · fs wavelengths where lambda is the laser beam, fs is the maximum value of the spatial frequency to be measured (e.g., fs = 500 (mm - 1 ) degree)

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0021[Correction target item name] 0021

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0021】次に上記式の成立する根拠について説明す
る。本発明において、被検面でのレーザ光の入射・反射
の角度関係を図11に示す。ここで、被検面への入射光
の入射角度:θ(rad) 被検面の表面粗さの空間周波数:ν(1/mm) とすると、散乱光の散乱角度(正反射光から散乱光まで
の角度)ω(rad)は、
Next, the grounds for establishing the above equation will be described. In the present invention, FIG. 11 shows an angular relationship between incidence and reflection of laser light on the surface to be inspected. Here, when the incident angle of incident light on the surface to be inspected: θ (rad) and the spatial frequency of the surface roughness of the surface to be inspected: ν (1 / mm), the scattering angle of scattered light (from specularly reflected light to scattered light Up to) ω (rad) is

【数4】 ω=ν・λ/cosθ (0≦ν≦f (1) である。散乱光としては±1次光が発生する。本発明の
表面粗さ検査装置で表面粗さを測定するために測光(検
出)する散乱光の角度をωmaxとすると、
Ω = ν · λ / cos θ (0 ≦ ν ≦ f s ) (1) As the scattered light, ± first-order light is generated. When the angle of scattered light measured (detected) to measure the surface roughness with the surface roughness inspection device of the present invention is ω max ,

【数5】 ωmax=f・λ/cosθ (2) である。従って光学系としては散乱角度が−ωmax
ωmaxの範囲の散乱光は全て検出することが必要であ
る。
Is a [number 5] ω max = f s · λ / cosθ (2). Therefore, as an optical system, the scattering angle is -ω max ~
It is necessary to detect all scattered light in the range of ω max .

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 被検面にレーザ光を入射し、被検面の表
面粗さによって発生する散乱光の光量を測定して被検面
の表面粗さを測定する表面粗さ検査装置において、被検
面からの反射光を集光するレンズと、このレンズの焦点
位置に配置され、正反射光成分を偏向させる偏向手段
と、前記正反射光成分を検出する第1の受光素子と、前
記被検面の像を結像する、前記レンズを含めた結像光学
系の像面に設けられた散乱光成分を検出する第2の受光
素子とを有し、被検面に対しレーザ光を斜めに入射させ
るように構成したことを特徴とする表面粗さ検査装置。
1. A surface roughness inspecting apparatus for measuring a surface roughness of a surface to be inspected by injecting a laser beam onto the surface to be inspected and measuring an amount of scattered light generated by the surface roughness of the surface to be inspected, A lens that collects the reflected light from the surface to be inspected, a deflection unit that is arranged at the focal position of the lens and that deflects the specular reflected light component, a first light receiving element that detects the specular reflected light component, and A second light receiving element for forming an image of the surface to be inspected, the second light receiving element being provided on the image surface of the imaging optical system including the lens, and detecting a scattered light component; A surface roughness inspection device characterized in that it is configured to be incident obliquely.
【請求項2】 被検面に対するレーザ光の入射角度θ
が、レーザ光波長λ、測定したい空間周波数の最大値f
sとして2θ・cosθ>λ・fs及び(θ−π/2)cosθ
>λ・fsとなるようにしたことを特徴とする請求項1
に記載の表面粗さ検査装置。
2. The incident angle θ of the laser beam with respect to the surface to be inspected
Is the laser light wavelength λ, the maximum value f of the spatial frequency to be measured
s as 2θ · cosθ> λ · f s and (θ-π / 2) cosθ
> Λ · f s , wherein:
Surface roughness inspection device according to.
【請求項3】 前記偏向手段を中心に配置した全透明板
を被検面からの反射光に対して所定の角度をつけて配設
したことを特徴とする請求項1又は2に記載の表面粗さ
検査装置。
3. The surface according to claim 1, wherein an all-transparent plate having the deflecting means arranged at the center is arranged at a predetermined angle with respect to the reflected light from the surface to be inspected. Roughness inspection device.
【請求項4】 前記全透明板の偏向手段は正反射光を反
射する全反射膜であり、該全反射膜以外の散乱光透過部
には角度依存性の反射防止膜を設けたことを特徴とする
請求項3に記載の表面粗さ検査装置。
4. The deflecting means of the totally transparent plate is a total reflection film that reflects specularly reflected light, and an angle-dependent antireflection film is provided in a scattered light transmitting portion other than the total reflection film. The surface roughness inspection device according to claim 3.
【請求項5】 被検面にレーザ光を入射し、被検面の表
面粗さによって発生する散乱光の光量を測定して被検面
の表面粗さを測定する表面粗さ検査装置において、被検
面からの反射光を焦光するレンズと、このレンズとその
焦点位置との間に配置され正反射光成分を偏向させる偏
向手段と、上記焦点位置で正反射光成分の透過を防止す
る透過防止手段と、前記正反射光成分を検出する第1の
受光素子と、前記被検面の像を結像する前記レンズを含
めた結像光学系の像面に設けられた散乱光成分を検出す
る第2の受光素子と、を有し、被検面に対しレーザ光を
斜めに入射させるように構成したことを特徴とする表面
粗さ検査装置。
5. A surface roughness inspection apparatus for measuring the surface roughness of a surface to be inspected by injecting a laser beam onto the surface to be inspected and measuring the amount of scattered light generated by the surface roughness of the surface to be inspected, A lens that focuses the reflected light from the surface to be inspected, a deflection unit that is arranged between the lens and the focal position thereof and that deflects the specular reflected light component, and prevents transmission of the specular reflected light component at the focal position. A scattered light component provided on an image plane of an image forming optical system including a transmission preventing unit, a first light receiving element for detecting the specular reflection light component, and the lens for forming an image of the surface to be inspected is provided. A second light receiving element for detecting, and is configured so that the laser light is obliquely incident on the surface to be inspected.
【請求項6】 前記偏向手段はハーフミラーであり、か
つ前記透過防止手段が光軸に対し垂直に設けた透明板の
中心に設けた透過防止パターンであることを特徴とする
請求項5に記載の表面粗さ検査装置。
6. The deflecting means is a half mirror, and the transmission preventing means is a transmission preventing pattern provided at the center of a transparent plate provided perpendicularly to the optical axis. Surface roughness inspection device.
JP21820694A 1994-08-19 1994-08-19 Surface roughness inspecting device Pending JPH0861940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21820694A JPH0861940A (en) 1994-08-19 1994-08-19 Surface roughness inspecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21820694A JPH0861940A (en) 1994-08-19 1994-08-19 Surface roughness inspecting device

Publications (1)

Publication Number Publication Date
JPH0861940A true JPH0861940A (en) 1996-03-08

Family

ID=16716290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21820694A Pending JPH0861940A (en) 1994-08-19 1994-08-19 Surface roughness inspecting device

Country Status (1)

Country Link
JP (1) JPH0861940A (en)

Similar Documents

Publication Publication Date Title
JPH05256647A (en) Inclination measuring device
JP2002071513A (en) Interferometer for immersion microscope objective and evaluation method of the immersion microscope objective
JPH02228505A (en) Interferometer
JPH04319615A (en) Optical height measuring apparatus
JPS61247944A (en) Measuring instrument for reflection factor
JPH04278408A (en) Device for optically measuring surface height of object
JP2000241128A (en) Plane-to-plane space measuring apparatus
JPH0861940A (en) Surface roughness inspecting device
US5404228A (en) Misalignment detection apparatus for transmissiometer with underfilled reflector
JP3040131B2 (en) Spherical surface scratch inspection device
JP2531449B2 (en) Laser displacement meter
JPS6370110A (en) Distance measuring apparatus
JP3222214B2 (en) Target surface position detection device
JPH0471453B2 (en)
JP2531450B2 (en) Laser displacement meter
JP2666032B2 (en) Measurement method of scattering light and scattering angle distribution
JP2588679Y2 (en) Surface roughness inspection device
JP2000097664A (en) Shearing interferometer
JPH08128806A (en) Optical displacement sensor
JPH09236408A (en) Focal position detecting device
JPS605896B2 (en) Reflectance measuring device
JP2565274B2 (en) Height measuring device
JPH0989535A (en) Surface configuration measuring method
JPH0334002B2 (en)
JP2002090302A (en) Light quantity measuring device