JP2588679Y2 - Surface roughness inspection device - Google Patents

Surface roughness inspection device

Info

Publication number
JP2588679Y2
JP2588679Y2 JP1993048916U JP4891693U JP2588679Y2 JP 2588679 Y2 JP2588679 Y2 JP 2588679Y2 JP 1993048916 U JP1993048916 U JP 1993048916U JP 4891693 U JP4891693 U JP 4891693U JP 2588679 Y2 JP2588679 Y2 JP 2588679Y2
Authority
JP
Japan
Prior art keywords
light
surface roughness
lens
scattered light
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1993048916U
Other languages
Japanese (ja)
Other versions
JPH0714308U (en
Inventor
克重 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Sankyo Corp
Original Assignee
Nidec Sankyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Sankyo Corp filed Critical Nidec Sankyo Corp
Priority to JP1993048916U priority Critical patent/JP2588679Y2/en
Publication of JPH0714308U publication Critical patent/JPH0714308U/en
Application granted granted Critical
Publication of JP2588679Y2 publication Critical patent/JP2588679Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed description of the invention]

【0001】[0001]

【産業上の利用分野】本考案は、高精度な表面である被
検面にレーザ光を入射し、その反射光について、総反射
光量と被検面の表面粗さによって発生する散乱光の光量
を測定して、両者の比をとることで被検面の表面粗さを
測定する表面粗さ検査装置の改良に関する。
The present invention relates to a laser beam incident on a surface to be measured, which is a high-precision surface, and the amount of scattered light generated by the total amount of reflected light and the surface roughness of the surface to be reflected. The present invention relates to an improvement of a surface roughness inspection apparatus for measuring the surface roughness of a surface to be measured by measuring the surface roughness of the surface to be measured by measuring the ratio of the two.

【0002】[0002]

【従来の技術】従来、この種の表面粗さ検査装置とし
て、図4および図5に示した粗さ計が知られている。
2. Description of the Related Art Conventionally, a roughness meter shown in FIGS. 4 and 5 has been known as this type of surface roughness inspection apparatus.

【0003】図4の粗さ計では、被検面に積分球を接触
して固定し、積分球に設けた第1の穴を通してレーザ光
を被検面に入射し、その正反射光を積分球に設けた第2
の穴を通して積分球の外に逃がすことで、散乱光のみを
積分球により検出し、入射光量と比較し、表面粗さを求
めている。
In the roughness meter shown in FIG. 4, an integrating sphere is brought into contact with and fixed to a surface to be inspected, a laser beam is incident on the surface to be inspected through a first hole provided in the integrating sphere, and the specularly reflected light is integrated. 2nd ball
Then, only the scattered light is detected by the integrating sphere by letting it out of the integrating sphere through the hole, and compared with the amount of incident light to determine the surface roughness.

【0004】図5の粗さ計では、レーザ光が被検面に入
射し、その反射光の正反射光と散乱光の光量分布を、光
検出器を走査することで測定し、全反射光量と散乱光量
を演算することで比較し、表面粗さを求めている。いず
れの場合も、被検面に入射角度θで入射した波長λの
ーザ光の総反射光量I、被検面の表面粗さにより発生
する散乱光量Iとすると、表面粗さのrms値σは、
公知の関係として、
In the roughness meter shown in FIG. 5, a laser beam is incident on a surface to be measured, and the distribution of the amount of regular reflection light and scattered light of the reflected light is measured by scanning a photodetector, and the total reflection light amount is measured. By calculating the amount of scattered light, the surface roughness is determined. In any case, the total quantity of reflected light I T Les <br/> laser light of wavelength λ incident at an angle θ to the test surface, when the amount of scattered light I S generated by the surface roughness of the test surface, The rms value σ of the surface roughness is
As a known relationship,

【数1】 から求められる。(Equation 1) Required from.

【0005】[0005]

【考案が解決しようとする課題】図4の粗さ計では、全
散乱光量を検査するために、積分球を用いているが、図
4の粗さ計の場合、正反射光を積分球外に逃がすために
第2の穴を設けている。こうした構成では、散乱光の散
乱角度(正反射光と散乱光のなす角)が大きい場合は、
散乱光は積分球の内壁に当たり、光検出器に検出される
が、散乱角度が小さい場合は、正反射光を逃がす第2の
穴から積分球外に逃げてしまい、散乱光として検出され
なくなる。ちなみに、散乱角度をω、被検面の表面粗さ
の空間周波数をνとすれば、
In the roughness meter shown in FIG. 4, an integrating sphere is used to inspect the total amount of scattered light. In the case of the roughness meter shown in FIG. A second hole is provided for escape to In such a configuration, if the scattering angle of the scattered light (the angle between the regular reflection light and the scattered light) is large,
The scattered light hits the inner wall of the integrating sphere and is detected by the photodetector. However, when the scattering angle is small, the scattered light escapes from the second hole through which the specularly reflected light escapes and is not detected as scattered light. By the way, if the scattering angle is ω and the spatial frequency of the surface roughness of the test surface is ν,

【数2】 として計算できる。仮に光源にHe−Neレーザ(λ=
0.633μm)を用い、入射角度θ=30°とする
と、空間周波数が25(mm −1 の場合に散乱角度は
1°である。入射光の光束幅を考慮すると、この散乱光
と正反射光を完全に分離することは困難である。更に、
高精度な表面である被検面では散乱光は微小光量である
が、積分球方式では、光検出器に導かれる光量は更に減
少するため、散乱光を集めにくく、ホトマルチメータな
どの高性能の検出器が必要となる。例えば、ポリゴンミ
ラー等の超精密切削加工面の場合、散乱光は約2%程度
の微小光量であり、集めにくい。加えて積分球自体も高
価である。
(Equation 2) Can be calculated as Assuming that a He-Ne laser (λ =
0.633 μm) and the incident angle θ = 30 °, the scattering angle is 1 ° when the spatial frequency is 25 (mm −1 ) . Considering the light beam width of the incident light, it is difficult to completely separate the scattered light and the specularly reflected light. Furthermore,
Although the amount of scattered light is very small on the surface to be measured, which is a high-precision surface, the amount of light guided to the photodetector is further reduced in the integrating sphere method. Is required. For example, in the case of an ultra-precision cut surface such as a polygon mirror, the amount of scattered light is a very small amount of about 2%, and is difficult to collect. In addition, the integrating sphere itself is expensive.

【0006】図5の粗さ計は、検出器(受光素子)を半
球状または半円状に走査して受光量を積分する構成とし
ているので、装置の大型化を招来し、測定するのに時間
がかかり、リアルタイムの測定はできない。また、測定
位置を高精度に制御する必要がある上に、データの信頼
性を得るための繰返し測定が困難であるなどの問題があ
った。
The roughness meter shown in FIG. 5 has a configuration in which a detector (light receiving element) is scanned in a hemispherical or semicircular shape and the amount of received light is integrated. It is time consuming and does not allow real-time measurements. In addition, there is a problem that it is necessary to control the measurement position with high accuracy, and it is difficult to perform repeated measurements to obtain data reliability.

【0007】[0007]

【考案の目的】本考案は、構造が極めて簡単で、組み立
ても容易で、小型、軽量で低コストの表面粗さ検査装置
を提供することを目的としている。
SUMMARY OF THE INVENTION An object of the present invention is to provide a small-sized, light-weight, low-cost surface roughness inspection apparatus which is extremely simple in structure and easy to assemble.

【0008】[0008]

【課題を解決するための手段】本考案は、高精度な表面
である被検面にレーザ光を入射し、その反射光につい
て、総反射光量と被検面の表面粗さによって発生する散
乱光の光量を測定して両者の比をとることで被検面の表
面粗さを測定する表面粗さ検査装置において、被検面か
らの反射光を集光するレンズと、このレンズの焦点位置
に配置され、正反射光成分を偏向させる偏向手段と、前
記正反射光成分を検出する第1の受光素子と、前記被検
面の像を結像する、前記レンズを含めた結像光学系の
面に設けられた散乱光成分を検出する第2の受光素子と
を有することを要旨としている。
According to the present invention, a laser beam is incident on a surface to be measured which is a high-precision surface, and the reflected light is scattered light generated by the total amount of reflected light and the surface roughness of the surface to be measured. In a surface roughness inspection device that measures the surface roughness of the surface to be measured by measuring the amount of light and calculating the ratio between the two, a lens that collects the reflected light from the surface to be measured and a lens that focuses the light A deflecting unit arranged to deflect the specular reflected light component, a first light receiving element for detecting the specular reflected light component, and an imaging optical system including the lens for forming an image of the surface to be measured . A second light receiving element for detecting a scattered light component provided on the image plane is provided.

【0009】[0009]

【作用】上記構成によれば、被検面での正反射光成分を
検出する第1の受光素子の出力と、被検面の像面に設け
られた散乱光成分を検出する第2の受光素子の出力とか
ら、被検面の表面粗さが求められる。
According to the above construction, the output of the first light receiving element for detecting a specularly reflected light component on the surface to be inspected and the second light receiving device for detecting a scattered light component provided on the image surface of the surface to be inspected are provided. The surface roughness of the test surface is determined from the output of the element.

【0010】[0010]

【実施例】図1および図2に、本考案の一実施例を示
す。図1および図2において、1は被検体の被検面、2
は被検面にレーザ光を入射させるハーフミラー、3は被
検面からの反射光を集光するレンズ、4はレンズの焦平
面5におかれた絞り板、6は絞り板の開口部にあって、
集光レンズの焦点位置に配置され、被検面からの正反射
光成分を偏向させるミラー、7は正反射光成分を検出す
るホトダイオードからなる第1の受光素子、8は被検面
1の像面、9は前記像面に設けられ、散乱光成分を検出
するホトダイオードからなる第2の受光素子であり、1
0,11は増幅器、12はデータ出力回路である。
1 and 2 show an embodiment of the present invention. 1 and 2, reference numeral 1 denotes a surface to be inspected of a subject;
Is a half mirror for allowing laser light to be incident on the surface to be measured, 3 is a lens for condensing light reflected from the surface to be measured, 4 is a diaphragm plate located on the focal plane 5 of the lens, and 6 is an aperture of the diaphragm plate. So,
A mirror disposed at the focal position of the condenser lens for deflecting a specularly reflected light component from the surface to be measured; 7, a first light receiving element comprising a photodiode for detecting the specularly reflected light component; A surface 9 is a second light receiving element provided on the image plane and composed of a photodiode for detecting a scattered light component.
0 and 11 are amplifiers, and 12 is a data output circuit.

【0011】上記構成において、被検面1に平行レーザ
光13がハーフミラー2を介して入射されると、その反
射光はレンズ3で集光される。その反射光のうち正反射
光14はレンズ3の焦点位置に配置したミラー6により
偏向され、第1の受光素子7に入射する。被検面1の表
面粗さのために発生した散乱光15はレンズ焦平面5上
では正反射光のスポットから離れた位置を通るため、ミ
ラー6で反射されず、像面8に被検面1の像を結像する
ので、そこに設置された受光素子9に全て入射する。
In the above configuration, when the parallel laser light 13 enters the surface 1 to be measured via the half mirror 2, the reflected light is condensed by the lens 3. Of the reflected light, the regular reflection light 14 is deflected by the mirror 6 arranged at the focal position of the lens 3 and enters the first light receiving element 7. The scattered light 15 generated due to the surface roughness of the test surface 1 passes on the lens focal plane 5 at a position distant from the spot of the specularly reflected light. Image one image
Therefore, all light is incident on the light receiving element 9 installed there.

【0012】上記構成では、レンズ3の焦平面5には、
被検面1のラウンホーファ回析像(図2を参照)が現わ
れる。ここでは、被検面1の表面による正反射光と、
検面1の表面形状(起伏)の空間周波数の極低周波成分
の散乱光16aのみがミラー6により偏向される。ミラ
ー6とその保持部6aで偏向またはけられずに像面8の
結像に寄与した散乱光16bは、被検面1の表面形状の
高周波数成分(表面粗さ)によるものである。したがっ
て、ミラー6とその保持部6aの開口を正反射光の集光
スポットに近い大きさまで、小さくすることで、正反射
散乱光を分離することが可能となる。なお、検出で
きる空間周波数の上限は、焦平面5の絞り板4の開口で
決定される。その場合、レンズ3の開口等は、絞り板4
の開口より充分大きいことが必要である。
In the above configuration, the focal plane 5 of the lens 3 is
A Raunhofer diffraction image of the test surface 1 (see FIG. 2) appears. Here, only the specularly reflected light from the surface of the test surface 1 and the scattered light 16 a of the extremely low frequency component of the spatial frequency of the surface shape (undulation) of the test surface 1 are deflected by the mirror 6. The scattered light 16b that has not been deflected or deflected by the mirror 6 and its holding portion 6a and contributed to the image formation on the image plane 8 is due to a high-frequency component (surface roughness) of the surface shape of the test surface 1. Therefore, by reducing the size of the opening of the mirror 6 and its holding portion 6a to a size close to the converging spot of the regular reflection light , it becomes possible to separate the regular reflection light and the scattered light. Note that the upper limit of the detectable spatial frequency is determined by the aperture of the diaphragm plate 4 in the focal plane 5. In that case, the aperture and the like of the lens 3
It is necessary that the opening is sufficiently larger.

【0013】ここで、正反射光14を受ける第1受光素
子7で検出された光量I、散乱光を受ける第2の受光
素子9で検出された光量Iとすれば、検出した散乱光
の全反射光に対する割合は、I/(I+I)で近
似的に示せる。更にIが充分小さい場合はI/I
としても実用上問題はない。
Here, if the light amount I o detected by the first light receiving element 7 receiving the specularly reflected light 14 and the light amount I S detected by the second light receiving element 9 receiving the scattered light, the detected scattered light Is approximately represented by I S / (I S + I o ). Further, if I S is sufficiently small, I S / I o
There is no practical problem.

【0014】図3に、本考案の他の実施例を示す。この
実施例は前記実施例において、レンズ3の後方部位に、
レンズ17を設け、レンズ3とレンズ17による被検面
1の像面8に第2の受光素子9を設けたものである。こ
の構成の場合、被検面1と第2の受光素子9の位置がレ
ンズ3とレンズ17によって共役関係になるが、このレ
ンズ系の横倍率の絶対値を小さくすることが容易なの
で、小さいものを選択できる利点がある。
FIG. 3 shows another embodiment of the present invention. This embodiment is different from the above embodiment in that a rear portion of the lens 3 is provided.
A lens 17 is provided, and a surface to be inspected by the lens 3 and the lens 17 is provided.
A second light receiving element 9 is provided on one image plane 8 . In the case of this configuration, the positions of the test surface 1 and the second light receiving element 9 are
The lens 3 and the lens 17 form a conjugate relationship.
It is easy to reduce the absolute value of the horizontal magnification of the lens system
In, there is an advantage that can be selected smaller.

【0015】[0015]

【考案の効果】以上に述べたように、被検面からの全反
射を正反射と散乱光を分け、それぞれを受光素子で検出
しているので、下記効果が得られる。 (1)構造が極めて簡単で、組み立ても容易であり、小
型軽量で低コストな表面粗さ検査装置を提供できる。 (2)散乱光検出を、被検面の像面で行うので、絞り外
周と、ミラーとその保持部でけられずに透過してきた散
乱光を全て容易に検出できる。 (3)リアルタイムの測定が可能である。
As described above, since the total reflection from the surface to be inspected is divided into specular reflection and scattered light, and each is detected by the light receiving element, the following effects can be obtained. (1) It is possible to provide a small and light-weight and low-cost surface roughness inspection apparatus which is extremely simple in structure and easy to assemble. (2) Since the scattered light detection is performed on the image plane of the surface to be detected, all the scattered light transmitted through the outer periphery of the diaphragm and the mirror and its holding portion without being shaken can be easily detected. (3) Real-time measurement is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本考案の一実施例を示す表面粗さ検査装置の構
成図である。
FIG. 1 is a configuration diagram of a surface roughness inspection apparatus showing one embodiment of the present invention.

【図2】焦平面に現われたラウンホーファン回析像の説
明図である。
FIG. 2 is an explanatory diagram of a Raunhofan diffraction image appearing on a focal plane.

【図3】本考案の他の実施例を示す表面粗さ検査装置の
構成図である。
FIG. 3 is a configuration diagram of a surface roughness inspection apparatus showing another embodiment of the present invention.

【図4】従来の表面粗さ計の構成説明図である。FIG. 4 is a diagram illustrating the configuration of a conventional surface roughness meter.

【図5】従来の他の表面粗さ計の構成説明図である。FIG. 5 is a diagram illustrating the configuration of another conventional surface roughness meter.

【符号の説明】[Explanation of symbols]

1 被検体の被検面 2 ハーフミラー 3 集光レンズ 4 絞り板 5 焦平面 6 ミラー 6a ミラー保持部 7 第1の受光素子 8 像面 9 第2の受光素子 10,11 増幅器 12 データ出力回路 13 平行レーザ光 14 正反射光 15 散乱光 16a 極低周波成分としての散乱光 16b 高周波成分(表面粗さ)としての散乱光 17 第2のレンズ DESCRIPTION OF SYMBOLS 1 Test surface of a test object 2 Half mirror 3 Condensing lens 4 Aperture plate 5 Focal plane 6 Mirror 6a Mirror holding part 7 First light receiving element 8 Image plane 9 Second light receiving element 10, 11 Amplifier 12 Data output circuit 13 Parallel laser light 14 Regular reflection light 15 Scattered light 16a Scattered light as extremely low frequency component 16b Scattered light as high frequency component (surface roughness) 17 Second lens

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】 被検面にレーザ光を入射し、被検面の表
面粗さによって発生する散乱光の光量を測定して被検面
の表面粗さを測定する表面粗さ検査装置において、被検
面からの反射光を集光するレンズと、このレンズの焦点
位置に配置され、正反射光成分を偏向させる偏向手段
と、前記正反射光成分を検出する第1の受光素子と、前
記被検面の像を結像する、前記レンズを含めた結像光学
系の像面に設けられた散乱光成分を検出する第2の受光
素子とを有することを特徴とする表面粗さ検査装置。
1. A surface roughness inspection apparatus for measuring a surface roughness of a test surface by irradiating a laser beam to the surface to be measured and measuring an amount of scattered light generated by the surface roughness of the test surface. A lens that condenses the reflected light from the surface to be measured, a deflecting unit that is disposed at a focal position of the lens and deflects the specular reflected light component, a first light receiving element that detects the specular reflected light component, Imaging optics including the lens for forming an image of a test surface
A second light receiving element provided on an image plane of the system for detecting a scattered light component.
JP1993048916U 1993-08-17 1993-08-17 Surface roughness inspection device Expired - Lifetime JP2588679Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1993048916U JP2588679Y2 (en) 1993-08-17 1993-08-17 Surface roughness inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1993048916U JP2588679Y2 (en) 1993-08-17 1993-08-17 Surface roughness inspection device

Publications (2)

Publication Number Publication Date
JPH0714308U JPH0714308U (en) 1995-03-10
JP2588679Y2 true JP2588679Y2 (en) 1999-01-13

Family

ID=12816582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1993048916U Expired - Lifetime JP2588679Y2 (en) 1993-08-17 1993-08-17 Surface roughness inspection device

Country Status (1)

Country Link
JP (1) JP2588679Y2 (en)

Also Published As

Publication number Publication date
JPH0714308U (en) 1995-03-10

Similar Documents

Publication Publication Date Title
US5608530A (en) Inspection device for measuring a geometric dimension of a part
JPS5999304A (en) Method and apparatus for comparing and measuring length by using laser light of microscope system
JPH05256647A (en) Inclination measuring device
JP2002071513A (en) Interferometer for immersion microscope objective and evaluation method of the immersion microscope objective
EP1336095B1 (en) Measurement of surface defects
JPH04319615A (en) Optical height measuring apparatus
JP3377820B2 (en) Surface curvature measurement device
JP3520356B2 (en) Magnetic film defect inspection system for magnetic disks
US6794625B2 (en) Dynamic automatic focusing method and apparatus using interference patterns
JP2588679Y2 (en) Surface roughness inspection device
JPH06508218A (en) Deflection type optical device with wide measurement range
JP2681829B2 (en) Raindrop particle size distribution measuring device
JP2531449B2 (en) Laser displacement meter
JP3222214B2 (en) Target surface position detection device
JPH032544A (en) Rain drop measuring instrument
JPH0729452Y2 (en) Displacement measuring device
JPH0471453B2 (en)
JP2001027580A (en) Method and apparatus for measurement of transmission decentration of lens
JPS60144606A (en) Position measuring device
JPH0357914A (en) Optical probe
JPH0725618Y2 (en) Displacement measuring device
JPH0783620A (en) Laser displacement meter
JP2004037191A (en) Spherical part measuring method and spherical part measuring device
JPH09236408A (en) Focal position detecting device
JPH08166209A (en) Polygon mirror evaluating device