JPH0725618Y2 - Displacement measuring device - Google Patents

Displacement measuring device

Info

Publication number
JPH0725618Y2
JPH0725618Y2 JP1988040318U JP4031888U JPH0725618Y2 JP H0725618 Y2 JPH0725618 Y2 JP H0725618Y2 JP 1988040318 U JP1988040318 U JP 1988040318U JP 4031888 U JP4031888 U JP 4031888U JP H0725618 Y2 JPH0725618 Y2 JP H0725618Y2
Authority
JP
Japan
Prior art keywords
light
measurement
measuring device
image
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1988040318U
Other languages
Japanese (ja)
Other versions
JPH01144808U (en
Inventor
憲司 松丸
貴廣 中村
敦郎 田沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP1988040318U priority Critical patent/JPH0725618Y2/en
Publication of JPH01144808U publication Critical patent/JPH01144808U/ja
Application granted granted Critical
Publication of JPH0725618Y2 publication Critical patent/JPH0725618Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 [産業上の利用分野] 本発明は、測定対象に照射したレーザ光の反射・散乱光
を光検出素子でとらえ、測定対象の変位を該光検出素子
の出力信号で測定する変位測定装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention captures the reflected / scattered light of a laser beam with which a measurement target is irradiated by a photodetector, and the displacement of the measurement target is detected by the output signal of the photodetector. The present invention relates to a displacement measuring device for measuring.

[従来の技術] 第4図は、前記変位測定装置10の動作原理を説明するた
めの模式構造図である。同図に示すように、この変位測
定装置においては、半導体レーザ1が放射したレーザ光
は照明レンズ2を通して細く絞られ、測定対象3の表面
に照射される。測定対象3の表面で反射・散乱した光の
一部は結像レンズ4を通って光検出素子5の受光面上に
投影され反射点の像を作る。前記測定対象3が前後に移
動すると、それに応じて結像レンズ4で作られた反射点
の像も光検出素子5の上を移動する。この光検出素子5
は光が受光面上のどの位置に入射しているかを電気出力
として演算回路へ伝えるものである。従って、測定対象
3の表面の移動量を電気信号として取り出すことができ
る。
[Prior Art] FIG. 4 is a schematic structural diagram for explaining the operation principle of the displacement measuring apparatus 10. As shown in the figure, in this displacement measuring device, the laser light emitted from the semiconductor laser 1 is narrowed down through the illumination lens 2 and is irradiated onto the surface of the measuring object 3. Part of the light reflected / scattered on the surface of the measurement target 3 passes through the imaging lens 4 and is projected on the light receiving surface of the photodetector 5 to form an image of a reflection point. When the measurement target 3 moves back and forth, the image of the reflection point formed by the imaging lens 4 also moves on the light detection element 5 accordingly. This photo detector 5
Is for transmitting to the arithmetic circuit as an electric output the position on the light receiving surface where the light is incident. Therefore, the amount of movement of the surface of the measurement target 3 can be extracted as an electric signal.

[考案が解決しようとする課題] 第5図に示すように、表面の半部がガラス面11のまま
で、残りの半部がAu蒸着面12(以下、Au面12と呼ぶ。)
とされているガラス板の表面を測定対象とする。ここで
前述のような変位測定装置10を用い、Au面12とガラス面
11との境界線13に対して直角となる図中矢印Aで示すよ
うなルートで変位測定を行なった。第6図(a)〜
(c)は、その結果を示したものであり、同図(b)に
示したのは測定範囲の中央における測定値であり、
(c)は装置10と測定対象3の距離が(b)よりも700
μm大きい場合で、(a)は700μm短い場合である。
これらの測定結果からわかるように、Au面12に近いガラ
ス面11の測定値は大きく乱れており、検出されるべきで
ない信号のピークがあらわれている。このように従来の
変位測定装置によれば、例えば金属蒸着面の近くにある
ガラス面を測定する場合等のように、表面状態の大きく
異なる境界領域付近を測定しようとしても正しい結果が
得られないことがあるという問題があった。
[Problems to be Solved by the Invention] As shown in FIG. 5, one half of the surface remains the glass surface 11, and the other half of the surface is an Au vapor deposition surface 12 (hereinafter referred to as Au surface 12).
The surface of the glass plate which is said to be the object of measurement. Here, using the displacement measuring device 10 as described above, the Au surface 12 and the glass surface
Displacement measurement was performed by a route that is perpendicular to the boundary line 13 with 11 and is shown by an arrow A in the figure. FIG. 6 (a)-
(C) shows the result, and FIG. (B) shows the measured value at the center of the measurement range.
In (c), the distance between the device 10 and the measurement target 3 is 700 than in (b).
In the case of μm larger, (a) is 700 μm shorter.
As can be seen from these measurement results, the measured values on the glass surface 11 near the Au surface 12 are greatly disturbed, and peaks of signals that should not be detected appear. As described above, according to the conventional displacement measuring device, a correct result cannot be obtained even if an attempt is made to measure the vicinity of the boundary region where the surface conditions are greatly different, such as when measuring a glass surface near the metal deposition surface. There was a problem.

本考案はこのような事情に鑑みてなされたもので、レー
ザ光と光検出素子を用いた変位測定装置において、測定
点周辺の表面状態の影響を受けることなく変位測定を行
ないうるようにすることを目的としている。
The present invention has been made in view of such circumstances, and in a displacement measuring device using a laser beam and a photodetector, it is possible to perform displacement measurement without being affected by the surface condition around the measurement point. It is an object.

[課題を解決するための手段] 本考案の変位測定装置は、反射率の高い領域と反射率の
低い領域が境界をもって隣接する測定面を備えた測定対
象に適用され、レーザ光源と、レーザ光源からの光を集
光し測定対象物の測定面に照射する光ビームを作るため
の照明レンズと、測定面で反射・散乱した光を結像させ
るため集光する結像レンズと、結像レンズにより集光さ
れた測定面からの光ビームが受光面に結像される光検出
素子と、前記測定面の変位を前記光検出素子表面におけ
る結像点の移動に対応して出力する演算回路と、前記測
定面上の測定点が前記境界を横切って移動するように少
なくとも前記レーザ光源と前記照明レンズと前記結像レ
ンズと前記光検出素子とを前記測定面に対して相対的に
移動させる移動手段とを備えた変位測定装置において、
前記照明レンズの前方であって前記測定対象物の測定面
に直接対面する位置に、透明体の内部に光を吸収させる
光吸収体を中心の光軸からの位置によって含有量が異な
るように分散させ、光ビームが照射される中心部の透過
率が高く、周辺部にいくに従い透過率が低くなるように
したアポディゼーションフィルタを設けたことを特徴と
する。
[Means for Solving the Problem] The displacement measuring device of the present invention is applied to a measuring object having a measuring surface in which a region having a high reflectance and a region having a low reflectance are adjacent to each other with a boundary, and a laser light source and a laser light source are provided. An illumination lens for converging the light from the source and irradiating the measurement surface of the measurement object with a light beam, an imaging lens for condensing the light reflected and scattered on the measurement surface to form an image, and an imaging lens A photodetector element on which a light beam from the measurement surface focused by the light is focused on the light receiving surface; and an arithmetic circuit for outputting the displacement of the measurement surface in response to the movement of the imaging point on the surface of the photodetector element. A movement that moves at least the laser light source, the illumination lens, the imaging lens, and the photodetector element relative to the measurement surface so that the measurement point on the measurement surface moves across the boundary. Displacement measuring device with means In the
In front of the illumination lens and at a position directly facing the measurement surface of the measurement object, a light absorber that absorbs light inside the transparent body is dispersed so that the content varies depending on the position from the central optical axis. In addition, an apodization filter having a high transmittance in the central portion irradiated with the light beam and a lower transmittance in the peripheral portion is provided.

[作用] 測定対象の表面に照射されたレーザ光は反射・散乱し、
スリットを通って光検出素子の受光面上に結像する。測
定対象が変位すると結像点は受光面上で移動し、これに
対応した電気信号が光検出素子から出力される。本考案
では、装置の投光側に設けられたフィルタが、照射され
る前記レーザ光の不要周辺光を減衰させている。従っ
て、表面状態が一様でない測定対象において低反射率の
領域を測定する際、不要周辺光が高反射率の領域に反射
して光検出素子に入射することはない。
[Operation] The laser light emitted to the surface of the measurement target is reflected and scattered,
An image is formed on the light receiving surface of the photodetector through the slit. When the measurement target is displaced, the image formation point moves on the light receiving surface, and an electric signal corresponding to this is output from the photodetection element. In the present invention, a filter provided on the light projecting side of the device attenuates unnecessary ambient light of the emitted laser light. Therefore, when measuring a low reflectance region in a measurement target whose surface state is not uniform, unnecessary ambient light does not reflect on the high reflectance region and enter the photodetection element.

[実施例] まず、測定対象の表面状態が大きく異なる境界領域付近
を従来の変位測定対象で測定する場合に測定不能の領域
が生じてしまう理由について、本考案者の新たに把握し
た問題点を説明し、本考案を案出するに至った背景につ
いて述べる。さて、第5図に示すような測定方法で、金
属蒸着面としてのAu面12に距離の近いガラス面11を測定
した場合を考える。第3図は、このような測定方法にお
いて測定対象を平面視した状態を示す図である。同図中
矢印20はレーザ光の入射光路を示し、矢印21はレーザ光
の反射光路を示す。また同図中30は、ガラス面11上の測
定点を示すと共に、光検出素子5上に結像するビームの
スポットを示す。また同図中40は測定面上に投影した光
検出素子5の像である。さて、変位測定装置における受
光系の像倍率が低い場合には、第3図に示すように測定
面上における光検出素子5の像40は、スポット30に対し
てかなり大きいものとなる。この像40の範囲内には、測
定すべきガラス面11だけでなく、Au面12も含まれている
が、Au面12の反射率はガラス面11よりも高く、Au面12で
反射した光の一部は光検出素子5に到達しているものと
考えられる。測定時には、この像40に対応する光検出素
子5の受光面上において、ガラス面11の変位に応じてス
ポット30が境界線13とほぼ平行な方向に移動することに
なるが、Au面12で反射したスポット30の不要な周辺光も
光検出素子5に入射するので、そのために変位測定装置
の光検出素子5に結像するスポット30は、その強度分布
のパターンが校正時とずれてくる。このような理由によ
って、高反射領域の近くにある、低反射率領域が測定不
能になるものと考えられる。
[Embodiment] First, regarding the reason why an unmeasurable region occurs when measuring the vicinity of the boundary region where the surface state of the measurement target greatly differs with the conventional displacement measurement target, a problem newly found by the present inventor is described. The background to the invention and the invention was devised. Now, let us consider a case where the glass surface 11 close to the Au surface 12 as the metal deposition surface is measured by the measuring method as shown in FIG. FIG. 3 is a diagram showing a state in which a measurement target is viewed in a plane in such a measuring method. In the figure, arrow 20 indicates the incident light path of the laser light, and arrow 21 indicates the reflected light path of the laser light. In addition, reference numeral 30 in the figure indicates a measurement point on the glass surface 11, and also indicates a spot of a beam imaged on the photodetector 5. Reference numeral 40 in the figure is an image of the photo-detecting element 5 projected on the measurement surface. Now, when the image magnification of the light receiving system in the displacement measuring device is low, the image 40 of the photo-detecting element 5 on the measurement surface becomes considerably larger than the spot 30 as shown in FIG. In the range of this image 40, not only the glass surface 11 to be measured, but also the Au surface 12 is included, but the reflectance of the Au surface 12 is higher than that of the glass surface 11, and the light reflected by the Au surface 12 It is considered that a part of the light reaches the photodetector 5. At the time of measurement, on the light receiving surface of the light detecting element 5 corresponding to this image 40, the spot 30 moves in a direction substantially parallel to the boundary line 13 according to the displacement of the glass surface 11, but on the Au surface 12 Since unnecessary peripheral light of the reflected spot 30 is also incident on the photodetector 5, the spot 30 imaged on the photodetector 5 of the displacement measuring device has an intensity distribution pattern which is different from that at the time of calibration. For this reason, it is considered that the low reflectance region near the high reflectance region becomes unmeasurable.

そこで、本考案者は、従来知られていなかったこのよう
な問題を把握した上で、変位測定装置の投光側に、不要
周辺光を吸収するためのフィルタを設けた。第1図は、
この考案の一実施例を示すもので、従来と同様の部分に
は第4図と同一の符号を付して説明を省略する。この変
位測定装置50は、装置の投光側である照明レンズ2の前
方に特殊なアポディゼイションフィルタ51(以下、フィ
ルタ51と呼ぶ。)を設けてある。従来公知のアポディゼ
イションフィルタは、ガラス製の基体の表面に金属膜を
付けた構造であり、電磁波を所定の強度パターンに整え
るためのものであるが、光を通すと金属粒子によって回
析・散乱が発生してしまう。即ち、変位測定装置におい
てレーザ光を絞り、ビームウエストの部分を測定面にあ
てるようにしても、この従来のアポディゼーションフィ
ルタを用いると、ビーム中心の強い光のまわりには回析
・散乱等によって不要周辺光が生じてしまい、あるいは
もとからなる不要周辺光が増大されてしまうのである。
本実施例のフィルタ51は、このような問題点が解消され
た本考案者の創案になるものであって、ガラス製の基体
の内部に吸収体を分散させた構成とされている。吸収体
はNDフィルタ等に用いられるものを利用でき、中心の光
軸からの位置によって吸収体の含有量に変化をつけるこ
とで、中心光はそのまま通し、不要周辺光は効果的に減
衰させるようになっている。
Therefore, the present inventor, after grasping such a problem that has not been known in the past, provided a filter for absorbing unnecessary ambient light on the light projecting side of the displacement measuring device. Figure 1 shows
This embodiment shows one embodiment of the present invention, and the same parts as those of the prior art are designated by the same reference numerals as those in FIG. 4 and their explanations are omitted. This displacement measuring device 50 is provided with a special apodization filter 51 (hereinafter referred to as filter 51) in front of the illumination lens 2 which is the light projecting side of the device. The conventionally known apodization filter has a structure in which a metal film is attached to the surface of a glass substrate, and is for adjusting electromagnetic waves to a predetermined intensity pattern, but when light is passed through, it is diffracted by metal particles.・ Scattering occurs. That is, even if the laser beam is narrowed down in the displacement measuring device and the beam waist portion is applied to the measurement surface, when the conventional apodization filter is used, diffraction / scattering around strong light at the beam center As a result, unnecessary ambient light is generated, or the original unnecessary ambient light is increased.
The filter 51 of the present embodiment is an idea of the present inventor in which such a problem is solved, and has a structure in which an absorber is dispersed inside a glass base. The absorber used for ND filters, etc. can be used.By changing the content of the absorber depending on the position from the optical axis of the center, the central light passes through as it is and the unnecessary peripheral light is effectively attenuated. It has become.

このようなフィルタ51を設ければ、不要周辺光は大幅に
減少するので、第3図に示すように光検出素子5の像40
の内側にAu面12があっても、該Au面12で反射してくるス
ポット30の不要な周辺光はきわめて少い。従って第5図
と同様の方法でガラス面11及びAu面12を測定すると、第
2図の測定結果に示すように、Au面12に近いガラス面11
において検出されるべきでない信号のピークは、従来よ
りも大幅に小さくなっている。即ち、本実施例によれ
ば、Au面12の近傍にあるガラス面11の測定可能領域が従
来よりも広がり、反射率の高い金属蒸着面にかなり近い
部分まで測定可能となった。
If such a filter 51 is provided, unnecessary ambient light is significantly reduced, and therefore, as shown in FIG.
Even if the Au surface 12 is inside, the unnecessary peripheral light of the spot 30 reflected by the Au surface 12 is extremely small. Therefore, when the glass surface 11 and the Au surface 12 are measured by the same method as in FIG. 5, the glass surface 11 close to the Au surface 12 is shown as shown in the measurement result of FIG.
The peaks of the signal that should not be detected at are much smaller than before. That is, according to this example, the measurable region of the glass surface 11 in the vicinity of the Au surface 12 was wider than in the conventional case, and it was possible to measure a portion considerably close to the metal vapor deposition surface having high reflectance.

このフィルタは入反射面内にあるレーザ光の不要周辺光
も減衰させるため、第3図において入反射面とガラス面
の移動方向とを平行にして測定した場合においても上記
と同様の効果が得られる。
Since this filter also attenuates unnecessary ambient light of the laser light in the entrance / reflection surface, the same effect as above can be obtained even when the movement direction of the entrance / reflection surface and the glass surface are parallel in FIG. To be

[考案の効果] 本考案によれば、光ビームが照射される中心部の透過率
が高く周辺部にいくに従い透過率が低くなるようにした
アポディゼーションフィルタを、光を照射する側におい
て測定対象の測定面に直接対面する位置に設けた。この
ため、測定対象に到達する光ビームの強度分布パターン
における裾の部分が減衰され、光検出素子上にできる光
スポットの裾がきれいになる。従って、反射率の高い領
域と反射率の低い領域が境界をもって隣接する測定面を
備えた測定対象において、前記境界を横切って測定した
際、前記裾の部分が測定対象の反射率の高い領域で反射
されても、光検出素子上の光スポットの強度パターンの
重心は前記裾の部分による影響を受けにくくなり、高精
度の測定ができる。この効果は、アポディゼーションフ
ィルタの設置位置として測定面の照明レンズの間の位置
を選択したことによるものであり、他の位置、例えば受
光レンズの前にアポディゼーションフィルタを設置して
も光検出素子に入る光量が低下するだけで光検出素子上
にできる光スポットの裾がきれいになることはない。ま
た、光検出素子の前面にアポディゼーションフィルタを
設置しても、測定対象が変位して光検出素子上の光スポ
ットが動くと、フィルタの透過率に傾斜がある位置に光
スポットが当たってしまうので、光検出素子上にできる
光スポットの裾がきれいになるという効果は得られな
い。さらに、レーザ光源と照明レンズとの間にアポディ
ゼーションフィルタを入れた場合には、照明レンズでの
反射光が光ビームに重なり、光ビームの裾が拡がること
になり効果が得られない。
[Advantage of the Invention] According to the present invention, an apodization filter, which has a high transmittance in the central part irradiated with a light beam and a lower transmittance in the peripheral part, is measured on the light irradiation side. It was provided at a position directly facing the measurement surface of the object. For this reason, the skirt portion of the intensity distribution pattern of the light beam reaching the measurement target is attenuated, and the skirt of the light spot formed on the photodetection element becomes clear. Therefore, in a measurement object having a measurement surface in which a high reflectance area and a low reflectance area are adjacent to each other with a boundary, when measuring across the boundary, the hem portion is a high reflectance area of the measurement object. Even if it is reflected, the center of gravity of the intensity pattern of the light spot on the photodetection element is less likely to be affected by the skirt portion, and highly accurate measurement can be performed. This effect is due to the selection of the position between the illumination lenses on the measurement surface as the installation position of the apodization filter, and even if the apodization filter is installed at another position, for example, in front of the light receiving lens, The bottom of the light spot formed on the photodetector is not cleaned only by reducing the amount of light entering the detector. Even if an apodization filter is installed on the front surface of the photodetector, when the measurement target is displaced and the light spot on the photodetector moves, the light spot hits the position where the transmittance of the filter is inclined. Therefore, it is not possible to obtain the effect that the bottom of the light spot formed on the photodetector is clean. Furthermore, when an apodization filter is inserted between the laser light source and the illumination lens, the reflected light from the illumination lens overlaps the light beam, and the skirt of the light beam widens, which is not effective.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の一実施例を示す模式的斜視図、第2図
は同実施例においてガラス面とAu面とを連続して測定し
た結果を示すグラフ、第3図は同実施例における測定点
付近の測定面を示す平面図で、光検出素子の像を示した
図、第4図は従来の変位測定装置の構成を示す模式的斜
視図、第5図は同従来例の装置におけるAu面及びガラス
面の変位測定方法を示す斜視図、第6図は第5図の測定
によって得られた変位測定の結果を示すグラフである。 3……測定対象、5……光検出素子、11……反射率が低
い領域としてのガラス面、12……反射率が高い領域とし
てのAu蒸着面(Au面)、30……結像点としてのスポッ
ト、50……変位測定装置、51……アポディゼーションフ
ィルタ(フィルタ)
FIG. 1 is a schematic perspective view showing an embodiment of the present invention, FIG. 2 is a graph showing a result of continuously measuring a glass surface and an Au surface in the same embodiment, and FIG. FIG. 4 is a plan view showing a measurement surface in the vicinity of a measurement point, showing an image of a photodetector, FIG. 4 is a schematic perspective view showing a configuration of a conventional displacement measuring device, and FIG. FIG. 6 is a perspective view showing the displacement measuring method of the Au surface and the glass surface, and FIG. 6 is a graph showing the displacement measurement results obtained by the measurement of FIG. 3 ... Object to be measured, 5 ... Photodetector, 11 ... Glass surface as low reflectance area, 12 ... Au vapor deposition surface (Au surface) as high reflectance area, 30 ... Imaging point As a spot, 50 …… Displacement measuring device, 51 …… Apodization filter (filter)

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】反射率の高い領域と反射率の低い領域が境
界をもって隣接する測定面を備えた測定対象に適用さ
れ、レーザ光源と、レーザ光源からの光を集光し測定対
象物の測定面に照射する光ビームを作るための照明レン
ズと、測定面で反射・散乱した光を結像させるため集光
する結像レンズと、結像レンズにより集光された測定面
からの光ビームが受光面に結像される光検出素子と、前
記測定面の変位を前記光検出素子表面における結像点の
移動に対応して出力する演算回路と、前記測定面上の測
定点が前記境界を横切って移動するように少なくとも前
記レーザ光源と前記照明レンズと前記結像レンズと前記
光検出素子とを前記測定面に対して相対的に移動させる
移動手段とを備えた変位測定装置において、 前記照明レンズの前方であって前記測定対象物の測定面
に直接対面する位置に、透明体の内部に光を吸収させる
光吸収体を中心の光軸からの位置によって含有量が異な
るように分散させ、光ビームが照射される中心部の透過
率が高く、周辺部にいくに従い透過率が低くなるように
したアポディゼーションフィルタを設けたことを特徴と
する変位測定装置。
1. A high-reflectance region and a low-reflectance region are applied to a measurement object having a measurement surface adjacent to each other with a boundary, and a laser light source and light from the laser light source are condensed to measure the measurement object. The illumination lens for creating a light beam to illuminate the surface, the imaging lens for focusing the light reflected / scattered on the measurement surface to form an image, and the light beam from the measurement surface focused by the imaging lens A photo-detecting element that forms an image on the light-receiving surface, an arithmetic circuit that outputs the displacement of the measuring surface corresponding to the movement of the image-forming point on the surface of the photo-detecting element, and a measuring point on the measuring surface that defines the boundary. In a displacement measuring device including at least the laser light source, the illumination lens, the imaging lens, and a moving unit that relatively moves the photodetection element with respect to the measurement surface so as to move across, the illumination In front of the lens At a position directly facing the measurement surface of the measurement object, a light absorber that absorbs light inside the transparent body is dispersed so that the content varies depending on the position from the central optical axis, and a light beam is irradiated. A displacement measuring device comprising an apodization filter having a high transmittance in the central portion and a lower transmittance in the peripheral portion.
JP1988040318U 1988-03-29 1988-03-29 Displacement measuring device Expired - Lifetime JPH0725618Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1988040318U JPH0725618Y2 (en) 1988-03-29 1988-03-29 Displacement measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1988040318U JPH0725618Y2 (en) 1988-03-29 1988-03-29 Displacement measuring device

Publications (2)

Publication Number Publication Date
JPH01144808U JPH01144808U (en) 1989-10-04
JPH0725618Y2 true JPH0725618Y2 (en) 1995-06-07

Family

ID=31266789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1988040318U Expired - Lifetime JPH0725618Y2 (en) 1988-03-29 1988-03-29 Displacement measuring device

Country Status (1)

Country Link
JP (1) JPH0725618Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011106896A (en) 2009-11-16 2011-06-02 Mitsutoyo Corp Non-contact probe and measuring machine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5276944A (en) * 1975-12-23 1977-06-28 Canon Inc Optical filter
JPH044167Y2 (en) * 1984-11-06 1992-02-07

Also Published As

Publication number Publication date
JPH01144808U (en) 1989-10-04

Similar Documents

Publication Publication Date Title
US5159412A (en) Optical measurement device with enhanced sensitivity
US4669875A (en) Foreign particle detecting method and apparatus
JP2529691B2 (en) Optical distance measuring device and device for determining the position of a component on a support member
US4568835A (en) Apparatus for detecting foreign matters on a planar substrate
JPH0725618Y2 (en) Displacement measuring device
JPH0771924A (en) Method and device for measuring thin film characteristics
JPS63140904A (en) Scattered light measuring instrument
JPH0444204B2 (en)
JPH0729452Y2 (en) Displacement measuring device
JP3040131B2 (en) Spherical surface scratch inspection device
JP3106521B2 (en) Optical inspection equipment for transparent substrates
JP2776823B2 (en) Optical detector
JP2565274B2 (en) Height measuring device
JPH03115844A (en) Detection of surface defect
JP3491988B2 (en) Laser doppler speedometer
JPH02193041A (en) Particle size distribution apparatus
JPH0678889B2 (en) Height measuring device
JP2002139309A (en) Optical characteristics measuring device, film thickness measuring device, polishing end point determining device and polishing device
JPH0334577B2 (en)
JP3158538B2 (en) Apparatus and method for optical inspection of substrate surface
JPH05240769A (en) Particle counter
JPH09236408A (en) Focal position detecting device
JP2001050720A (en) Surface inspection method and device thereof
JP2588679Y2 (en) Surface roughness inspection device
JPS63208804A (en) Wavelength selective condenser