JP3222214B2 - Target surface position detection device - Google Patents

Target surface position detection device

Info

Publication number
JP3222214B2
JP3222214B2 JP25256092A JP25256092A JP3222214B2 JP 3222214 B2 JP3222214 B2 JP 3222214B2 JP 25256092 A JP25256092 A JP 25256092A JP 25256092 A JP25256092 A JP 25256092A JP 3222214 B2 JP3222214 B2 JP 3222214B2
Authority
JP
Japan
Prior art keywords
target surface
objective lens
optical system
scanning
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25256092A
Other languages
Japanese (ja)
Other versions
JPH06102011A (en
Inventor
卓司 佐藤
光雄 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Topcon Corp
Original Assignee
Toshiba Corp
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Topcon Corp filed Critical Toshiba Corp
Priority to JP25256092A priority Critical patent/JP3222214B2/en
Publication of JPH06102011A publication Critical patent/JPH06102011A/en
Application granted granted Critical
Publication of JP3222214B2 publication Critical patent/JP3222214B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、主光学系の焦点位置
に対する対象面の位置を検出する対象面の位置検出装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a target surface position detecting device for detecting a position of a target surface with respect to a focal position of a main optical system.

【0002】[0002]

【従来の技術】従来の光学装置には、対象物の表面(対
象面)の位置を位置検出装置(位置検出光学系)で検出
して、主光学系の対象面に対する位置を検出させる様に
したものがある。この光学装置としては、例えば、写真
技術を用いてウエハ(対象物)に電子回路を構築する際
に、或は構築した後等において、ウエハの表面(対象
面)の位置を位置検出装置により検出して、ウエハの表
面を主光学系で観察・測定或は表面処理したりする様に
したものがある。
2. Description of the Related Art In a conventional optical device, the position of a surface (target surface) of an object is detected by a position detecting device (position detecting optical system), and the position of the main optical system with respect to the target surface is detected. There is something. For example, when an electronic circuit is constructed on a wafer (object) using photographic technology or after the construction, the position of the surface (object surface) of the wafer is detected by a position detecting device. In some cases, the surface of the wafer is observed / measured or surface-treated with a main optical system.

【0003】この種の光学装置に用いられる位置検出装
置としては、図3に示した様に主光学系とは別の焦点検
出装置(焦点検出光学系)で対象物に照射して、対象面
の位置を検出するタイプのもの、或は、図4に示した様
にTTLタイプのものが考えられている。以下、この2
つのタイプにつき説明する。
As a position detecting device used in this type of optical device, as shown in FIG. 3, an object is irradiated with a focus detecting device (focus detecting optical system) different from the main optical system, and a target surface is irradiated. , Or a TTL type as shown in FIG. Hereafter, this 2
The two types will be described.

【0004】(1).主光学系とは別の焦点位置検出装置
[焦点位置検出光学系](図3) 図3は、主光学系1とは別に光てこ方式で走査型の焦点
位置検出装置すなわち焦点位置検出光学系2を設けた例
を示したものである。1aは主光学系1の対物レンズで
ある。
(1). Focus position detector separate from the main optical system
[Focal Position Detection Optical System] (FIG. 3) FIG. 3 shows an example in which a scanning type focus position detection device, that is, a focus position detection optical system 2 is provided separately from the main optical system 1 by an optical lever system. . 1a is an objective lens of the main optical system 1.

【0005】この焦点位置検出光学系2は、点状又は線
状の光束を射出する光源3、走査鏡4、照明レンズ5、
受光レンズ6、ラインセンサー或はPSD等の受光セン
サー7から構成される。この光源3からの点状或は線状
の照明光束は、走査鏡4により走査されながら,照明レ
ンズ5を介して対象物8に投影され、対象物8の対象面
8a上に結像されて、対象面8a上に2次光源像を形成
する。
The focus position detecting optical system 2 includes a light source 3 for emitting a point-like or linear light beam, a scanning mirror 4, an illumination lens 5,
It comprises a light receiving lens 6, a light sensor 7 such as a line sensor or a PSD. A point-like or linear illumination light beam from the light source 3 is projected on an object 8 via an illumination lens 5 while being scanned by a scanning mirror 4, and is imaged on an object surface 8 a of the object 8. , A secondary light source image is formed on the target surface 8a.

【0006】一方、この2次光源像が受光レンズ6で拡
大されて受光センサー7に投影され、受光センサー7か
らは検出信号が出力される。そして、この受光センサー
7からの出力信号を基に、2次光源の重心位置または光
量分布を算出させることにより、対象面8aの各部の位
置を知ることができる。
On the other hand, the secondary light source image is enlarged by the light receiving lens 6 and projected on the light receiving sensor 7, and the light receiving sensor 7 outputs a detection signal. Then, by calculating the position of the center of gravity of the secondary light source or the light amount distribution based on the output signal from the light receiving sensor 7, the position of each part of the target surface 8a can be known.

【0007】この際、対象面8aの高さが凹凸により部
分的に上下変動して、この変動部に形成される2次光源
像の反射光量が変動しても、2次光源の重心位置または
光量分布を知ることにより、変動部の位置を知ることが
できる。尚、走査鏡4を使用せず走査をしない固定式の
ものもある。
At this time, even if the height of the target surface 8a partially fluctuates up and down due to unevenness, and the amount of reflected light of the secondary light source image formed in the fluctuating portion fluctuates, the center of gravity of the secondary light source or By knowing the light amount distribution, the position of the fluctuation part can be known. There is a fixed type that does not perform scanning without using the scanning mirror 4.

【0008】[0008]

【課題を解決するための手段】この目的を達成するため
に、対象面に臨ませた対物レンズを介して前記対象面の
検査または測定を行うための主光学系と、光源からの点
状又は線状の光束を走査手段を介して走査すると共に、
この走査された光束を前記対物レンズを介して対物レン
ズ光軸に対して傾斜した第1の方向から前記対象面に走
査投影し、且つ、前記走査により前記対象面上に結像さ
れる二次光源像からの光速を前記対物レンズ光軸に関し
て傾斜した第2の方向から取り出し前記対物レンズを介
して受光センサーに案内するサブ光学系とを備え、受光
センサーからの信号に基づき対象面の位置を検出する位
置検出装置において、前記走査手段の光束走査位置と前
記対物レンズの瞳位置とを共役にするための光学系を前
記走査手段と前記瞳位置との間に設けた対象面の位置検
出装置としたことを特徴とするものである。
In order to achieve this object, a main optical system for inspecting or measuring the target surface through an objective lens facing the target surface, and a point light source or a light source from a light source. While scanning the linear light beam through the scanning means,
The scanned light beam is passed through the objective lens through an objective lens.
Scanning and projecting onto the target surface from a first direction inclined with respect to the optical axis of the objective lens, and the speed of light from a secondary light source image formed on the target surface by the scanning with respect to the optical axis of the objective lens.
Through the objective lens is taken out from the second direction inclined an optical subsystem for guiding the light receiving sensor Te, receiving
Position to detect the position of the target surface based on the signal from the sensor
In the position detecting device, an optical system for making a light beam scanning position of the scanning unit and a pupil position of the objective lens conjugate is a position detecting device of a target surface provided between the scanning unit and the pupil position. It is characterized by the following.

【0009】この位置検出光学系11は、主光学系10
と共通の光学部材対物すなわちレンズ10a,ビームス
プリッタ10bを有する。この位置検出光学系11で
は、照明系の光源12からの点状又は線状の光束を投影
用補助レンズ13,ビームスプリッタ10b,対物レン
ズ10aを介して対象物8の対象面8aに投影結像させ
て、対象面8aに2次光源像を形成させる様になってい
る。
The position detecting optical system 11 is composed of a main optical system 10
And a common optical member objective, that is, a lens 10a and a beam splitter 10b. In this position detection optical system 11, a point-like or linear light beam from a light source 12 of an illumination system is projected and formed on a target surface 8a of a target object 8 via a projection auxiliary lens 13, a beam splitter 10b, and an objective lens 10a. Thus, a secondary light source image is formed on the target surface 8a.

【0010】しかも、この2次光源像は、対物レンズ1
0a,ビームスプリッタ10b,受光系の受光用補助レ
ンズ14を介して受光センサー7と同様な受光センサー
15に投影結像されるようになっている。そして、この
受光センサー15からの出力信号を基に、2次光源の重
心位置または光量分布算出させることにより、対象面
8aの各部の位置を知ることができる。
In addition, this secondary light source image is
0a, the beam splitter 10b, is adapted to be projected imaged on the same light receiving sensor 15 and the light receiving sensor -7 through the light receiving auxiliary lens 14 of the light receiving system. Then, by calculating the position of the center of gravity of the secondary light source or the light amount distribution based on the output signal from the light receiving sensor 15, the position of each part of the target surface 8a can be known.

【0011】[0011]

【発明が解決しようとする課題】ところで、高精度な測
定や検査をするためには、レンズのNA(レンズの開口
数)が大きく、波長の短い光を透過可能な高解像力の対
物レンズを使用しなければならない。尚、この高解像力
の対物レンズは、焦点深度が浅いので高精度な焦点合わ
せをしなくてはならない。
In order to perform high-precision measurement and inspection, an objective lens having a large NA (lens numerical aperture) of a lens and a high resolution capable of transmitting light having a short wavelength is used. Must. The objective lens of high resolution has a shallow depth of focus, so that it is necessary to perform high-precision focusing.

【0012】しかし、(1)に示した様な外付けの焦点位
置検出光学系2を用いた場合には、温度変化により焦点
位置検出光学系2と対物レンズ1aとの相対位置が変化
して、対物レンズ1aと焦点位置検出光学系2の照明レ
ンズ5との焦点位置がずれたり、温度気圧等により対物
レンズ1aの焦点位置と照明レンズ5の焦点位置がずれ
たりして、測定精度が変化するので、好ましくない。ま
た、(1)のタイプでは、対物レンズ1aの交換による測
定精度の変化も生じる。
However, when an external focus position detecting optical system 2 as shown in (1) is used, the relative position between the focus position detecting optical system 2 and the objective lens 1a changes due to a temperature change. The measurement accuracy changes because the focal position between the objective lens 1a and the illumination lens 5 of the focal position detection optical system 2 is shifted, or the focal position of the objective lens 1a is shifted from the focal position of the illumination lens 5 due to temperature and pressure. Is not preferred. Further, in the type (1), a change in measurement accuracy occurs due to replacement of the objective lens 1a.

【0013】この様な測定精度の変化は、(2)に示した
様な対物レンズ10aを使用したTTL型の焦点位置検
出装置を用いることで防止できる。また、焦点位置検出
光学系の配置の上からも、TTL型の焦点検出装置が望
ましい。
Such a change in measurement accuracy can be prevented by using a TTL type focus position detecting device using the objective lens 10a as shown in (2). Further, from the viewpoint of the arrangement of the focus position detection optical system, a TTL type focus detection device is desirable.

【0014】しかも、対象物8の対象面8aに反射率の
異なる部分がある場合、焦点検出位置が(2)の様な固定
式の光てこ式焦点検出装置では、反射率の異なる部分の
境界で誤差を生じるので、走査型にすることが望まし
い。
In addition, when there is a portion having a different reflectance on the target surface 8a of the object 8, a fixed optical lever type focus detection device having a focus detection position as shown in FIG. Therefore, it is desirable to use a scanning type.

【0015】しかし、(2)の主光学系10の瞳は対物レ
ンズ10aの中あるいは対物レンズ10a近傍にあるの
で、対物レンズ10aそばに偏向装置を設けることはで
きない。瞳から離れた位置で偏向させた場合、光源12
からの投影光束の主光線が対物レンズ10aの瞳上で移
動することになる。
However, since the pupil of the main optical system 10 in (2) is located in or near the objective lens 10a, a deflecting device cannot be provided near the objective lens 10a. When deflected away from the pupil, the light source 12
The principal ray of the projection light beam from the object moves on the pupil of the objective lens 10a.

【0016】この瞳位置上での投影光束の移動は対象面
8aに対する入射角αの変化となる。対象面8aの各部
における高さの上下変動量と対象面8aでの2次光源像
の移動量の倍率は2Δβtanαである(Δは被検面の
上下方向の移動量、βは対物レンズ10aと受光系の光
学倍率、αは図4に示す入射角である。)。
The movement of the projection light beam on the pupil position changes the incident angle α with respect to the target surface 8a. The magnification of the vertical fluctuation amount of the height in each part of the target surface 8a and the magnification of the movement amount of the secondary light source image on the target surface 8a is 2Δβtanα (Δ is the vertical movement amount of the test surface, β is the objective lens 10a The optical magnification of the light receiving system, α, is the angle of incidence shown in FIG. 4).

【0017】そして、入射角αが変動すると検出倍率の
変動になり正確な焦点検出が困難になる。しかも、対象
面8aの反射率は入射角αより変化するので、正確な測
定には対象面8aへの入射角αが一定となるのが望まし
い。また、走査時に瞳上で光束が移動する場合には、常
時対物レンズ10aに光束が入射するようにしなくては
ならないが、こうすると平均的な対象面8aへの入射角
αが小さくなり、前記の数式から分かるように検出倍率
が低下してしまう。さらに、一般的な物質では入射角が
小さいほど反射率も低いので、さらに焦点検出の精度が
低下する原因になる。
If the incident angle α changes, the detection magnification also changes, making accurate focus detection difficult. Moreover, since the reflectance of the target surface 8a changes from the incident angle α, it is desirable that the incident angle α on the target surface 8a be constant for accurate measurement. When the light beam moves on the pupil at the time of scanning, the light beam must always enter the objective lens 10a. However, in this case, the average incident angle α to the target surface 8a becomes small, As can be seen from the equation, the detection magnification decreases. Further, in the case of a general substance, the smaller the incident angle is, the lower the reflectivity is, so that the accuracy of focus detection is further reduced.

【0018】以上の点から、TTL型で、走査しても光
束が瞳上で移動しない光てこ式の対象面の位置検出装置
を構成することが望ましい。
In view of the above, it is desirable to constitute a TTL type optical lever type target surface position detecting device in which a light beam does not move on a pupil even when scanning.

【0019】そこで、この発明は、この要望に沿うもの
で、TTL型で、走査しても光束が瞳上で移動しない光
てこ式の対象面の位置検出装置を提供することを目的と
するものである。
In view of the above, an object of the present invention is to provide an optical lever type target position detecting device of a TTL type, in which a light beam does not move on a pupil even when it is scanned. It is.

【0020】[0020]

【課題を解決するための手段】この目的を達成するため
に、対象面に臨ませた対物レンズを介して前記対象面の
検査または測定を行うための主光学系と、光源からの点
状又は線状の光束を走査手段を介して走査すると共に、
この走査された光束を前記対物レンズを介して対物レン
ズ光軸に対して傾斜した第1の方向から前記対象面に走
査投影し、且つ、前記走査により前記対象面上に結像さ
れる二次光源像からの光束を前記対物レンズ光軸に関し
て傾斜した第2の方向から取り出し前記対物レンズを介
して受光センサーに案内するサブ光学系とを備え、受光
センサーからの信号に基づき対象面の位置を検出する位
置検出装置において、前記走査手段の光束走査位置と前
記対物レンズの瞳位置とを共役にするための光学系を前
記走査手段と前記瞳位置との間に設けた対象面の位置検
出装置としたことを特徴とするものである。
In order to achieve this object, a main optical system for inspecting or measuring the target surface through an objective lens facing the target surface, and a point light source or a light source from a light source. While scanning the linear light beam through the scanning means,
The scanned light beam is projected onto the target surface through the objective lens from a first direction inclined with respect to the optical axis of the objective lens, and a secondary image formed on the target surface by the scanning is formed. A sub optical system that takes out a light beam from the light source image from a second direction inclined with respect to the objective lens optical axis and guides the light beam to the light receiving sensor via the objective lens, and determines the position of the target surface based on a signal from the light receiving sensor. In a position detecting device for detecting, a position detecting device for a target surface, wherein an optical system for conjugate a light beam scanning position of the scanning unit and a pupil position of the objective lens is provided between the scanning unit and the pupil position. It is characterized by having.

【0021】[0021]

【実施例】以下、この発明の実施例を図1,図2に基づ
いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0022】[第1実施例]図1は、本発明の第1実施例
を示したものである。
[First Embodiment] FIG. 1 shows a first embodiment of the present invention.

【0023】図1に示した光学装置は、対物レンズ10
a,ビームスプリッタ10b,その他の光学部材(図示
せず)等からなる主光学系10と、TTL型光てこ方式
の位置検出光学系すなわちサブ光学系(位置検出装置)
11を有する。このサブ光学系11は、主光学系10と
共通の光学部材対物すなわちレンズ10a,ビームスプ
リッタ10bを有する。
The optical device shown in FIG.
a, a main optical system 10 including a beam splitter 10b, other optical members (not shown), etc., and a TTL type optical lever type position detecting optical system, that is, a sub optical system (position detecting device).
11 The sub optical system 11 has an optical member objective, that is, a lens 10a and a beam splitter 10b, which are common to the main optical system 10.

【0024】このサブ光学系11では、照明系の光源1
2からの点状又は線状の光束を、投影用補助レンズ1
3,走査鏡21(走査手段),レンズ22a,22bか
らなるビームエキスパンダー等の光学系22,ビームス
プリッタ10b,対物レンズ10aを介して対象物8の
対象面(被検面)8aに投影結像させて、対象面8aに
2次光源像を形成させる様になっている。この光学系2
2は、走査鏡21を対物レンズ10aの瞳位置23と共
役にしている。
In the sub optical system 11, the light source 1 of the illumination system
The point-like or linear light flux from the projection auxiliary lens 1
3. Projection image formation on a target surface (test surface) 8a of the target object 8 via a scanning mirror 21 (scanning means), an optical system 22 such as a beam expander including lenses 22a and 22b, a beam splitter 10b, and an objective lens 10a. Thus, a secondary light source image is formed on the target surface 8a. This optical system 2
Numeral 2 makes the scanning mirror 21 conjugate with the pupil position 23 of the objective lens 10a.

【0025】しかも、この2次光源像は、対物レンズ1
0a,ビームスプリッタ10b,走査鏡21,光学系2
2,受光系の受光用(結像用)の補助レンズ14を介し
て受光センサー15に投影結像されるようになってい
る。
Moreover, this secondary light source image is
0a, beam splitter 10b, scanning mirror 21, optical system 2
2. The image is projected and formed on the light receiving sensor 15 via the light receiving (image forming) auxiliary lens 14 of the light receiving system.

【0026】そして、この受光センサー15からの出力
信号を基に、2次光源の重心位置または光量分布を算出
させることにより、対象面8aの各部の位置を知ること
ができる。
Then, by calculating the position of the center of gravity of the secondary light source or the light amount distribution based on the output signal from the light receiving sensor 15, the position of each part of the target surface 8a can be known.

【0027】ところで、光てこ式の焦点位置検出装置で
は、対象面8aの反射率の異なる部分の境界すなわち反
射率の変化する境界で検出誤差が増大する。しかし、上
記構成により、走査鏡21を走査して、光源12の2次
光源像を対象面8a上で移動させ、焦点検出を行う位置
を変化させて、対象面8aの平均的な位置を割り出すこ
とで、対象面8a反射率の異なる部分間の境界での検出
誤差を著しく低減できる。
By the way, in the optical lever type focus position detecting device, a detection error increases at a boundary between portions of the target surface 8a having different reflectivities, that is, at a boundary where the reflectivity changes. However, with the above configuration, the scanning mirror 21 is scanned, the secondary light source image of the light source 12 is moved on the target surface 8a, the position where focus detection is performed is changed, and the average position of the target surface 8a is determined. As a result, a detection error at the boundary between portions having different reflectances on the target surface 8a can be significantly reduced.

【0028】また、走査鏡21が、対物レンズの瞳位置
23に配置できれば、走査しても光源12からの光束が
瞳位置23上で移動しないが、対物レンズ10aの瞳位
置23は通常は対物レンズ10aの中あるいは対物レン
ズ10aの近傍なので、走査鏡21を瞳位置23に配置
することは困難である。さらに、主光学系10との分離
を行うビームスプリッター10bと対物レンズ10aの
間に走査鏡21を配置することは、主光学系10から見
た開口の一部を遮蔽することになり、その結果主光学系
10の性能低下になってしまう。その上、対物レンズ1
0aと対物レンズ10aの瞳位置23との間にビームス
プリッター10bを配置することも、その間隔がないあ
るいは狭いことから不可能である。
If the scanning mirror 21 can be arranged at the pupil position 23 of the objective lens, the light beam from the light source 12 does not move on the pupil position 23 even when scanning, but the pupil position 23 of the objective lens 10a is usually Since it is inside the lens 10a or near the objective lens 10a, it is difficult to arrange the scanning mirror 21 at the pupil position 23. Further, disposing the scanning mirror 21 between the beam splitter 10b that separates from the main optical system 10 and the objective lens 10a shields a part of the opening viewed from the main optical system 10, and as a result, The performance of the main optical system 10 will be reduced. In addition, objective lens 1
It is also impossible to dispose the beam splitter 10b between 0a and the pupil position 23 of the objective lens 10a because the interval is small or small.

【0029】従って、走査鏡21を対物レンズ10aの
瞳位置23に投影する光学系22を設けることにより、
走査鏡21と瞳位置23を上述した様に共役となるよう
にしている。これにより、走査鏡21により光源12か
らの光束を走査しても、この光束は瞳位置23上で移動
しない。通常、検査光学系の対物レンズ10aは対象物
8側にテレセントリックにであるので、光源12からの
光束を走査しても対象面8aへの入射角αは変化しな
い。
Therefore, by providing the optical system 22 for projecting the scanning mirror 21 to the pupil position 23 of the objective lens 10a,
The scanning mirror 21 and the pupil position 23 are conjugated as described above. Thus, even when the light beam from the light source 12 is scanned by the scanning mirror 21, the light beam does not move on the pupil position 23. Usually, since the objective lens 10a of the inspection optical system is telecentric toward the object 8, even if the light beam from the light source 12 scans, the incident angle α to the object surface 8a does not change.

【0030】しかも、対象面8aでの反射角もβ(α=
β)で変化しないので、対象面8aで反射した光束も瞳
位置23上の入射時の正反対の位置に戻ってくる。この
光束は光学系22を再び逆方向に通過して、結像用の補
助レンズ14により受光センサー15上に結像する。
Further, the reflection angle on the target surface 8a is also β (α =
Since there is no change in β), the luminous flux reflected on the target surface 8a also returns to the position directly opposite to the pupil position 23 at the time of incidence. This light beam passes through the optical system 22 in the opposite direction again, and forms an image on the light receiving sensor 15 by the auxiliary lens 14 for image formation.

【0031】対象面8aが凹凸或は傾斜により部分的に
上下変動すると、対象面8aに投影された光源12は対
物レンズ10aから観察した場合に左右方向の2次光源
の移動として観察される。これを光学系22と補助レン
ズ14で受光センサー15に拡大投影しているので、対
象面8a上の2次光源像の移動は受光センサー15上で
は2次光源像の移動になる。この受光センサー15にラ
インセンサのような光の分布を示すセンサやPSDのよ
うな光の重心を示すセンサを使用して、受光センサー1
5の出力を処理することで焦点移動の検出が可能とな
る。この様に走査すると、受光センサー15上の2次光
源像も移動するが、これを受光センサー15の出力の時
間平均をとることで対処できる。
When the target surface 8a partially moves up and down due to unevenness or inclination, the light source 12 projected on the target surface 8a is observed as a movement of the secondary light source in the horizontal direction when observed from the objective lens 10a. Since this is enlarged and projected on the light receiving sensor 15 by the optical system 22 and the auxiliary lens 14, the movement of the secondary light source image on the target surface 8 a is the movement of the secondary light source image on the light receiving sensor 15. The light receiving sensor 15 may be a light sensor such as a line sensor or a sensor indicating the center of gravity of light such as a PSD.
By processing the output of No. 5, it is possible to detect the movement of the focal point. When scanning is performed in this manner, the secondary light source image on the light receiving sensor 15 also moves. This can be dealt with by taking the time average of the output of the light receiving sensor 15.

【0032】本実施例の焦点位置検出光学系は、主光学
系10の対物レンズ10aを共用しているので、環境変
化などによる対物レンズ10aの焦点位置が変化して
も、主光学系10と焦点位置の差がでない。しかも、こ
の構成により、像面は、主光学系10とサブ光学系11
は一致しているので、走査鏡21により光源12からの
光束を走査しても、対象面8a上における2次光源のス
ポットの大きさも変化しない。その結果さらに対象面8
aにおける反射率の差による影響を受けにくくなる。
Since the focus position detecting optical system of the present embodiment shares the objective lens 10a of the main optical system 10, even if the focal position of the objective lens 10a changes due to an environmental change or the like, the main optical system 10 and the main optical system 10 are not changed. There is no difference in focal position. In addition, with this configuration, the image plane is divided into the main optical system 10 and the sub optical system 11
Are the same, the size of the spot of the secondary light source on the target surface 8a does not change even if the light beam from the light source 12 is scanned by the scanning mirror 21. As a result, target surface 8
a is less likely to be affected by the difference in reflectance.

【0033】また、本実施例の焦点位置検出位置では、
走査鏡21で光源21からの光束を走査移動して、受光
センサー15からの出力信号を平均化しているので、反
射率の部分的な変化による焦点検出誤差も低減してい
る。
Further, at the focus position detection position of the present embodiment,
Since the light beam from the light source 21 is scanned and moved by the scanning mirror 21 and the output signal from the light receiving sensor 15 is averaged, a focus detection error due to a partial change in reflectance is also reduced.

【0034】更に、光学系22を加えたことで、走査を
行っても入射角αが変動しないので、焦点位置検出精度
も変化せず、簡単な時間平均化処理を施すだけで正確な
焦点が検出できるようになる。また、感度はtanαに
比例するが、走査時に入射角αが変化しないので、対物
レンズの開口数とオートフォーカスで使用する光束の太
さで許される限界までαを大きくできる。つまり、常時
最大感度で焦点が検出できることになるし、対象物8の
反射率も入射角αが大きくなると通常は高くなるので光
量が増大し、かつ入射角αが一定であるので反射率も一
定になるので、更に高精度の焦点検出が可能になる。
Further, the addition of the optical system 22 does not change the incident angle α even when scanning, so that the focus position detection accuracy does not change, and an accurate focus can be obtained only by performing a simple time averaging process. It can be detected. The sensitivity is proportional to tan α, but since the incident angle α does not change during scanning, α can be increased to the limit allowed by the numerical aperture of the objective lens and the thickness of the light beam used in auto focus. In other words, the focus can always be detected with the maximum sensitivity, and the reflectivity of the object 8 also increases when the incident angle α increases, so that the amount of light increases, and the reflectivity is constant because the incident angle α is constant. Therefore, focus detection with higher precision can be performed.

【0035】走査鏡21に替えて焦点検出位置を左右等
に変化させるための走査手段としては音響光学素子によ
る方法もある。また、図1では光学系22はエキスパン
ダーであるが、走査鏡21を瞳位置23と共役にすると
共に、光源12を対物レンズ10aを通して対象面8a
に結像させる共役関係にできれば、エキスパンダーであ
る必要はない。
As a scanning means for changing the focus detection position to the left and right or the like instead of the scanning mirror 21, there is a method using an acousto-optic element. Although the optical system 22 is an expander in FIG. 1, the scanning mirror 21 is conjugated to the pupil position 23, and the light source 12 is connected to the target surface 8a through the objective lens 10a.
It is not necessary to be an expander as long as the conjugate relationship can be formed so as to form an image.

【0036】[第2実施例]図2は、この発明の第2実施
例を示したものである。
[Second Embodiment] FIG. 2 shows a second embodiment of the present invention.

【0037】また、図2は図1に示した走査鏡21を往
路・復路で共用している実施例を示したものである。本
実施例では、走査鏡21が大きくなるが、光源12から
の光束を走査鏡21で走査しても、受光センサー15上
で2次光源像が移動しない利点がある。
FIG. 2 shows an embodiment in which the scanning mirror 21 shown in FIG. In this embodiment, although the scanning mirror 21 is large, there is an advantage that the secondary light source image does not move on the light receiving sensor 15 even when the light beam from the light source 12 is scanned by the scanning mirror 21.

【0038】この場合には、光束が走査鏡21に当たる
位置ではなく、偏向した光束が偏向する前の光束と交わ
る位置31を偏向位置として、位置31と対物レンズ1
0aの瞳位置23とを共役にする。
In this case, not the position where the light beam hits the scanning mirror 21 but the position 31 where the deflected light beam intersects the light beam before being deflected is set as the deflection position, and the position 31 and the objective lens 1
The pupil position 23 of 0a is conjugated.

【0039】[0039]

【発明の効果】TTL型の焦点検出装置に、走査機構を
設け、その偏向位置を対物レンズの瞳位置と共役にする
ことで、環境の変化に強く、被検物の反射率が変化して
も高精度な焦点検出が可能になる。
The TTL type focus detection device is provided with a scanning mechanism and the deflection position thereof is conjugate with the pupil position of the objective lens, so that it is resistant to environmental changes and the reflectance of the test object changes. This also enables highly accurate focus detection.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の対象面の位置検出装置にかかる光学
系の第1実施例を示す概略説明図である。
FIG. 1 is a schematic explanatory view showing a first embodiment of an optical system according to a target surface position detecting device of the present invention.

【図2】この発明の対象面の位置検出装置にかかる光学
系の第2実施例を示す概略説明図である。
FIG. 2 is a schematic explanatory view showing a second embodiment of the optical system according to the target surface position detecting device of the present invention.

【図3】従来の対象面の位置検出装置の光学系の一例を
示す説明図である。
FIG. 3 is an explanatory diagram showing an example of an optical system of a conventional target surface position detecting device.

【図4】従来の対象面の位置検出装置の光学系の他の例
を示す説明図である。
FIG. 4 is an explanatory diagram showing another example of the optical system of the conventional target surface position detecting device.

【符号の説明】[Explanation of symbols]

8…対象物 8a…対象面(被検面) 10…主光学系 10a…対物レンズ 11サブ光学系 12…光源 15…受光センサー 21…走査鏡(走査手段) 22…光学系 23…瞳位置 8 Target Object 8a Target Surface (Test Surface) 10 Main Optical System 10a Objective Lens 11 Sub Optical System 12 Light Source 15 Light Receiving Sensor 21 Scanning Mirror (Scanning Means) 22 Optical System 23 Pupil Position

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭53−91754(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01B 11/00 - 11/30 102 G01C 3/00 - 3/32 H01L 21/027 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-53-91754 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01B 11/00-11/30 102 G01C 3 / 00-3/32 H01L 21/027

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 対象面に臨ませた対物レンズを介して前
記対象面の検査または測定を行うための主光学系と、 光源からの点状又は線状の光束を走査手段を介して走査
すると共に、この走査された光束を前記対物レンズを介
して対物レンズ光軸に対して傾斜した第1の方向から前
記対象面に走査投影し、且つ、前記走査により前記対象
面上に結像される二次光源像からの光束を前記対物レン
ズ光軸に関して傾斜した第2の方向から取り出し前記対
物レンズを介して受光センサーに案内するサブ光学系と
を備え、受光センサーからの信号に基づき対象面の位置
を検出する位置検出装置において、 前記走査手段の光束走査位置と前記対物レンズの瞳位置
とを共役にするための光学系を前記走査手段と前記瞳位
置との間に設けたことを特徴とする対象面の位置検出装
置。
1. A main optical system for inspecting or measuring the target surface via an objective lens facing the target surface, and scanning a point-like or linear light beam from a light source via a scanning unit. At the same time, the scanned light beam is scanned and projected on the target surface from the first direction inclined with respect to the optical axis of the objective lens via the objective lens, and is imaged on the target surface by the scanning. A sub-optical system that takes out a light beam from the secondary light source image from a second direction inclined with respect to the objective lens optical axis and guides the light beam to the light receiving sensor via the objective lens, based on a signal from the light receiving sensor. In a position detection device for detecting a position, an optical system for conjugate a light beam scanning position of the scanning unit and a pupil position of the objective lens is provided between the scanning unit and the pupil position. Subject to Position detecting device.
JP25256092A 1992-09-22 1992-09-22 Target surface position detection device Expired - Fee Related JP3222214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25256092A JP3222214B2 (en) 1992-09-22 1992-09-22 Target surface position detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25256092A JP3222214B2 (en) 1992-09-22 1992-09-22 Target surface position detection device

Publications (2)

Publication Number Publication Date
JPH06102011A JPH06102011A (en) 1994-04-12
JP3222214B2 true JP3222214B2 (en) 2001-10-22

Family

ID=17239075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25256092A Expired - Fee Related JP3222214B2 (en) 1992-09-22 1992-09-22 Target surface position detection device

Country Status (1)

Country Link
JP (1) JP3222214B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4725692B2 (en) * 2000-01-11 2011-07-13 株式会社ニコン Step shape measuring device
JP2005045164A (en) 2003-07-25 2005-02-17 Toshiba Corp Automatic focusing device
JP5498044B2 (en) 2009-03-26 2014-05-21 株式会社東芝 Automatic focusing mechanism and optical image acquisition device

Also Published As

Publication number Publication date
JPH06102011A (en) 1994-04-12

Similar Documents

Publication Publication Date Title
US6862097B2 (en) Three-dimensional shape measuring method, and three-dimensional shape measuring apparatus
US20040109170A1 (en) Confocal distance sensor
KR100496913B1 (en) Optical height measuring instrument, surface inspection apparatus provided with the height measuring instrument and lithography apparatus provided with the inspection apparatus
JPH0650720A (en) Height measuring method and device
JP2510786B2 (en) Object shape detection method and apparatus
EP0627610B1 (en) Two-stage detection noncontact positioning apparatus
US5329358A (en) Device for optically measuring the height of a surface
JPH0812127B2 (en) Curvature radius measuring device and method
JP3222214B2 (en) Target surface position detection device
JP3120885B2 (en) Mirror surface measuring device
JPH0258766B2 (en)
CA2034017C (en) Scanning device for optically scanning a surface along a line
US5815272A (en) Filter for laser gaging system
JP3072805B2 (en) Gap spacing measurement method
JP3013463B2 (en) Focus position detecting device and projection exposure device
JPH0943456A (en) Device and method for adjusting optical axis of optical module
JP3106521B2 (en) Optical inspection equipment for transparent substrates
JPH08261734A (en) Shape measuring apparatus
JPH05332769A (en) Optical displacement gauge
JP2943498B2 (en) Scanning laser displacement meter
JP3202322B2 (en) Mask inspection equipment
JPH0634560A (en) Surface condition inspector
JP3004076B2 (en) Sample surface position measurement device
JPH09236408A (en) Focal position detecting device
JP2818597B2 (en) Pattern inspection method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090817

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090817

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees