JP3072805B2 - Gap spacing measurement method - Google Patents

Gap spacing measurement method

Info

Publication number
JP3072805B2
JP3072805B2 JP04145692A JP14569292A JP3072805B2 JP 3072805 B2 JP3072805 B2 JP 3072805B2 JP 04145692 A JP04145692 A JP 04145692A JP 14569292 A JP14569292 A JP 14569292A JP 3072805 B2 JP3072805 B2 JP 3072805B2
Authority
JP
Japan
Prior art keywords
gap
light
image
measured
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04145692A
Other languages
Japanese (ja)
Other versions
JPH05340723A (en
Inventor
正治 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP04145692A priority Critical patent/JP3072805B2/en
Publication of JPH05340723A publication Critical patent/JPH05340723A/en
Application granted granted Critical
Publication of JP3072805B2 publication Critical patent/JP3072805B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は隙間間隔を非接触測定す
るための方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for non-contact measurement of a gap interval.

【0002】[0002]

【従来の技術】従来非接触の隙間測定は、投光手段と受
光手段とを対向させ、その間に測定対象隙間を配置し、
投光手段で走査した光またはスリット光を投光し、隙間
を通過した光の幅から隙間間隔を求める光通過型の隙間
測定方法や、隙間を構成しているエッジ部分を照明し、
顕微鏡を用いて隙間幅を測定する方法がある。図8は前
者を示す図である。1′、2′は被測定隙間を形成する
ドラム、7′はハウジング、36は受光手段、37は投
光手段、37Aは投光光束の光路である。
2. Description of the Related Art Conventionally, in a non-contact gap measurement, a light projecting unit and a light receiving unit are opposed to each other, and a gap to be measured is arranged therebetween.
Light or slit light scanned by the light projecting means is projected, and a light-passing type gap measuring method for determining a gap interval from the width of light passing through the gap, and an edge portion forming the gap are illuminated,
There is a method of measuring the gap width using a microscope. FIG. 8 is a diagram showing the former. Reference numerals 1 'and 2' denote drums forming a gap to be measured, 7 'denotes a housing, 36 denotes light receiving means, 37 denotes light projecting means, and 37A denotes an optical path of a projected light beam.

【0003】[0003]

【発明が解決しようとしている課題】しかし光通過形の
隙間測定方法は測定光を通す為の光路を確保しなければ
ならないため、この光路が確保できない測定対象には使
えない。また測定対象が二円筒間間隔の場合には、顕微
鏡測定では円筒表面の反射光がエッジ部に近付くに従い
小さくなり、エッジ部分では反射光はほとんど帰らなく
なることから、円筒部と隙間部の境界の区別が難しく、
正確な測定が困難である。
However, the light-passing type gap measuring method has to secure an optical path for transmitting the measuring light, and cannot be used for a measurement object which cannot secure this optical path. In addition, when the measurement object is at an interval between the two cylinders, the reflected light on the cylinder surface becomes smaller as approaching the edge in the microscopic measurement, and the reflected light hardly returns at the edge, so that the boundary between the cylinder and the gap is determined. Difficult to distinguish,
It is difficult to measure accurately.

【0004】本発明は上述従来例の欠点に鑑み、装置構
成の自由度があり、かつ高精度な隙間間隔が測定可能な
方法を提供することを目的とする。
The present invention has been made in view of the above-mentioned drawbacks of the conventional example, and has as its object to provide a method capable of measuring a gap interval with a high degree of freedom in device configuration and with high accuracy.

【0005】[0005]

【課題を解決するための手段】上述目的を達成するた
め、本発明の方法は照明手段を測定対象隙間の片側に配
置し、照明手段とは反対側に配置された拡散面を前記測
定対象隙間を通して前記照明手段で照明し、該隙間のシ
ルエット像を前記照明手段側から対物レンズを介し、且
つ該対物レンズと前記隙間との間に前記隙間と平行に設
けられたスリットを通して受光手段で撮像して、前記測
定対象隙間の隙間間隔を測定する。
In order to achieve the above-mentioned object, a method according to the present invention is arranged such that an illuminating means is arranged on one side of a gap to be measured, and a diffusing surface arranged on the opposite side of the illuminating means is provided with the gap. Illuminated by the illumination means, and a silhouette image of the gap is captured by the light receiving means from the illumination means side through an objective lens and through a slit provided between the objective lens and the gap in parallel with the gap. Then, the gap interval of the gap to be measured is measured.

【0006】[0006]

【作用】本発明によれば片側からの投光かつ隙間を介し
た拡散面の照明としているので、従来の光通過形測定で
は、例えば光路に障害物がある等により投受光手段の配
置が不能で測定できなかった場合でも本発明では受光手
段配置に自由度ができる為測定可能である。さらに投光
手段と反対側にある拡散面を照明することでエッジ部分
のコントラストのはっきりしたシルエット像が得られ、
精度よく隙間測定を行なえる。
According to the present invention, since the light is projected from one side and the diffused surface is illuminated through the gap, in the conventional light-passing type measurement, it is impossible to arrange the light emitting and receiving means due to, for example, an obstacle in the optical path. In the present invention, even if the measurement cannot be performed, the degree of freedom in the arrangement of the light receiving means can be measured. Furthermore, by illuminating the diffusion surface on the opposite side of the light emitting means, a silhouette image with sharp contrast at the edge part is obtained,
Gap measurement can be performed accurately.

【0007】[0007]

【実施例】図1は本発明の一実施例であるレーザプリン
タのトナーカートリッジの感光ドラムと現像スリーブ二
円筒間の隙間間隔検出部の構成を示す斜視及び側面図で
あり、図2はこの隙間間隔検出部を含む隙間測定装置の
側面から見た構成及び信号処理系のブロック図である。
1は感光ドラム、2は現像スリーブで、この二つの円筒
(約φ30mm)間の隙間間隔(約300μm)が測定
対象である。3は照明用のレーザ光源であり、4の拡散
面を測定対象隙間を通して照明する。拡散面4は測定対
象隙間から約20mmの位置にある。5はスリットであ
り、測定対象隙間の長手方向と同じ向きに設定する。6
は隙間の像を拡大する対物レンズ、7は拡大された隙間
像を撮像するCCDカメラである。また7にラインセン
サを用いてもよく、その場合は取付方向を隙間の長手方
向と直角な向きとする。さらに図2で8はトナーカート
リッジ、9はトナーカートリッジ8を固定する手段であ
る。10、11、12は図1で示した隙間測定部全体を
それぞれピント方向、隙間と直角方向、光軸角度方向に
駆動する精密ステージ、13はアナログの映像信号をデ
ィジタル信号に変えるAD変換器、14は画像メモリ、
15は隙間幅計算とシステム全体の制御のための小型計
算機である。
FIG. 1 is a perspective view and a side view showing the structure of a gap detecting section between a photosensitive drum and two developing sleeve cylinders of a toner cartridge of a laser printer according to an embodiment of the present invention. FIG. FIG. 2 is a block diagram of a configuration and a signal processing system as viewed from a side of the gap measurement device including an interval detection unit.
1 is a photosensitive drum, 2 is a developing sleeve, and a gap (about 300 μm) between these two cylinders (about φ30 mm) is an object to be measured. Reference numeral 3 denotes a laser light source for illumination, which illuminates the diffusion surface 4 through a gap to be measured. The diffusion surface 4 is located at a position about 20 mm from the gap to be measured. Reference numeral 5 denotes a slit which is set in the same direction as the longitudinal direction of the gap to be measured. 6
Is an objective lens for enlarging the image of the gap, and 7 is a CCD camera for picking up the enlarged gap image. In addition, a line sensor may be used for 7, and in that case, the mounting direction is set to a direction perpendicular to the longitudinal direction of the gap. Further, in FIG. 2, reference numeral 8 denotes a toner cartridge, and 9 denotes means for fixing the toner cartridge 8. 10, 11 and 12 are precision stages for driving the entire gap measuring section shown in FIG. 1 in the focusing direction, the direction perpendicular to the gap, and the optical axis angle direction, respectively, 13 is an AD converter for converting an analog video signal into a digital signal, 14 is an image memory,
Reference numeral 15 denotes a small computer for calculating the gap width and controlling the entire system.

【0008】CCDカメラ7と対物レンズ6で構成され
た受光手段の撮像焦点を感光ドラム1と現像スリーブ2
との隙間に合せ、拡散面4は焦点深度外に配置する。拡
散面4はトナーカートリッジ8の内面でもかまわない。
光源としてレーザ光源3を用い測定対象隙間を通して拡
散面4を照明する。照明位置は受光手段の光軸上とす
る。また照明光の隙間通過位置は受光手段の視野外とな
るように受光系の光軸に対して斜めから入射する。照明
光のビーム径は被測定隙間と同程度の径にコリメートし
ておくことで隙間通過の際に円筒に遮られる光が少なく
なるので損失光量が小さくなり照明効率がよい。
[0008] The imaging focus of the light receiving means constituted by the CCD camera 7 and the objective lens 6 is set to the photosensitive drum 1 and the developing sleeve 2.
The diffusing surface 4 is arranged outside the depth of focus in accordance with the gap between. The diffusion surface 4 may be the inner surface of the toner cartridge 8.
The diffusion surface 4 is illuminated through the gap to be measured using the laser light source 3 as a light source. The illumination position is on the optical axis of the light receiving means. The illumination light passes through the gap obliquely with respect to the optical axis of the light receiving system so as to be outside the field of view of the light receiving means. By collimating the beam diameter of the illuminating light to the same diameter as the gap to be measured, the amount of light blocked by the cylinder when passing through the gap is reduced, so that the amount of light loss is reduced and the illumination efficiency is good.

【0009】ここでCCDカメラにはレーザ光で照明さ
れた場所を二次光源として隙間のシルエット像(図3の
(a)に示す)が得られる。即ち隙間部分18は拡散面
からの散乱光が通過できるため明るくなり、円筒部分1
6、17はその光が遮られることから暗くコントラスト
を持った像が得られる。コントラストをはっきりとさせ
るために、円筒表面を照明用のレーザ光が照明しないよ
うに受光系の光軸に対し斜めから照明光を入射する。ま
た感光ドラムに用いられている感光体は外光が当たると
性能を損なうため、暗所で測定を行う。また照明用の光
源も感光体に影響のない波長範囲にある半導体レーザや
HeNeレーザ等を用いる。
Here, the CCD camera obtains a silhouette image of the gap (shown in FIG. 3A) using the place illuminated by the laser light as a secondary light source. That is, the gap portion 18 becomes bright because scattered light from the diffusion surface can pass therethrough, and the cylindrical portion 1
In the images 6 and 17, since the light is blocked, a dark and contrasted image can be obtained. In order to make the contrast clear, illumination light is obliquely incident on the optical axis of the light receiving system so that the cylindrical surface is not illuminated by the laser light for illumination. Further, the performance of the photoreceptor used for the photoconductive drum is impaired when exposed to external light, so the measurement is performed in a dark place. As a light source for illumination, a semiconductor laser, a HeNe laser, or the like having a wavelength range not affecting the photoconductor is used.

【0010】次にこの画像をAD変換器13を通して画
像メモリ14に入力し、小型計算機15で画像処理を行
い隙間間隔を求める。ここで得られる画像は拡散された
レーザ光が照明となることから、隙間部分の画像にスペ
ックルが生じている。そのため画像の1ラインのみに着
目した場合にはスペックルが原因の測定値ばらつきが大
きい。そこで隙間像の長手方向に画像の射影をとりスペ
ックルを平均化することで図3の(b)に示す信号波形
19がえられる。この波形の明部と暗部の信号レベルの
中央20をしきい値として明部の幅21をもとめ、これ
を隙間幅とする。
Next, this image is input to an image memory 14 through an AD converter 13 and image processing is performed by a small computer 15 to obtain a gap interval. Since the image obtained here is illuminated by the diffused laser light, speckles occur in the image of the gap. Therefore, when attention is paid to only one line of the image, the measurement value variation caused by speckle is large. Therefore, by projecting the image in the longitudinal direction of the gap image and averaging the speckles, a signal waveform 19 shown in FIG. 3B is obtained. The width 21 of the light portion is determined using the center 20 of the signal levels of the light portion and the dark portion of the waveform as a threshold value, and is defined as the gap width.

【0011】以上の隙間幅検出部を備えた隙間測定機に
おいて、受光手段の撮像焦点が隙間からずれると測定誤
差が増大する。また受光手段の光軸が隙間部分からずれ
て、隙間像が画面上からはずれると正しく測定できな
い。さらに隙間に対して受光手段の光軸が垂直でないと
真の隙間幅よりも小さく測定される。またトナーカート
リッジ8の取り付け姿勢によっても隙間幅は変化し、感
光ドラム1と現像スリーブ2の回転、停止によっても隙
間幅が変わる。これらの測定対象隙間の位置ずれは測定
対象の寸法誤差から発生する。そこで投光手段と受光手
段を一体として精密ステージ10、11、12で駆動
し、上記位置ずれに対応して投受光手段の位置を最適位
置に設定する。さらにトナーカートリッジ8は製品使用
時と同一の姿勢で保持し、ドラム1を製品使用時と同一
の回転数で駆動する。
In the gap measuring device provided with the above-described gap width detecting section, when the imaging focus of the light receiving means is shifted from the gap, the measurement error increases. In addition, if the optical axis of the light receiving means is shifted from the gap and the gap image deviates from the screen, the measurement cannot be performed correctly. Further, if the optical axis of the light receiving means is not perpendicular to the gap, the measurement is made smaller than the true gap width. The gap width also changes depending on the mounting posture of the toner cartridge 8, and the gap width also changes depending on the rotation and stop of the photosensitive drum 1 and the developing sleeve 2. These positional deviations of the measurement target gap are caused by dimensional errors of the measurement target. Therefore, the light emitting means and the light receiving means are integrally driven by the precision stages 10, 11, and 12, and the position of the light emitting and receiving means is set to an optimum position in accordance with the above-mentioned positional shift. Further, the toner cartridge 8 is held in the same posture as when the product is used, and the drum 1 is driven at the same rotational speed as when the product is used.

【0012】まず焦点位置設定を焦点位置設定ステージ
10で行う。隙間位置に撮像焦点が合っているかの判断
は隙間像のエッジ付近の傾きが最大になったことで行
う。検出部を焦点方向に所定範囲に渡って一定間隔で送
り、各位置における上記傾きを求める。そして上記傾き
が最大になる位置にステージ10位置を戻すことで焦点
位置を合せる。
First, the focus position is set by the focus position setting stage 10. The determination as to whether the imaging position is in focus at the gap position is made based on the fact that the inclination near the edge of the gap image has become maximum. The detector is sent at a constant interval over a predetermined range in the focus direction, and the above-described inclination at each position is obtained. Then, the focus position is adjusted by returning the position of the stage 10 to the position where the inclination becomes maximum.

【0013】隙間の長手方向と直角な方向の位置設定に
ついては、検出画像の中央を零として、隙間像の重心位
置をもとめ、重心位置を零に修正する方向に隙間位置設
定ステージ11を駆動する。その結果隙間像は常に取り
込み画像の中央に位置する。
The position of the gap in the direction perpendicular to the longitudinal direction is determined by setting the center of the detected image to zero, determining the center of gravity of the gap image, and driving the gap position setting stage 11 in a direction to correct the center of gravity to zero. . As a result, the gap image is always located at the center of the captured image.

【0014】受光手段の角度設定は測定角度設定ステー
ジ12で行う。ステージ12の取り付けは、ステージ1
2の回転中心と受光手段の焦点位置が一致するように設
定する。その状態で精密ステージ12の角度を所定角度
範囲にわたり一定角度で送り、各角度に於る隙間測定値
を求める。測定値は受光系が隙間に対して垂直になった
ときに最大になる。そこで隙間測定値が最大になる角度
にステージ12角度を戻すことで検出部の角度を合わせ
る。
The angle setting of the light receiving means is performed by a measurement angle setting stage 12. Stage 12 is mounted on stage 1
The rotation center of 2 is set so that the focal position of the light receiving means coincides. In this state, the angle of the precision stage 12 is sent at a constant angle over a predetermined angle range, and a gap measurement value at each angle is obtained. The measured value is maximum when the light receiving system is perpendicular to the gap. Therefore, the angle of the detection unit is adjusted by returning the angle of the stage 12 to the angle at which the measured gap value is maximized.

【0015】感光ドラム1と現像スリーブ2間の間隔
は、トナーカートリッジ8の取り付け姿勢や、感光ドラ
ム1の回転、停止によって変化する。そこで製品使用状
態での隙間間隔を測定するために、トナーカートリッジ
8は製品使用時と同一の姿勢で取り付け、感光ドラム1
は図示しないモータにより製品使用時と同じ回転数で回
転させながら隙間間隔を測定する。
The distance between the photosensitive drum 1 and the developing sleeve 2 changes depending on the mounting posture of the toner cartridge 8 and the rotation and stop of the photosensitive drum 1. Therefore, in order to measure the gap interval when the product is used, the toner cartridge 8 is mounted in the same posture as when the product is used.
Is used to measure the gap interval while rotating the motor at the same rotational speed as when the product is used.

【0016】上記構成でセンサ姿勢を隙間に合わせ隙間
測定を行うことで、隙間間隔を精度良く測定できる。
By performing the gap measurement by adjusting the sensor attitude to the gap with the above configuration, the gap interval can be accurately measured.

【0017】次に対物レンズ6前に置かれたスリット5
の効果について述べる。本実施例において隙間部分に受
光系の撮像焦点が合っている場合には図3の(a)に示
すように明確に隙間部とエッジ部とが明確に区別できる
像が得られる。しかし測定対象の寸法誤差等の理由で受
光系の撮像焦点位置から隙間部分がはずれた場合には、
スリット5がないと図4(a)の様にエッジ付近に明る
い帯状の像18′ができる。この像を隙間の長手方向に
射影をとった波形が図4の(b)である。図4の(a)
での明るい帯状の像は図4の(b)ではエッジ付近の光
量ピーク19′として現れる。同図でエッジ付近の光量
ピークは実際の明部の幅より外側に位置する。そしてこ
のエッジ付近の光量ピークは撮像焦点からはずれるにし
たがって左右2つの間隔が広がる。そのため焦点がずれ
ると明部の幅21が実際の値より大きく測定されてしま
う。この測定値の変化の様子22を焦点位置のずれに対
してプロットしたのが図4の(c)である。焦点が合っ
ている付近で測定値が最小になるが、測定値変化がフラ
ットになる領域23は狭く、焦点がずれるにしたがって
測定誤差が増えてゆくのが分かる。
Next, a slit 5 placed in front of the objective lens 6
The effect of is described. In this embodiment, when the imaging focus of the light receiving system is focused on the gap, an image in which the gap and the edge can be clearly distinguished is obtained as shown in FIG. However, if the gap is deviated from the imaging focal position of the light receiving system due to the dimensional error of the measurement object, etc.,
Without the slit 5, a bright band image 18 'is formed near the edge as shown in FIG. FIG. 4B shows a waveform obtained by projecting this image in the longitudinal direction of the gap. FIG. 4 (a)
4B appears as a light intensity peak 19 'near the edge in FIG. In the figure, the light amount peak near the edge is located outside the width of the actual bright part. Then, the light amount peak near the edge is widened by two intervals on the left and right as the light amount peak deviates from the imaging focus. Therefore, when the focus is shifted, the width 21 of the bright portion is measured to be larger than the actual value. FIG. 4 (c) plots the state 22 of the change in the measured value against the shift of the focal position. It can be seen that the measured value is minimized in the vicinity of the focus, but the area 23 where the measured value change is flat is narrow, and the measurement error increases as the focus is shifted.

【0018】このような誤差を生むのは二次光源となる
拡散面4で散乱された光が直接受光系に入射するものば
かりではなく円筒表面で反射して受光系に入射するもの
もあり、この円筒表面の反射光は隙間像のエッジ付近に
結像するためである。円筒表面で反射した光は図6の様
な光路で進む。図6で1は感光ドラム、2は現像スリー
ブで、この二つの円筒間の隙間間隔が測定対象である。
4は拡散面、5はスリット、6は対物レンズ、7はCC
Dカメラ、24は隙間を通過し直進する直進光、25は
円筒表面で反射した反射光、26は直進光24の対物レ
ンズ入口での光量分布、27は反射光25の対物レンズ
入口での光量分布、28は直進光24のCCDカメラ7
の受光面での光量分布、29は反射光25の受光面での
光量分布である。隙間を通過し直進する直進光24は対
物レンズの入口付近では対物レンズの中心部に集中26
している。一方で円筒表面で反射した反射光25は対物
レンズ入口付近では薄く広く分布27している。それぞ
れの光線は対物レンズ入口付近で図6の(b)の様な光
量分布になっており、全体ではこれらの和の光量分布と
なっている。これらの光線を対物レンズ6でCCDカメ
ラ7の受光面に結像させると、隙間を直進して通過した
直進光24は受光面上ではエッジのはっきりした隙間像
28として結像するが、円筒表面で反射した反射光25
は受光面上では隙間像のエッジ付近に集中し、図6の
(c)の様に隙間像のエッジ付近に光量ピーク29を生
じさせる。そして受光光学系と被測定隙間の距離を変化
させ焦点位置を変化させるとエッジ付近の光量ピーク2
9の間隔は狭くなったり広くなったりする。そのため明
部の幅が変化することとなり、焦点ずれによって測定誤
差が生じる。
Such errors are caused not only by the fact that the light scattered by the diffusing surface 4 serving as the secondary light source directly enters the light receiving system, but also that the light is reflected by the cylindrical surface and enters the light receiving system. This is because the reflected light from the cylindrical surface forms an image near the edge of the gap image. Light reflected on the cylindrical surface travels along an optical path as shown in FIG. In FIG. 6, reference numeral 1 denotes a photosensitive drum, 2 denotes a developing sleeve, and a gap between the two cylinders is an object to be measured.
4 is a diffusing surface, 5 is a slit, 6 is an objective lens, 7 is CC
D camera, 24: straight light passing straight through the gap, 25: reflected light reflected by the cylindrical surface, 26: light quantity distribution of the straight light 24 at the objective lens entrance, 27: light quantity of the reflected light 25 at the objective lens entrance Distribution, 28 is a CCD camera 7 with straight light 24
Is a light amount distribution on the light receiving surface, and 29 is a light amount distribution of the reflected light 25 on the light receiving surface. The straight light 24 passing straight through the gap concentrates at the center of the objective lens near the entrance of the objective lens.
are doing. On the other hand, the reflected light 25 reflected on the cylindrical surface is thinly and widely distributed 27 near the objective lens entrance. Each light beam has a light amount distribution near the entrance of the objective lens as shown in FIG. 6B, and the light amount distribution as a sum of these distributions. When these light beams are imaged on the light receiving surface of the CCD camera 7 by the objective lens 6, the straight light 24 that has passed straight through the gap forms an image 28 with a sharp edge on the light receiving surface. Reflected light 25
Are concentrated near the edge of the gap image on the light receiving surface, and generate a light amount peak 29 near the edge of the gap image as shown in FIG. When the focal position is changed by changing the distance between the light receiving optical system and the measured gap, the light amount peak near the edge becomes 2
The interval of 9 becomes narrower or wider. Therefore, the width of the bright portion changes, and a measurement error occurs due to defocus.

【0019】上記のように焦点ずれによる誤差は円筒表
面の反射光25によるものである。そこで対物レンズ入
口付近にスリット5を挿入し直進光24は全て通し、反
射光25の大部分は遮光する。ここでスリット5がなけ
れば図4の(a)の様にエッジ付近に光量ピークが生じ
る焦点位置で、スリット5を対物レンズ6前に挿入した
とき得られる隙間像は図5の(a)の様になりエッジ付
近の光量ピークはなくなる。図5の(a)隙間の長手方
向に射影をとった図5の(b)からもエッジ付近にあっ
た光量ピークがほとんどなくなっているのがわかる。図
5(c)はこのスリット5を用いた場合の、焦点位置か
らのずれに対する測定値の変化22をプロットしたもの
である。この図からスリット5を使うことで焦点位置か
らのずれに対する測定値の変化がフラットになる領域2
3が広がり、焦点ずれに対して強い受光系ができること
が分かる。
As described above, the error due to the defocus is caused by the reflected light 25 on the cylindrical surface. Therefore, the slit 5 is inserted near the entrance of the objective lens to allow all the straight light 24 to pass therethrough and block most of the reflected light 25. Here, if there is no slit 5, the gap image obtained when the slit 5 is inserted in front of the objective lens 6 at the focal position where the light intensity peak occurs near the edge as shown in FIG. And the light intensity peak near the edge disappears. It can also be seen from FIG. 5A that the projection in the longitudinal direction of the gap in FIG. 5B shows that the light amount peak near the edge is almost eliminated. FIG. 5C is a plot of the change 22 of the measured value with respect to the deviation from the focal position when the slit 5 is used. From this figure, the area 2 where the change of the measured value with respect to the deviation from the focal position becomes flat by using the slit 5 is shown.
3 spreads, and it is understood that a light receiving system strong against defocus can be formed.

【0020】図7は本発明の第2の実施例であるレーザ
プリンタのトナーカートリッジの感光ドラムと現像スリ
ーブの二円筒間の隙間間隔検出部の構成図である。前述
と同様の部材には同じ符番を冠しているが、一応説明す
る。1は感光ドラム、2は現像スリーブで、この二つの
円筒(約φ30mm)間の隙間間隔(約300μm)が
測定対象である。拡散面4は測定対象隙間から約20m
mの位置にある。5はスリットであり測定対象隙間の長
手方向と同じ向きに設定する。6は隙間の像を拡大投影
する対物レンズ、7は拡大された隙間像を撮像するCC
Dカメラである。また7にラインセンサを用いてもよ
く、その場合は取付方向を隙間の長手方向と直角な向き
とする。さらに30はHeNeレーザ、31はビームエ
キスパンダ、32はレンズ、33、34は絞り、35は
ビームスプリッタである。
FIG. 7 is a configuration diagram of a gap detecting section between the photosensitive drum of the toner cartridge and the two cylinders of the developing sleeve of the laser printer according to the second embodiment of the present invention. The same members as those described above bear the same reference numerals, but will be described briefly. 1 is a photosensitive drum, 2 is a developing sleeve, and a gap (about 300 μm) between these two cylinders (about φ30 mm) is an object to be measured. Diffusing surface 4 is about 20m from the gap to be measured
m. Reference numeral 5 denotes a slit which is set in the same direction as the longitudinal direction of the gap to be measured. 6 is an objective lens for enlarging and projecting the image of the gap, and 7 is a CC for imaging the enlarged gap image.
D camera. In addition, a line sensor may be used for 7, and in that case, the mounting direction is set to a direction perpendicular to the longitudinal direction of the gap. Further, 30 is a HeNe laser, 31 is a beam expander, 32 is a lens, 33 and 34 are apertures, and 35 is a beam splitter.

【0021】本実施例は投受光同軸で隙間測定を行うも
のである。光源としてHeNeレーザ30を用い、ビー
ムエキスパンダ31で光線を広げた後、レンズ32で光
線を集光する。レンズ32の焦点位置と対物レンズ6の
像面位置を一致させることで、この光線は被測定隙間の
位置でビーム径100μm以下に絞られ、二円筒間約3
00μmの隙間を通過し、拡散面4を照明する。このと
きレンズ32の直後の絞り33で照明領域の広さを可変
できる。34の絞りは対物レンズ6の撮像焦点と共役な
位置に置き、被測定隙間位置の円筒1、2を直接照明す
る回折光や散乱光を遮る。
In this embodiment, the gap measurement is performed coaxially with the light emitting and receiving light. A HeNe laser 30 is used as a light source, and a light beam is expanded by a beam expander 31 and then condensed by a lens 32. By matching the focal position of the lens 32 and the image plane position of the objective lens 6, this light beam is narrowed to a beam diameter of 100 μm or less at the position of the measured gap, and the distance between the two cylinders is about 3 μm.
The light passes through the gap of 00 μm and illuminates the diffusion surface 4. At this time, the size of the illumination area can be changed by the stop 33 immediately after the lens 32. The diaphragm 34 is placed at a position conjugate to the imaging focal point of the objective lens 6 and blocks diffracted light or scattered light that directly illuminates the cylinders 1 and 2 at the gap to be measured.

【0022】上記構成の同軸照明を備えた隙間幅検出部
によれば被測定隙間がごく一部分しか外部から見えない
場合でも、被測定隙間を通して拡散面4を照明すること
ができ、隙間のシルエット像をCCDカメラ7で撮像す
ることができる。
According to the gap width detecting section provided with the coaxial illumination having the above-described configuration, even when the gap to be measured is only partially visible from the outside, the diffusion surface 4 can be illuminated through the gap to be measured. Can be imaged by the CCD camera 7.

【0023】[0023]

【発明の効果】以上説明したように、照明手段を測定対
象隙間の片側に配置し、照明手段とは反対側に配置され
た拡散面を測定対象隙間を通して照明手段で照明し、隙
間のシルエット像を前記照明手段の側から対物レンズを
介して受光手段で撮像して、前測定対象隙間の隙間間隔
を測定する様にしたことで、非接触に隙間間隔測定が行
なえ、又光透過型測定では光路に障害物があり測定でき
ない場合でも本発明によれば測定可能である。更に投受
光手段の反対側にある拡散面を照明することからエッジ
部分のコントラストのはっきりしたシルエット像が得ら
れ、精度よく隙間測定を行なえる。特にこの時対物レン
ズと測定対象隙間との間に隙間と平行にスリットを設
け、これを通して受光撮像するようにしたことで、特に
隙間を形成する物体からの直接反射光を効果的に排除す
ることができ、測定精度が向上する。
As described above, the illuminating means is arranged on one side of the gap to be measured, and the diffusion surface arranged on the side opposite to the illuminating means is illuminated by the illuminating means through the gap to be measured, and a silhouette image of the gap is obtained. Is imaged by the light receiving means from the side of the illuminating means via the objective lens, and by measuring the gap interval of the gap to be measured before, the gap interval measurement can be performed in a non-contact manner. According to the present invention, the measurement can be performed even when the measurement cannot be performed due to an obstacle in the optical path. Furthermore, since the diffusion surface on the opposite side of the light emitting and receiving means is illuminated, a silhouette image with a clear contrast at the edge portion is obtained, and the gap measurement can be performed with high accuracy. In particular, at this time, a slit is provided between the objective lens and the gap to be measured, parallel to the gap, and light is received and imaged through the slit, so that the direct reflected light from the object forming the gap can be effectively eliminated. And the measurement accuracy is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施した隙間間隔検出部の概略図であ
る。
FIG. 1 is a schematic diagram of a gap interval detection unit embodying the present invention.

【図2】隙間間隔測定機の構成図である。FIG. 2 is a configuration diagram of a gap measuring device.

【図3】検出画像(a)及び検出画像を隙間の長手方向
に射影をとり平均化した信号波形(b)を示す図であ
る。
FIG. 3 is a diagram showing a detected image (a) and a signal waveform (b) obtained by projecting the detected image in a longitudinal direction of a gap and averaging the projected image.

【図4】スリット5のない検出系構成で撮像焦点がずれ
た場合の検出画像(a)及び検出画像を隙間の長手方向
に射影をとり平均化した信号波形(b)及び焦点ずれに
対する測定値の変化(c)を示す図である。
FIGS. 4A and 4B are a detection image (a) when the imaging focus is deviated by a detection system configuration without a slit 5, a signal waveform (b) obtained by projecting the detection image in a longitudinal direction of a gap, and an average value, and a measured value for defocus; It is a figure which shows the change (c) of.

【図5】スリット5を用いた検出系構成で撮像焦点がず
れた場合の検出画像(a)及び検出画像を隙間の長手方
向に射影をとり平均化した信号波形(b)及び焦点ずれ
に対する測定値の変化(c)を示す図である。
FIG. 5 shows a detection image (a) and a signal waveform (b) obtained by projecting the detected image in the longitudinal direction of the gap and averaging the detected image when the imaging focus is deviated by the detection system configuration using the slit 5, and measuring the defocus. It is a figure showing a change (c) of a value.

【図6】円筒間を通過する光の光路(a)及び対物レン
ズ前に於る直進光24と反射光25の光量分布(b)及
び像面に於る直進光24と反射光25の光量分布(c)
を示すである。
FIG. 6 shows the optical path of light passing between cylinders (a), the light quantity distribution of straight light 24 and reflected light 25 before the objective lens (b), and the light quantity of straight light 24 and reflected light 25 on the image plane. Distribution (c)
It is shown.

【図7】本発明の第2の実施例である同軸照明系の隙間
間隔検出部の概略図である。
FIG. 7 is a schematic diagram of a gap interval detection unit of a coaxial illumination system according to a second embodiment of the present invention.

【図8】外径測定機を用いた従来の隙間測定機の構成図
である。
FIG. 8 is a configuration diagram of a conventional gap measuring device using an outer diameter measuring device.

【符号の説明】[Explanation of symbols]

1 感光ドラム 2 現像スリーブ 3 レーザ光源 4 拡散面 5 スリット 6 対物レンズ 7 CCDカメラ 8 トナーカートリッジ 9 カートリッジ取り付け台 10 焦点位置設定ステージ 11 隙間方向位置設定ステージ 12 測定角度設定ステージ 13 AD変換器 14 画像メモリ 15 小型計算機 16 現像スリーブ像 17 感光ドラム像 18 隙間像 19 隙間像の射影波形 20 射影波形のしきい値 21 隙間幅 22 焦点ずれに対する測定値変化 23 焦点ずれに対する測定値平坦部の幅 24 円筒面で反射せず直進する直進光 25 円筒表明で反射した反射光 26 直進光24の対物レンズ入口での光量分布 27 反射光25の対物レンズ入口での光量分布 28 直進光24の受光面での光量分布 29 反射光25の受光面での光量分布 30 HeNeレーザ 31 ビームエキスパンダ 32 レンズ 33、34 絞り 35 ビームスプリッタ 36、37 外径測定機の投受光ユニット DESCRIPTION OF SYMBOLS 1 Photosensitive drum 2 Developing sleeve 3 Laser light source 4 Diffusion surface 5 Slit 6 Objective lens 7 CCD camera 8 Toner cartridge 9 Cartridge mounting stand 10 Focus position setting stage 11 Gap direction position setting stage 12 Measurement angle setting stage 13 AD converter 14 Image memory 15 Small Computer 16 Developing Sleeve Image 17 Photosensitive Drum Image 18 Gap Image 19 Gap Image Projection Waveform 20 Projection Waveform Threshold 21 Gap Width 22 Change in Measurement Value for Defocus 23 Measurement Width for Defocus 23 Flat Plate Width 24 Cylindrical Surface Straight light 25 that is reflected straight by a cylindrical expression 26 light quantity distribution of the straight light 24 at the entrance of the objective lens 27 light quantity distribution of the reflected light 25 at the entrance of the objective lens 28 light quantity of the straight light 24 at the light receiving surface Distribution 29 Light intensity distribution of reflected light 25 on light receiving surface 30 H Ne laser 31 beam expander 32 lenses 33 aperture 35 the beam splitter 36, 37 the outer diameter measuring instrument emitting and receiving unit

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 照明手段を測定対象隙間の片側に配置
し、照明手段とは反対側に配置された拡散面を前記測定
対象隙間を通して前記照明手段で照明し、該隙間のシル
エット像を前記照明手段側から対物レンズを介し、且つ
該対物レンズと前記隙間との間に前記隙間と平行に設け
られたスリットを通して受光手段で撮像して、前記測定
対象隙間の隙間間隔を測定する隙間間隔測定方法。
1. A place illumination means on one side of the measurement target gap, the diffusion surface disposed opposite illuminated by the illumination means through the measurement target gap with illumination means, the illumination silhouette image of the gap Through the objective lens from the means side, and
Provided between the objective lens and the gap in parallel with the gap
A gap interval measuring method for measuring the gap interval of the gap to be measured by taking an image with a light receiving means through a slit provided .
【請求項2】 前記測定対象隙間を形成する物体は円筒
部材を含むことを特徴とする請求項1の測定方法。
2. An object forming the gap to be measured is a cylinder.
The method according to claim 1 , further comprising a member .
JP04145692A 1992-06-05 1992-06-05 Gap spacing measurement method Expired - Fee Related JP3072805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04145692A JP3072805B2 (en) 1992-06-05 1992-06-05 Gap spacing measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04145692A JP3072805B2 (en) 1992-06-05 1992-06-05 Gap spacing measurement method

Publications (2)

Publication Number Publication Date
JPH05340723A JPH05340723A (en) 1993-12-21
JP3072805B2 true JP3072805B2 (en) 2000-08-07

Family

ID=15390898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04145692A Expired - Fee Related JP3072805B2 (en) 1992-06-05 1992-06-05 Gap spacing measurement method

Country Status (1)

Country Link
JP (1) JP3072805B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004013683A1 (en) * 2004-03-18 2005-11-03 Fag Kugelfischer Ag & Co. Ohg measuring device
JP2007322566A (en) * 2006-05-31 2007-12-13 Kyocera Mita Corp Developing device, image forming apparatus equipped with the same, and method for measuring gap between rollers
JP5050734B2 (en) * 2007-08-24 2012-10-17 コニカミノルタビジネステクノロジーズ株式会社 Process cartridge
JP5786799B2 (en) * 2012-05-29 2015-09-30 トヨタ自動車株式会社 Clearance measuring device and clearance measuring method
JP6381414B2 (en) * 2014-11-13 2018-08-29 キヤノン株式会社 Method for measuring gap between developing rotor and developer regulating member and developing device
JP7283228B2 (en) 2019-05-27 2023-05-30 コニカミノルタ株式会社 Measuring device, image forming device, and measuring method
JP2022180033A (en) * 2021-05-24 2022-12-06 アズビル株式会社 Optical gap measuring device and optical gap measuring method

Also Published As

Publication number Publication date
JPH05340723A (en) 1993-12-21

Similar Documents

Publication Publication Date Title
US6862097B2 (en) Three-dimensional shape measuring method, and three-dimensional shape measuring apparatus
JP2913984B2 (en) Tilt angle measuring device
US4395117A (en) Printing apparatus having an in-focus detector
US5610719A (en) Displacement detection system
JPH0650720A (en) Height measuring method and device
TWI411860B (en) Focal position detecting method
JPH11257917A (en) Reflection type optical sensor
JP2510786B2 (en) Object shape detection method and apparatus
JP3072805B2 (en) Gap spacing measurement method
KR20000057176A (en) Method for telemeasuring and telemeter
JPH0812127B2 (en) Curvature radius measuring device and method
US4641961A (en) Apparatus for measuring the optical characteristics of an optical system to be examined
JP3120885B2 (en) Mirror surface measuring device
CN109506570B (en) Displacement sensor
JP2005342153A (en) Optic refractive power measuring apparatus
JP3222214B2 (en) Target surface position detection device
JP2003161610A (en) Optical measurement device
JPS63259521A (en) Composite type focusing detection device
JPH0587681A (en) Measuring method and apparatus of coating state
JP3040131B2 (en) Spherical surface scratch inspection device
JPH0950176A (en) Toner density measuring device
JP3462177B2 (en) Device for detecting the position of a rotating object
JPH08166209A (en) Polygon mirror evaluating device
JPH09236408A (en) Focal position detecting device
JP2502741Y2 (en) Autofocus device for optical measuring machine

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000509

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees