JP2666032B2 - Measurement method of scattering light and scattering angle distribution - Google Patents

Measurement method of scattering light and scattering angle distribution

Info

Publication number
JP2666032B2
JP2666032B2 JP1947493A JP1947493A JP2666032B2 JP 2666032 B2 JP2666032 B2 JP 2666032B2 JP 1947493 A JP1947493 A JP 1947493A JP 1947493 A JP1947493 A JP 1947493A JP 2666032 B2 JP2666032 B2 JP 2666032B2
Authority
JP
Japan
Prior art keywords
scattered light
integrating sphere
light
reflected
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1947493A
Other languages
Japanese (ja)
Other versions
JPH06213766A (en
Inventor
孝男 伊沢
龍二 内村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Optronics Co Ltd
Original Assignee
Showa Optronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Optronics Co Ltd filed Critical Showa Optronics Co Ltd
Priority to JP1947493A priority Critical patent/JP2666032B2/en
Publication of JPH06213766A publication Critical patent/JPH06213766A/en
Application granted granted Critical
Publication of JP2666032B2 publication Critical patent/JP2666032B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、例えばレーザ発振器や
レーザ加工機などで各種の光学機器に使用される光学素
子に対し、その散乱光と散乱角度分布とを測定する方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring scattered light and scattered angle distribution of an optical element used for various optical devices such as a laser oscillator and a laser beam machine.

【0002】[0002]

【従来の技術】これらの光学素子では表面の粗さや傷な
どによって散乱光を発生し、この散乱光は反射または透
過エネルギーの損失を生じさせたり、ノイズ光として検
出されたりして光学性能を低下させるので、その散乱光
と散乱角度分布とが所望な範囲内であるか否かを定量的
に測定して確認しておく必要がある。
2. Description of the Related Art In these optical elements, scattered light is generated due to surface roughness or scratches, and the scattered light causes loss of reflected or transmitted energy or is detected as noise light, thereby deteriorating optical performance. Therefore, it is necessary to quantitatively measure and confirm whether the scattered light and the scattering angle distribution are within a desired range.

【0003】従来、この種の散乱光を測定する方法とし
ては例えば図1で示すような積分球を用いたものがあ
る。この方法では、積分球に測定サンプルとなる光学素
子と散乱光を検出する検知器とを配設し、例えば入射角
0°の入射光に対する散乱光の検出を行う場合には、図
1(a)のように積分球に設けられた入反射光穴から光
を入射させて測定サンプル表面からの反射光を同じ穴か
ら逃がすようにし、入射角αの入射光に対する散乱光の
検出を行う場合には、図1(b)のようにサンプル表面
からの反射光を入射光穴とは別の反射光穴から逃がすよ
うにし、散乱した光のみを積分球で捕らえてその散乱光
の光強度を検知器で検出するものである。尚、この散乱
強度の絶対値の校正は、測定サンプルの位置に100%
散乱する散乱物体を置いて検出された散乱強度との比率
によって行われる。
Conventionally, as a method for measuring this kind of scattered light, there is a method using an integrating sphere as shown in FIG. In this method, an optical element serving as a measurement sample and a detector for detecting scattered light are provided in an integrating sphere. For example, when detecting scattered light with respect to incident light having an incident angle of 0 °, FIG. ), Light is made to enter from the incident and reflected light hole provided in the integrating sphere so that the reflected light from the measurement sample surface escapes from the same hole, and the scattered light is detected with respect to the incident light at the incident angle α. As shown in FIG. 1 (b), the reflected light from the sample surface is allowed to escape from a reflected light hole different from the incident light hole, and only the scattered light is captured by an integrating sphere to detect the light intensity of the scattered light. It is detected by a container. The absolute value of the scattering intensity is calibrated by 100% at the position of the measurement sample.
This is performed by the ratio of the scattering intensity detected by placing a scattering object to be scattered.

【0004】また、散乱光の全体量は積分球を用いた図
1の方法によって検出されるが、どの散乱角度方向にど
れだけ強い散乱強度があるか(散乱角度分布)について
は、積分球を用いない別の装置によって測定されてい
た。この散乱角度分布の測定方法は、例えば図2で示す
ように測定サンプルに対して直接入射光を照射し、この
測定サンプルの前方に配設した光検知器を所定角度位置
毎に順次移動させながら当該測定サンプル表面からの散
乱光を測定するものである。
[0004] The total amount of scattered light is detected by the method of FIG. 1 using an integrating sphere. The intensity of the scattered light and the intensity of the scattered light (scattering angle distribution) are determined by using the integrating sphere. It was measured by another instrument not used. In the method of measuring the scattering angle distribution, for example, as shown in FIG. 2, a measurement sample is directly irradiated with incident light, and a photodetector disposed in front of the measurement sample is sequentially moved at predetermined angle positions. This is for measuring the scattered light from the measurement sample surface.

【0005】[0005]

【発明が解決しようとする課題】然しながら、上記した
散乱光を測定する方法では、反射光の光軸近傍(散乱角
度θが0°に近いところ)の散乱光が反射光が通る穴を
介して外部へ抜け出すので、光軸近傍における散乱光の
検出能力が著しく低下する。尚、入射角がαの場合には
入射光が通る穴からも散乱光は漏れるが、入射光近傍の
散乱光に比べて反射光近傍の散乱光の方が格段に大きい
ため、実際上では反射光近傍の散乱光の漏れのみが問題
になる。この場合に検出能力を上げる手段として、穴の
径を反射光が通る光路までぎりぎりに小さく設定すれば
良いが、実際には調整上の問題などの理由である程度の
余裕を持った穴の径が必要であり、有効な解決手段では
なかった。また、測定サンプルと反射光が通る穴との距
離Aを大きくすることによって分解能は向上されるが、
この場合には積分球の直径が大きくなって光検知器に入
る光強度が低下したり装置が大型化してコスト高になる
等の別な問題が発生するので、これらの制限を受けてむ
やみに距離Aの長さを大きくすることができない。
However, in the method for measuring the scattered light described above, the scattered light near the optical axis of the reflected light (where the scattering angle θ is close to 0 °) passes through the hole through which the reflected light passes. Since it escapes outside, the ability to detect scattered light near the optical axis is significantly reduced. When the incident angle is α, the scattered light leaks from the hole through which the incident light passes, but the scattered light near the reflected light is much larger than the scattered light near the incident light. Only leakage of scattered light in the vicinity of light becomes a problem. In this case, as a means of improving the detection capability, the diameter of the hole may be set as small as possible to the optical path through which the reflected light passes.However, in practice, the diameter of the hole having a certain margin due to adjustment problems or the like may be reduced. Necessary and not a valid solution. The resolution is improved by increasing the distance A between the measurement sample and the hole through which the reflected light passes,
In this case, other problems such as a decrease in the light intensity entering the photodetector due to an increase in the diameter of the integrating sphere and an increase in the size of the device and an increase in cost occur. The length of the distance A cannot be increased.

【0006】また、上記した散乱光の散乱角度分布を測
定する方法のように、積分球を用いた散乱光の測定装置
とは別の装置を用いる場合には、2種類の装置を用意す
る必要があり設備費用が嵩むと共に、その都度測定サン
プルを付け替えなければならないので作業が煩雑になる
などの問題があった。そこで本発明では、これらの従来
技術の課題を解決して反射光軸近傍の散乱検出能力を向
上させる光学素子の散乱光を測定する方法と、同じ装置
でその散乱光の散乱角度分布を容易に測定することがで
きる方法の提供を目的とする。
In the case of using another device different from the scattered light measuring device using an integrating sphere as in the method of measuring the scattered light scattering angle distribution described above, it is necessary to prepare two types of devices. However, there is a problem that the equipment cost is increased and the measurement sample must be replaced each time, so that the operation becomes complicated. Therefore, in the present invention, a method of measuring the scattered light of an optical element that solves these problems of the prior art and improves the ability of detecting scattered light in the vicinity of the reflected light axis, and the scattering angle distribution of the scattered light with the same apparatus can be easily achieved. The purpose is to provide a method that can be measured.

【0007】[0007]

【課題を解決するための手段】本発明による散乱光の測
定方法では、光学素子からの散乱光を積分球を用いて検
出する散乱光の測定方法において、反射光を逃がすため
の積分球に設けられた穴から漏洩する反射光軸近傍の散
乱光を、積分球から離れた反射光軸の延長線上の周囲に
配設した散乱光反射用凹面鏡で反射させて積分球側へ戻
し、反射光軸近傍の散乱光の検出能力を向上させた。
According to the method for measuring scattered light according to the present invention, a method for measuring scattered light from an optical element using an integrating sphere is provided on an integrating sphere for allowing reflected light to escape. The scattered light in the vicinity of the reflected optical axis leaking from the hole is reflected by the scattered light reflecting concave mirror arranged around the extension of the reflected optical axis away from the integrating sphere, and returned to the integrating sphere side. Improved the ability to detect nearby scattered light.

【0008】本発明による散乱光の散乱角度分布の測定
方法では、光学素子からの散乱光を積分球を用いて検出
する装置における積分球または測定サンプルを入射光軸
に沿って平行に移動させ、積分球に取り込まれる散乱光
の散乱角度を制限した状態で各位置での散乱光を測定す
る。
In the method for measuring the scattering angle distribution of scattered light according to the present invention, an integrating sphere or a measurement sample in an apparatus for detecting scattered light from an optical element using an integrating sphere is moved in parallel along an incident optical axis, The scattered light at each position is measured with the scattering angle of the scattered light taken into the integrating sphere limited.

【0009】[0009]

【実施例】以下に、本発明の方法を図示の実施例に基づ
いて詳細に説明する。図3は、反射光軸近傍の散乱検出
能力の向上を図るための実施例を示すものであり、この
図のように積分球に測定サンプルとなる光学素子と散乱
光の検知器とを配設し、例えば入射角0°の入射光に対
する散乱光の検出を行う場合には、図3(a)のように
積分球に設けられた入反射光穴から光を入射させて測定
サンプル表面からの反射光を同じ穴から逃がすように
し、入射角αの入射光に対する散乱光の検出を行う場合
には、図3(b)のようにサンプル表面からの反射光を
入射光穴とは別の反射光穴から逃がすようにし、散乱し
た光のみを積分球で捕らえてその散乱光の光強度を検知
器で検出するものである。また、上記積分球から離れた
反射光軸の延長線上の周囲には、反射光を逃がす穴を介
して外部へ漏洩する反射光軸近傍の散乱光を積分球側へ
反射させる散乱光反射用凹面鏡が配設されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The method of the present invention will be described below in detail with reference to the illustrated embodiment. FIG. 3 shows an embodiment for improving the scatter detection ability near the reflected light axis. As shown in FIG. 3, an integrating sphere is provided with an optical element serving as a measurement sample and a scattered light detector. For example, when detecting scattered light with respect to incident light having an incident angle of 0 °, light is made incident from an incident / reflective light hole provided in an integrating sphere as shown in FIG. When the reflected light is allowed to escape from the same hole and the scattered light is detected with respect to the incident light having the incident angle α, the reflected light from the sample surface is reflected differently from the incident light hole as shown in FIG. The light is allowed to escape from the light hole, only the scattered light is captured by an integrating sphere, and the light intensity of the scattered light is detected by a detector. A scattered light reflecting concave mirror for reflecting the scattered light near the reflected light axis leaking outside through a hole for releasing the reflected light to the integrating sphere side around the extension of the reflected light axis away from the integrating sphere. Are arranged.

【0010】この実施例では、散乱光反射用凹面鏡とし
て反射光軸と直交する態様で穴あき凹面鏡が配設され、
この穴あき凹面鏡は反射光軸上に位置する中央に穿設さ
れた通し穴を介して反射光がそのまま通過すると共に、
積分球の反射光穴を介して外部へ抜け出した反射光軸近
傍の散乱光は通し穴の両側の凹面部によって反射されて
積分球側へ戻される。これにより、測定サンプルと反射
光が通る穴との距離Aを実質的に大きくしたことになっ
て反射光軸近傍の散乱光に対する検出能力が向上され
る。また、この方法では積分球の直径は小さくて済むの
で光検知器に対する光強度を高めたり装置を小型化して
コストダウンを図ることも可能である。尚、散乱光反射
用凹面鏡としては図示の実施例のように穴あき凹面鏡を
用いないで、反射光軸の延長線上の周囲に単に凹面鏡を
配設するようにしても良い。
In this embodiment, a perforated concave mirror is disposed as a scattered light reflecting concave mirror so as to be orthogonal to the reflected optical axis.
This perforated concave mirror allows the reflected light to pass through as it is through the through hole formed in the center located on the reflected optical axis,
The scattered light in the vicinity of the reflected optical axis that has escaped through the reflected light hole of the integrating sphere is reflected by the concave portions on both sides of the through hole and returned to the integrating sphere. This substantially increases the distance A between the measurement sample and the hole through which the reflected light passes, thereby improving the ability to detect scattered light near the reflected light axis. Further, in this method, the diameter of the integrating sphere can be small, so that it is possible to increase the light intensity with respect to the photodetector or reduce the size of the apparatus to reduce the cost. The concave mirror for reflecting scattered light may not be a perforated concave mirror as in the illustrated embodiment, but may be simply provided around the extension of the reflected optical axis.

【0011】次に、図4は積分球を用いた散乱光の散乱
角度分布を測定する方法を示すものである。この方法に
は、上記した散乱光を測定する方法と同じ装置が用いら
れ、入射光軸に沿って積分球または測定サンプルが平行
移動できるようにしている。この装置の積分球と測定サ
ンプルのいずれか一方を入射光軸に沿って平行移動させ
ると、積分球と測定サンプルの間の距離に対応して積分
球内に取り込まれる散乱角度が変化するので、両者の相
対位置を変化させながらその都度検知器で散乱光を測定
すると、散乱角度分布が得られる。例えば、両者の距離
を離すと小さい散乱角度を持った散乱光のみが積分球内
に取り込まれ、両者の距離を近付けると大きな散乱角度
の散乱光まで積分球内に取り込むことができるので、両
者間の距離を種々に接離させた状態で積分球に取り込ま
れる散乱光の強度を検知器で順次測定し、各散乱角度に
対する散乱強度の依存性すなわち散乱角度分布を測定す
るものである。
FIG. 4 shows a method for measuring the scattering angle distribution of scattered light using an integrating sphere. In this method, the same apparatus as that for measuring the scattered light described above is used, and the integrating sphere or the measurement sample can be translated along the incident optical axis. If one of the integrating sphere and the measurement sample of this apparatus is translated along the incident optical axis, the scattering angle taken into the integrating sphere changes according to the distance between the integrating sphere and the measurement sample. When the scattered light is measured by the detector each time while changing the relative positions of the two, a scattering angle distribution is obtained. For example, when the distance between the two is increased, only the scattered light having a small scattering angle is captured in the integrating sphere, and when the distance between the two is reduced, even the scattered light with a large scattering angle can be captured in the integrating sphere. The intensity of the scattered light taken into the integrating sphere in a state where the distances are variously approached and separated is sequentially measured by a detector, and the dependence of the scattered intensity on each scattering angle, that is, the scattering angle distribution is measured.

【0012】この積分球と測定サンプルを相対移動する
場合に、測定サンプルを固定にして積分球を移動させて
も、積分球を固定にして測定サンプルを移動させてもい
づれでも良いが、前者の方が機械的精度を維持した状態
で容易に測定することができるので望ましく、後者の場
合には移動時における機械的誤差で入射光に対する測定
サンプルの角度が変わると、反射光の方向が微妙に変化
する恐れがある。この散乱角度分布を測定する方法で
は、散乱光の測定と同じ装置を用いて積分球または測定
サンプルを入射光軸に沿って平行移動させるだけで散乱
角度分布を測定することができるので、従来の方法に比
べてその設備費を安価にすることができると共に、その
都度測定サンプルの付け替えをする必要がないので操作
がきわめて容易である。
When the integrating sphere and the measurement sample are relatively moved, either the fixing of the measuring sphere and the moving of the integrating sphere or the fixing of the integrating sphere and the moving of the measurement sample may be performed. It is desirable to measure the angle of the sample with respect to the incident light due to the mechanical error during movement. May change. In the method of measuring the scattering angle distribution, the scattering angle distribution can be measured only by translating the integrating sphere or the measurement sample along the incident optical axis using the same apparatus as that for measuring the scattered light. The equipment cost can be reduced as compared with the method, and the operation is extremely easy because it is not necessary to replace the measurement sample each time.

【0013】[0013]

【発明の効果】本発明による散乱光の測定方法では、積
分球から離れた反射光軸の延長線上の周囲に配設させた
散乱光反射用凹面鏡によって、反射光を逃がす穴を介し
て外部へ漏洩する反射光軸近傍の散乱光を積分球側へ反
射させるようにし、測定サンプルと反射光が通る穴との
距離Aを実質的に大きくしたことで反射光軸近傍の散乱
光に対する検出能力を向上させると共に、使用する積分
球の直径を小さくして散乱の光検知器に対する光強度を
高め且つ装置を小型化してコストダウンを図ることが可
能である。また本発明による散乱光の散乱角度分布を測
定方法では、上記した散乱光の測定方法と同じ装置を用
いてその積分球または測定サンプルを入射光軸に沿って
平行移動させるだけで散乱角度分布を測定できるので、
従来の方法に比べてその設備費を安価にすることができ
ると共に、その都度測定サンプルの付け替えをする必要
がないので操作がきわめて容易である。
According to the method for measuring scattered light according to the present invention, a concave mirror for reflecting scattered light disposed around an extension of the reflected light axis away from the integrating sphere to the outside through a hole through which reflected light escapes. The leaked scattered light in the vicinity of the reflected light axis is reflected toward the integrating sphere, and the distance A between the measurement sample and the hole through which the reflected light passes is substantially increased. It is possible to increase the light intensity of the scattered light detector by reducing the diameter of the integrating sphere to be used and to reduce the size of the apparatus to reduce the cost. In the method for measuring the scattering angle distribution of scattered light according to the present invention, the scattering angle distribution can be obtained by simply translating the integrating sphere or the measurement sample along the incident optical axis using the same apparatus as the above-described method for measuring scattered light. Because you can measure
The equipment cost can be reduced as compared with the conventional method, and the operation is extremely easy because there is no need to replace the measurement sample each time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来例による散乱光の測定方法を示す説明図。FIG. 1 is an explanatory diagram showing a method for measuring scattered light according to a conventional example.

【図2】従来例による散乱光の散乱角度分布の測定方法
を示す説明図。
FIG. 2 is an explanatory view showing a method of measuring a scattering angle distribution of scattered light according to a conventional example.

【図3】本発明の実施例による散乱光の測定方法を示す
説明図。
FIG. 3 is an explanatory view showing a method for measuring scattered light according to the embodiment of the present invention.

【図4】本発明の実施例による散乱光の散乱角度分布の
測定方法を示す説明図。
FIG. 4 is an explanatory view showing a method of measuring a scattering angle distribution of scattered light according to the embodiment of the present invention.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 光学素子からの散乱光を積分球を用いて
検出する散乱光の測定方法において、反射光を逃がすた
めの積分球に設けられた穴から漏洩する反射光軸近傍の
散乱光を、積分球から離れた反射光軸の延長線上の周囲
に配設した散乱光反射用凹面鏡で反射させて積分球側へ
戻し、反射光軸近傍の散乱光の検出能力を向上させるこ
とを特徴とした散乱光の測定方法。
1. A scattered light measuring method for detecting scattered light from an optical element using an integrating sphere, wherein the scattered light in the vicinity of a reflected light axis leaking from a hole provided in the integrating sphere for allowing the reflected light to escape. It is characterized by improving the ability to detect scattered light near the reflected optical axis by reflecting it with a scattered light reflecting concave mirror arranged around the extension of the reflected optical axis away from the integrating sphere and returning it to the integrating sphere side. Scattered light measurement method.
【請求項2】 光学素子からの散乱光を積分球を用いて
検出する装置における積分球または測定サンプルを入射
光軸に沿って平行に移動させ、積分球に取り込まれる散
乱光の散乱角度を制限した状態で各位置での散乱光を測
定することを特徴とした散乱光の散乱角度分布を測定す
る方法。
2. An apparatus for detecting scattered light from an optical element using an integrating sphere, wherein an integrating sphere or a measurement sample is moved in parallel along an incident optical axis to limit a scattering angle of scattered light taken into the integrating sphere. A method for measuring the scattered light distribution of scattered light, wherein the scattered light at each position is measured in a state where the scattered light is measured.
JP1947493A 1993-01-13 1993-01-13 Measurement method of scattering light and scattering angle distribution Expired - Fee Related JP2666032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1947493A JP2666032B2 (en) 1993-01-13 1993-01-13 Measurement method of scattering light and scattering angle distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1947493A JP2666032B2 (en) 1993-01-13 1993-01-13 Measurement method of scattering light and scattering angle distribution

Publications (2)

Publication Number Publication Date
JPH06213766A JPH06213766A (en) 1994-08-05
JP2666032B2 true JP2666032B2 (en) 1997-10-22

Family

ID=12000333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1947493A Expired - Fee Related JP2666032B2 (en) 1993-01-13 1993-01-13 Measurement method of scattering light and scattering angle distribution

Country Status (1)

Country Link
JP (1) JP2666032B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005345904A (en) * 2004-06-04 2005-12-15 Sony Corp Image generation apparatus
JP5913143B2 (en) * 2013-02-04 2016-04-27 スガ試験機株式会社 Colorimeter
US10302529B2 (en) * 2017-03-17 2019-05-28 Fluke Corporation Optical connector polarity and loss measurement using an integrating sphere-equipped optical measurement device

Also Published As

Publication number Publication date
JPH06213766A (en) 1994-08-05

Similar Documents

Publication Publication Date Title
US7298468B2 (en) Method and measuring device for contactless measurement of angles or angle changes on objects
KR19990071667A (en) Surface Characterization Device and Method
US7145654B2 (en) Method and apparatus to reduce spotsize in an optical metrology instrument
JPS6036013B2 (en) Metal surface defect inspection method
EP1336095B1 (en) Measurement of surface defects
KR100568439B1 (en) Ellipsometer measuring instrument
EP0792438B1 (en) Method and device for determining the thickness of a layer applied to an optical fiber
JPH08114421A (en) Non-contact type measuring device for measuring thickness ofmaterial body comprising transparent material
JP2666032B2 (en) Measurement method of scattering light and scattering angle distribution
JPH06294629A (en) Device for measuring curvature of surface
US6628402B1 (en) Phase interference detecting method and system in interferometer, and light detector therefor
JPH0444204B2 (en)
JP2001066127A (en) Optical surface inspecting mechanism and its device
JP3276577B2 (en) Optical surface roughness measuring device
JPS63255608A (en) Method for calibrating dripping liquid droplet detector
JP2004198244A (en) Transmissivity measuring instrument and absolute reflectivity measuring instrument
JPH05332880A (en) Measuring apparatus for distribution of refractive index at cross section of optical waveguide
JP2585495Y2 (en) Displacement measuring device
KR200355431Y1 (en) Prism coupler
JP3077725B2 (en) Refractive index measuring method and apparatus
JP2020030130A (en) Optical system
JP3230977B2 (en) Object positioning device for light wave interference device
JP2001050720A (en) Surface inspection method and device thereof
JPH07301519A (en) Distance measuring instrument
EP0509848A2 (en) Measuring the cross-sectional distribution of the refractive index of an optical waveguide

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees