JPH06213766A - Method for measuring scattering light and distribution of scattering angle - Google Patents

Method for measuring scattering light and distribution of scattering angle

Info

Publication number
JPH06213766A
JPH06213766A JP1947493A JP1947493A JPH06213766A JP H06213766 A JPH06213766 A JP H06213766A JP 1947493 A JP1947493 A JP 1947493A JP 1947493 A JP1947493 A JP 1947493A JP H06213766 A JPH06213766 A JP H06213766A
Authority
JP
Japan
Prior art keywords
light
integrating sphere
scattered light
scattering
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1947493A
Other languages
Japanese (ja)
Other versions
JP2666032B2 (en
Inventor
Takao Izawa
孝男 伊沢
Ryuji Uchimura
龍二 内村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHOWA KOKI SEIZO KK
Original Assignee
SHOWA KOKI SEIZO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHOWA KOKI SEIZO KK filed Critical SHOWA KOKI SEIZO KK
Priority to JP1947493A priority Critical patent/JP2666032B2/en
Publication of JPH06213766A publication Critical patent/JPH06213766A/en
Application granted granted Critical
Publication of JP2666032B2 publication Critical patent/JP2666032B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a method for measuring the scattering light of an optical element and the distribution of the scattering angle easily by means of a same equipment while enhancing the detecting capacity in the vicinity of the axis of reflected light. CONSTITUTION:In a method for measuring the scattering light from an optical element using an integrating sphere, scattering light in the vicinity of the axis of reflected light leaked through a hole made in the integrating sphere in order to release the reflecting light is reflected on a concave mirror for reflecting the scattering light disposed around the extension of the axis of reflecting light at a position remote from the integrating sphere and returned back to the integrating sphere side thus enhancing the detecting capacity of scattering light in the vicinity of the axis of the reflecting light. Furthermore, the integrating sphere or a measuring sample is moved in parallel along the axis of incident light in an equipment for detecting the scattering light from an optical element using an integrating sphere, and the scattering light is measured at each position while limiting the scattering angle of the scattering light being taken into the integrating sphere thus obtaining the scattering angle distribution of scattering light.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えばレーザ発振器や
レーザ加工機などで各種の光学機器に使用される光学素
子に対し、その散乱光と散乱角度分布とを測定する方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring scattered light and scattering angle distribution of an optical element used in various optical devices such as a laser oscillator and a laser processing machine.

【0002】[0002]

【従来の技術】これらの光学素子では表面の粗さや傷な
どによって散乱光を発生し、この散乱光は反射または透
過エネルギーの損失を生じさせたり、ノイズ光として検
出されたりして光学性能を低下させるので、その散乱光
と散乱角度分布とが所望な範囲内であるか否かを定量的
に測定して確認しておく必要がある。
2. Description of the Related Art These optical elements generate scattered light due to surface roughness or scratches, and the scattered light causes a loss of reflected or transmitted energy or is detected as noise light to deteriorate optical performance. Therefore, it is necessary to quantitatively measure and confirm whether or not the scattered light and the scattering angle distribution are within a desired range.

【0003】従来、この種の散乱光を測定する方法とし
ては例えば図1で示すような積分球を用いたものがあ
る。この方法では、積分球に測定サンプルとなる光学素
子と散乱光を検出する検知器とを配設し、例えば入射角
0°の入射光に対する散乱光の検出を行う場合には、図
1(a)のように積分球に設けられた入反射光穴から光
を入射させて測定サンプル表面からの反射光を同じ穴か
ら逃がすようにし、入射角αの入射光に対する散乱光の
検出を行う場合には、図1(b)のようにサンプル表面
からの反射光を入射光穴とは別の反射光穴から逃がすよ
うにし、散乱した光のみを積分球で捕らえてその散乱光
の光強度を検知器で検出するものである。尚、この散乱
強度の絶対値の校正は、測定サンプルの位置に100%
散乱する散乱物体を置いて検出された散乱強度との比率
によって行われる。
Conventionally, as a method of measuring this kind of scattered light, for example, there is a method using an integrating sphere as shown in FIG. In this method, an optical element serving as a measurement sample and a detector for detecting scattered light are arranged on an integrating sphere, and when detecting scattered light with respect to incident light having an incident angle of 0 °, for example, in FIG. When light is incident from the incident / reflected light hole provided on the integrating sphere as shown in), the reflected light from the measurement sample surface is allowed to escape from the same hole, and scattered light is detected for incident light with an incident angle α. As shown in Fig. 1 (b), the reflected light from the sample surface is allowed to escape from the reflected light hole different from the incident light hole, only the scattered light is caught by the integrating sphere, and the light intensity of the scattered light is detected. It is something that is detected by a vessel. It should be noted that the calibration of the absolute value of the scattering intensity is 100% at the position of the measurement sample.
This is done by the ratio with the scattered intensity detected with a scattering object scattered.

【0004】また、散乱光の全体量は積分球を用いた図
1の方法によって検出されるが、どの散乱角度方向にど
れだけ強い散乱強度があるか(散乱角度分布)について
は、積分球を用いない別の装置によって測定されてい
た。この散乱角度分布の測定方法は、例えば図2で示す
ように測定サンプルに対して直接入射光を照射し、この
測定サンプルの前方に配設した光検知器を所定角度位置
毎に順次移動させながら当該測定サンプル表面からの散
乱光を測定するものである。
The total amount of scattered light is detected by the method of FIG. 1 using an integrating sphere. Regarding the strong scattering intensity in which scattering angle direction (scattering angle distribution), the integrating sphere is used. It was measured by another device that was not used. This scattering angle distribution is measured by, for example, irradiating the measurement sample directly with incident light as shown in FIG. The scattered light from the surface of the measurement sample is measured.

【0005】[0005]

【発明が解決しようとする課題】然しながら、上記した
散乱光を測定する方法では、反射光の光軸近傍(散乱角
度θが0°に近いところ)の散乱光が反射光が通る穴を
介して外部へ抜け出すので、光軸近傍における散乱光の
検出能力が著しく低下する。尚、入射角がαの場合には
入射光が通る穴からも散乱光は漏れるが、入射光近傍の
散乱光に比べて反射光近傍の散乱光の方が格段に大きい
ため、実際上では反射光近傍の散乱光の漏れのみが問題
になる。この場合に検出能力を上げる手段として、穴の
径を反射光が通る光路までぎりぎりに小さく設定すれば
良いが、実際には調整上の問題などの理由である程度の
余裕を持った穴の径が必要であり、有効な解決手段では
なかった。また、測定サンプルと反射光が通る穴との距
離Aを大きくすることによって分解能は向上されるが、
この場合には積分球の直径が大きくなって光検知器に入
る光強度が低下したり装置が大型化してコスト高になる
等の別な問題が発生するので、これらの制限を受けてむ
やみに距離Aの長さを大きくすることができない。
However, in the method of measuring scattered light described above, scattered light near the optical axis of the reflected light (where the scattering angle θ is close to 0 °) passes through the hole through which the reflected light passes. Since it escapes to the outside, the ability to detect scattered light near the optical axis is significantly reduced. When the incident angle is α, the scattered light leaks from the hole through which the incident light passes, but the scattered light in the vicinity of the reflected light is much larger than the scattered light in the vicinity of the incident light. Only the leakage of scattered light near the light becomes a problem. In this case, as a means of increasing the detection capability, it is sufficient to set the diameter of the hole as small as possible up to the optical path through which the reflected light passes, but in reality, due to problems such as adjustment problems, the diameter of the hole should have a certain margin. It was necessary and not a valid solution. Further, although the resolution is improved by increasing the distance A between the measurement sample and the hole through which the reflected light passes,
In this case, since the diameter of the integrating sphere becomes large, the intensity of light entering the photodetector decreases, and other problems such as an increase in size and cost of the device occur. The length of the distance A cannot be increased.

【0006】また、上記した散乱光の散乱角度分布を測
定する方法のように、積分球を用いた散乱光の測定装置
とは別の装置を用いる場合には、2種類の装置を用意す
る必要があり設備費用が嵩むと共に、その都度測定サン
プルを付け替えなければならないので作業が煩雑になる
などの問題があった。そこで本発明では、これらの従来
技術の課題を解決して反射光軸近傍の散乱検出能力を向
上させる光学素子の散乱光を測定する方法と、同じ装置
でその散乱光の散乱角度分布を容易に測定することがで
きる方法の提供を目的とする。
When a device different from the scattered light measuring device using the integrating sphere is used as in the method for measuring the scattered angle distribution of scattered light, it is necessary to prepare two types of devices. However, there is a problem in that the equipment cost is increased and the measurement sample must be replaced each time, which makes the work complicated. Therefore, in the present invention, a method of measuring scattered light of an optical element that solves the problems of these conventional techniques and improves the scattered light detection capability in the vicinity of the reflected light axis, and the scattering angle distribution of the scattered light can be easily performed by the same device. The purpose is to provide a method that can be measured.

【0007】[0007]

【課題を解決するための手段】本発明による散乱光の測
定方法では、光学素子からの散乱光を積分球を用いて検
出する散乱光の測定方法において、反射光を逃がすため
の積分球に設けられた穴から漏洩する反射光軸近傍の散
乱光を、積分球から離れた反射光軸の延長線上の周囲に
配設した散乱光反射用凹面鏡で反射させて積分球側へ戻
し、反射光軸近傍の散乱光の検出能力を向上させた。
In the scattered light measuring method according to the present invention, a scattered light measuring method for detecting scattered light from an optical element using an integrating sphere is provided on the integrating sphere for allowing reflected light to escape. Scattered light near the reflected light axis leaking from the hole is reflected by a concave mirror for scattered light reflection arranged around the extension of the reflected light axis away from the integrating sphere and returned to the integrating sphere side. The ability to detect scattered light in the vicinity was improved.

【0008】本発明による散乱光の散乱角度分布の測定
方法では、光学素子からの散乱光を積分球を用いて検出
する装置における積分球または測定サンプルを入射光軸
に沿って平行に移動させ、積分球に取り込まれる散乱光
の散乱角度を制限した状態で各位置での散乱光を測定す
る。
In the method for measuring the scattering angle distribution of scattered light according to the present invention, an integrating sphere or a measurement sample in an apparatus for detecting scattered light from an optical element using an integrating sphere is moved in parallel along the incident optical axis, The scattered light at each position is measured with the scattering angle of the scattered light taken into the integrating sphere being limited.

【0009】[0009]

【実施例】以下に、本発明の方法を図示の実施例に基づ
いて詳細に説明する。図3は、反射光軸近傍の散乱検出
能力の向上を図るための実施例を示すものであり、この
図のように積分球に測定サンプルとなる光学素子と散乱
光の検知器とを配設し、例えば入射角0°の入射光に対
する散乱光の検出を行う場合には、図3(a)のように
積分球に設けられた入反射光穴から光を入射させて測定
サンプル表面からの反射光を同じ穴から逃がすように
し、入射角αの入射光に対する散乱光の検出を行う場合
には、図3(b)のようにサンプル表面からの反射光を
入射光穴とは別の反射光穴から逃がすようにし、散乱し
た光のみを積分球で捕らえてその散乱光の光強度を検知
器で検出するものである。また、上記積分球から離れた
反射光軸の延長線上の周囲には、反射光を逃がす穴を介
して外部へ漏洩する反射光軸近傍の散乱光を積分球側へ
反射させる散乱光反射用凹面鏡が配設されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The method of the present invention will be described below in detail with reference to the illustrated embodiments. FIG. 3 shows an embodiment for improving the scattering detection capability in the vicinity of the reflected light axis. As shown in this drawing, an integrating sphere is provided with an optical element serving as a measurement sample and a scattered light detector. However, for example, in the case of detecting scattered light with respect to incident light having an incident angle of 0 °, light is made incident through the incident / reflected light hole provided on the integrating sphere as shown in FIG. When the reflected light is allowed to escape from the same hole and the scattered light with respect to the incident light of the incident angle α is detected, the reflected light from the sample surface is different from the incident light hole as shown in FIG. 3B. The light is allowed to escape from the light hole, only the scattered light is captured by the integrating sphere, and the light intensity of the scattered light is detected by the detector. Further, around the extension of the reflected light axis away from the integrating sphere, a concave mirror for scattering light reflection that reflects scattered light in the vicinity of the reflected light axis leaking to the outside through a hole for letting the reflected light escape to the integrating sphere side Is provided.

【0010】この実施例では、散乱光反射用凹面鏡とし
て反射光軸と直交する態様で穴あき凹面鏡が配設され、
この穴あき凹面鏡は反射光軸上に位置する中央に穿設さ
れた通し穴を介して反射光がそのまま通過すると共に、
積分球の反射光穴を介して外部へ抜け出した反射光軸近
傍の散乱光は通し穴の両側の凹面部によって反射されて
積分球側へ戻される。これにより、測定サンプルと反射
光が通る穴との距離Aを実質的に大きくしたことになっ
て反射光軸近傍の散乱光に対する検出能力が向上され
る。また、この方法では積分球の直径は小さくて済むの
で光検知器に対する光強度を高めたり装置を小型化して
コストダウンを図ることも可能である。尚、散乱光反射
用凹面鏡としては図示の実施例のように穴あき凹面鏡を
用いないで、反射光軸の延長線上の周囲に単に凹面鏡を
配設するようにしても良い。
In this embodiment, a concave mirror with a hole is arranged as a concave mirror for scattering light reflection in a mode orthogonal to the reflection optical axis,
This perforated concave mirror allows the reflected light to pass through through a through hole formed in the center located on the reflected light axis,
The scattered light in the vicinity of the reflected light axis that has escaped to the outside through the reflected light hole of the integrating sphere is reflected by the concave surface portions on both sides of the through hole and returned to the integrating sphere. As a result, the distance A between the measurement sample and the hole through which the reflected light passes is substantially increased, and the ability to detect scattered light near the reflected light axis is improved. Further, in this method, the diameter of the integrating sphere can be small, so that it is possible to increase the light intensity with respect to the photodetector or downsize the device to reduce the cost. The concave mirror for scattering light reflection may not be a perforated concave mirror as in the illustrated embodiment, but a concave mirror may be simply arranged around the extension line of the reflected light axis.

【0011】次に、図4は積分球を用いた散乱光の散乱
角度分布を測定する方法を示すものである。この方法に
は、上記した散乱光を測定する方法と同じ装置が用いら
れ、入射光軸に沿って積分球または測定サンプルが平行
移動できるようにしている。この装置の積分球と測定サ
ンプルのいずれか一方を入射光軸に沿って平行移動させ
ると、積分球と測定サンプルの間の距離に対応して積分
球内に取り込まれる散乱角度が変化するので、両者の相
対位置を変化させながらその都度検知器で散乱光を測定
すると、散乱角度分布が得られる。例えば、両者の距離
を離すと小さい散乱角度を持った散乱光のみが積分球内
に取り込まれ、両者の距離を近付けると大きな散乱角度
の散乱光まで積分球内に取り込むことができるので、両
者間の距離を種々に接離させた状態で積分球に取り込ま
れる散乱光の強度を検知器で順次測定し、各散乱角度に
対する散乱強度の依存性すなわち散乱角度分布を測定す
るものである。
Next, FIG. 4 shows a method of measuring the scattering angle distribution of scattered light using an integrating sphere. For this method, the same device as the above-mentioned method for measuring scattered light is used, and the integrating sphere or the measurement sample can be moved in parallel along the incident optical axis. When one of the integrating sphere and the measurement sample of this device is translated along the incident optical axis, the scattering angle taken into the integrating sphere changes in accordance with the distance between the integrating sphere and the measurement sample. The scattered angle distribution can be obtained by measuring the scattered light with the detector each time while changing the relative position of the two. For example, if the distance between the two is increased, only the scattered light having a small scattering angle is taken into the integrating sphere, and if the distance between the two is decreased, the scattered light having a large scattering angle can be taken into the integrating sphere. The intensity of scattered light taken into the integrating sphere is sequentially measured by a detector in the state where the distances are variously separated from each other, and the dependence of the scattering intensity on each scattering angle, that is, the scattering angle distribution is measured.

【0012】この積分球と測定サンプルを相対移動する
場合に、測定サンプルを固定にして積分球を移動させて
も、積分球を固定にして測定サンプルを移動させてもい
づれでも良いが、前者の方が機械的精度を維持した状態
で容易に測定することができるので望ましく、後者の場
合には移動時における機械的誤差で入射光に対する測定
サンプルの角度が変わると、反射光の方向が微妙に変化
する恐れがある。この散乱角度分布を測定する方法で
は、散乱光の測定と同じ装置を用いて積分球または測定
サンプルを入射光軸に沿って平行移動させるだけで散乱
角度分布を測定することができるので、従来の方法に比
べてその設備費を安価にすることができると共に、その
都度測定サンプルの付け替えをする必要がないので操作
がきわめて容易である。
When the integrating sphere and the measurement sample are moved relative to each other, the measuring sample may be fixed and the integrating sphere may be moved, or the integrating sphere may be fixed and the measuring sample may be moved. This is desirable because it allows easier measurement while maintaining mechanical accuracy.In the latter case, when the angle of the measurement sample with respect to the incident light changes due to mechanical error during movement, the direction of the reflected light becomes delicate. May change. In this method of measuring the scattering angle distribution, the scattering angle distribution can be measured simply by translating the integrating sphere or the measurement sample along the incident optical axis using the same device as the scattered light measurement. The equipment cost can be reduced as compared with the method, and the operation is extremely easy because it is not necessary to replace the measurement sample each time.

【0013】[0013]

【発明の効果】本発明による散乱光の測定方法では、積
分球から離れた反射光軸の延長線上の周囲に配設させた
散乱光反射用凹面鏡によって、反射光を逃がす穴を介し
て外部へ漏洩する反射光軸近傍の散乱光を積分球側へ反
射させるようにし、測定サンプルと反射光が通る穴との
距離Aを実質的に大きくしたことで反射光軸近傍の散乱
光に対する検出能力を向上させると共に、使用する積分
球の直径を小さくして散乱の光検知器に対する光強度を
高め且つ装置を小型化してコストダウンを図ることが可
能である。また本発明による散乱光の散乱角度分布を測
定方法では、上記した散乱光の測定方法と同じ装置を用
いてその積分球または測定サンプルを入射光軸に沿って
平行移動させるだけで散乱角度分布を測定できるので、
従来の方法に比べてその設備費を安価にすることができ
ると共に、その都度測定サンプルの付け替えをする必要
がないので操作がきわめて容易である。
In the method for measuring scattered light according to the present invention, a concave mirror for scattering scattered light, which is arranged around the extension of the reflected light axis away from the integrating sphere, allows the reflected light to escape to the outside through the hole. The leaked scattered light near the reflected light axis is reflected to the integrating sphere side, and the distance A between the measurement sample and the hole through which the reflected light passes is substantially increased to improve the detection ability for scattered light near the reflected light axis. In addition to the improvement, it is possible to reduce the cost by reducing the diameter of the integrating sphere used to increase the light intensity of the scattered photodetector and downsizing the device. Further, in the method for measuring the scattering angle distribution of scattered light according to the present invention, the scattering angle distribution can be obtained by simply translating the integrating sphere or the measurement sample along the incident optical axis using the same device as the above-described method for measuring scattered light. Because you can measure
The equipment cost can be reduced as compared with the conventional method, and the operation is very easy because it is not necessary to replace the measurement sample each time.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来例による散乱光の測定方法を示す説明図。FIG. 1 is an explanatory diagram showing a method for measuring scattered light according to a conventional example.

【図2】従来例による散乱光の散乱角度分布の測定方法
を示す説明図。
FIG. 2 is an explanatory diagram showing a method of measuring a scattering angle distribution of scattered light according to a conventional example.

【図3】本発明の実施例による散乱光の測定方法を示す
説明図。
FIG. 3 is an explanatory diagram showing a method for measuring scattered light according to an embodiment of the present invention.

【図4】本発明の実施例による散乱光の散乱角度分布の
測定方法を示す説明図。
FIG. 4 is an explanatory diagram showing a method for measuring a scattering angle distribution of scattered light according to an embodiment of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光学素子からの散乱光を積分球を用いて
検出する散乱光の測定方法において、反射光を逃がすた
めの積分球に設けられた穴から漏洩する反射光軸近傍の
散乱光を、積分球から離れた反射光軸の延長線上の周囲
に配設した散乱光反射用凹面鏡で反射させて積分球側へ
戻し、反射光軸近傍の散乱光の検出能力を向上させるこ
とを特徴とした散乱光の測定方法。
1. A scattered light measuring method for detecting scattered light from an optical element using an integrating sphere, wherein scattered light near a reflected light axis leaking from a hole provided in the integrating sphere for letting the reflected light escape , Characterized in that it is reflected by a concave mirror for scattered light reflection disposed around the extension line of the reflected light axis away from the integrating sphere and returned to the integrating sphere side to improve the ability to detect scattered light in the vicinity of the reflected light axis. For measuring scattered light.
【請求項2】 光学素子からの散乱光を積分球を用いて
検出する装置における積分球または測定サンプルを入射
光軸に沿って平行に移動させ、積分球に取り込まれる散
乱光の散乱角度を制限した状態で各位置での散乱光を測
定することを特徴とした散乱光の散乱角度分布を測定す
る方法。
2. An integrating sphere or a measurement sample in an apparatus for detecting scattered light from an optical element using an integrating sphere is moved in parallel along an incident optical axis to limit a scattering angle of scattered light taken into the integrating sphere. A method for measuring the scattering angle distribution of scattered light, which comprises measuring the scattered light at each position in the above state.
JP1947493A 1993-01-13 1993-01-13 Measurement method of scattering light and scattering angle distribution Expired - Fee Related JP2666032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1947493A JP2666032B2 (en) 1993-01-13 1993-01-13 Measurement method of scattering light and scattering angle distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1947493A JP2666032B2 (en) 1993-01-13 1993-01-13 Measurement method of scattering light and scattering angle distribution

Publications (2)

Publication Number Publication Date
JPH06213766A true JPH06213766A (en) 1994-08-05
JP2666032B2 JP2666032B2 (en) 1997-10-22

Family

ID=12000333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1947493A Expired - Fee Related JP2666032B2 (en) 1993-01-13 1993-01-13 Measurement method of scattering light and scattering angle distribution

Country Status (1)

Country Link
JP (1) JP2666032B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005345904A (en) * 2004-06-04 2005-12-15 Sony Corp Image generation apparatus
JP2014149275A (en) * 2013-02-04 2014-08-21 Suga Test Instr Co Ltd Colorimeter
CN108627316A (en) * 2017-03-17 2018-10-09 弗兰克公司 Optical conenctor polarity and loss are measured using the optical measuring device equipped with integrating sphere

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005345904A (en) * 2004-06-04 2005-12-15 Sony Corp Image generation apparatus
JP2014149275A (en) * 2013-02-04 2014-08-21 Suga Test Instr Co Ltd Colorimeter
CN108627316A (en) * 2017-03-17 2018-10-09 弗兰克公司 Optical conenctor polarity and loss are measured using the optical measuring device equipped with integrating sphere

Also Published As

Publication number Publication date
JP2666032B2 (en) 1997-10-22

Similar Documents

Publication Publication Date Title
US4999014A (en) Method and apparatus for measuring thickness of thin films
JP4988223B2 (en) Defect inspection apparatus and method
KR19990071667A (en) Surface Characterization Device and Method
JPS62502217A (en) Wafer measurement system using laser
JP2003528290A (en) Spatial averaging techniques for ellipsometry and reflection polarization
JP2015187748A (en) Method and device for image scanning
US20050073684A1 (en) Method and apparatus to reduce spotsize in an optical metrology instrument
US4227809A (en) Method of detecting flaws on the surface of metal
JP2002071513A (en) Interferometer for immersion microscope objective and evaluation method of the immersion microscope objective
US7102740B2 (en) Method and system for determining surface feature characteristics using slit detectors
TWI591325B (en) Wafer inspection system and structure and method for monitoring incident beam position in a wafer inspection system
JP2666032B2 (en) Measurement method of scattering light and scattering angle distribution
JPH06294629A (en) Device for measuring curvature of surface
JP2001235317A (en) Apparatus for measuring radius of curvature of optical spherical surface
JPH05240787A (en) Surface plasmon microscope
JP3276577B2 (en) Optical surface roughness measuring device
KR102220731B1 (en) Method for measuring fine change of thin film surface
CN116840260B (en) Wafer surface defect detection method and device
JP2004198244A (en) Transmissivity measuring instrument and absolute reflectivity measuring instrument
JP3077725B2 (en) Refractive index measuring method and apparatus
JP3761080B2 (en) Measuring method and measuring apparatus using total reflection attenuation
JP2001050720A (en) Surface inspection method and device thereof
JP2588679Y2 (en) Surface roughness inspection device
CN111007079A (en) Method for improving defect detection resolution of high-reflection optical element
JP2020030130A (en) Optical system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees