JPS605896B2 - Reflectance measuring device - Google Patents

Reflectance measuring device

Info

Publication number
JPS605896B2
JPS605896B2 JP53040615A JP4061578A JPS605896B2 JP S605896 B2 JPS605896 B2 JP S605896B2 JP 53040615 A JP53040615 A JP 53040615A JP 4061578 A JP4061578 A JP 4061578A JP S605896 B2 JPS605896 B2 JP S605896B2
Authority
JP
Japan
Prior art keywords
light
reflected
measurement
detector
reflectance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53040615A
Other languages
Japanese (ja)
Other versions
JPS54133180A (en
Inventor
和司 百村
良定 早水
澄 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP53040615A priority Critical patent/JPS605896B2/en
Publication of JPS54133180A publication Critical patent/JPS54133180A/en
Publication of JPS605896B2 publication Critical patent/JPS605896B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity

Description

【発明の詳細な説明】 本発明は光の反射率を測定するためのもので特に曲面で
の反射率を測定するのに通した反射率測定装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is for measuring the reflectance of light, and particularly relates to a reflectance measuring device used for measuring the reflectance of curved surfaces.

従来の反射率測定装置の原理を示すと第1図に示す通り
である。
The principle of a conventional reflectance measuring device is shown in FIG.

図において、1は光源よりの光、2,3は夫々反射鏡、
4,5はプリズムで面4a,4b,5a,5bが夫々反
射面になっている。6は測定面、7は参照面、8,9は
夫々反射鏡、1川ま検出器である。
In the figure, 1 is light from a light source, 2 and 3 are reflecting mirrors, respectively.
4 and 5 are prisms whose surfaces 4a, 4b, 5a, and 5b are reflective surfaces, respectively. 6 is a measurement surface, 7 is a reference surface, 8 and 9 are reflecting mirrors, and a detector.

このような構成の反射率測定装置において光源よりの光
1は夫々反射鏡2,3にて反射され二つに分けられ夫々
プリズム4,5の面4a,5aにて反射されて測定面6
および参照面7を照射する。そして測定面6、参照面7
にて反射された光は夫々プリズム4,5の面4b,5b
にて反射され更に反射面8,9にて反射されてから検出
器10にて検出される。この従来の装置においては測定
面と参照面とへの光の入射は全く同じ状態にて行なわね
ばならない。
In the reflectance measuring device having such a configuration, light 1 from the light source is reflected by reflecting mirrors 2 and 3, divided into two parts, and reflected by surfaces 4a and 5a of prisms 4 and 5, respectively, to form a measurement surface 6.
and the reference surface 7 is irradiated. and measurement plane 6, reference plane 7
The light reflected at the surfaces 4b and 5b of the prisms 4 and 5 respectively
The light is reflected by the reflective surfaces 8 and 9, and then detected by the detector 10. In this conventional device, light must be incident on the measurement surface and the reference surface under exactly the same conditions.

即ち入射光の入射角や光東の断面積などの要因が測定両
面と参照両側とで同じでなければならない。そのために
は反射鏡等の各光学素子が夫々対応するもので同じ形状
であり、その配置も同様になされていなければならない
。しかし各光学素子を正確に製作することは容易ではな
く、特にその配置を正しく行なうことは極めて困難であ
る。更に測定物の材料がガラス等の場合は測定光の中に
測定物の裏面で反射した光がフレャー、コーストとなり
側度精度を低下させることになる。したがって従来は第
2図に示すように測定面の前に絞り11をおいて裏面で
の反射光をカットするようにしている。しかし測定物が
平面板でなく、第3図に示すような凹面の場合には、絞
りを反射面に近づけるのにも限度があり、また表面と裏
面とが接近していると表面反射光と裏面反射光とが測定
物の近くで重なってしまうため、この図からも明らかな
ように絞り11を配置するのみでは裏面での反射光を完
全にカットすることは出来ない。更に測定物を変換する
と絞り面と測定面上の反射部分との間隔が変化するため
に、その都度絞りの径を変える必要がある。又裏面での
反射を防止する方法として第4図および第5図に示すよ
うな方法がある。そのうち第4図に示すものは測定物6
′の裏面6′aを斜めにすることによって裏面での反射
光を測定面での反射光とは異なる方向に向うようにした
ものである。しかしこの方法では裏面を傾斜させる必要
があるためにテスト用の物の反射率しか測定出来ず、実
際の製品の測定は出来ない。又第5図の方法は測定物6
の裏面にいわゆる光トラップと称するもので「角状の容
器12の内部に測定物と同じ屈折率の油13を入れたも
のを測定物の裏面に配置してある。このようにして測定
物の裏面に達した光を油中に導き減衰させるようしたも
のである。この方法では油を入れた光を減衰させる装置
を必要とし、これを測定毎に測定物裏面に取付けなけれ
ばならない欠点がある。本発明は以上のような従来例の
欠点を除去するためになされたもので、反射鏡等の光学
素子が出来るだけ少なくなるようにし又、曲面を有する
測定物でも裏面での反射光を容易に除去し得るような構
成にした反射率測定装置を提供するものである。以下本
発明の反射率測定装置の詳細な内容を図示した各実施例
に基づき説明する。
That is, factors such as the angle of incidence of the incident light and the cross-sectional area of the light east must be the same on both measurement and reference sides. For this purpose, each optical element such as a reflecting mirror must correspond to each other, have the same shape, and be arranged in the same manner. However, it is not easy to manufacture each optical element accurately, and in particular, it is extremely difficult to correctly arrange the optical elements. Furthermore, when the material of the object to be measured is glass or the like, the light reflected from the back surface of the object becomes flare and coast in the measurement light, reducing the lateral accuracy. Therefore, conventionally, as shown in FIG. 2, a diaphragm 11 is placed in front of the measurement surface to cut off the reflected light from the back surface. However, if the object to be measured is not a flat plate but a concave surface as shown in Figure 3, there is a limit to how close the aperture can be to the reflective surface, and if the front and back surfaces are close together, the light reflected from the surface will Since the light reflected from the back surface overlaps near the object to be measured, it is not possible to completely cut out the light reflected from the back surface by simply arranging the diaphragm 11, as is clear from this figure. Furthermore, when the object to be measured is changed, the distance between the aperture surface and the reflective portion on the measurement surface changes, so it is necessary to change the diameter of the aperture each time. Further, as a method for preventing reflection on the back surface, there is a method shown in FIGS. 4 and 5. Of these, the one shown in Figure 4 is measurement object 6.
By slanting the back surface 6'a of the sensor, the light reflected from the back surface is directed in a different direction from the light reflected from the measurement surface. However, since this method requires tilting the back surface, it is only possible to measure the reflectance of a test object, and it is not possible to measure the actual product. In addition, the method shown in Figure 5 applies to the measurement object 6.
A so-called optical trap is placed on the back side of the object to be measured.A square container 12 filled with oil 13 having the same refractive index as the object to be measured is placed on the back side of the object to be measured. This method directs the light that reaches the back surface into the oil and attenuates it.This method requires a light attenuating device containing oil, which has the disadvantage of having to be attached to the back surface of the object for each measurement. The present invention has been made in order to eliminate the above-mentioned drawbacks of the conventional example, and it reduces the number of optical elements such as reflecting mirrors as much as possible, and also makes it easier to reflect light from the back surface of an object to be measured that has a curved surface. The object of the present invention is to provide a reflectance measuring device having a structure that allows the removal of the light beam.Details of the reflectance measuring device of the present invention will be described below based on illustrated embodiments.

第6図は本発明の第一の実施例の構成を示す図であって
、21,22は夫々モノクロメーター等よりの単色光で
夫夫互いに平行に進むビームをなしている。23はその
表裏両面が反射面となっている反射鏡「24,25,2
6はいずれも集光レンズ「 27は集光レンズ24の焦
点位置におかれた測定面「 28は集光レンズ25の焦
点位置におかれた参照面「 29は集光レンズ26の焦
点位置におかれた検出器「 30,31はいずれも絞り
である。
FIG. 6 is a diagram showing the configuration of the first embodiment of the present invention, in which numerals 21 and 22 each represent monochromatic light beams from a monochromator or the like that travel parallel to each other. 23 is a reflecting mirror "24, 25, 2" whose front and back surfaces are reflective surfaces.
6 is a condensing lens; 27 is a measurement surface placed at the focal position of the condensing lens 24; 28 is a reference plane placed at the focal position of the condensing lens 25; 29 is a focal point of the condensing lens 26. The detectors 30 and 31 are both apertures.

尚反射鏡23は鎖線で示す符号23′の位置においても
良い。以上のような構成の装置においてビーム21は反
射鏡23にて反射された集光レンズ24を通って測定面
27に照射される。
Incidentally, the reflecting mirror 23 may be placed at a position 23' indicated by a chain line. In the apparatus configured as described above, the beam 21 is reflected by the reflecting mirror 23, passes through the condensing lens 24, and is irradiated onto the measurement surface 27.

更に測定面27にて反射された光は集光レンズ24,2
6を通って検出器29上に達する。他方ビーム22は集
光レンズ26を通って参照面28上に照射される。そし
て参照面281こて反射された光は集光レンズ25を通
り反射面23にて反射されて集光レンズ26を通って検
出器29上に達する。このようにして測定面27および
参照面28にて反射された光はいずれも検出器29にて
検出され比較されて相対反射率が測定される。この測定
装置では測定物の裏面での反射光の大部分は絞りでとり
除くことが出来る。しかも測定面が曲面であっても裏面
での反射による影響をほとんど受けることなく精度の良
い測定が可能である。そして測定面が曲面の場合にはそ
の曲率中心を中心として移動させることにより曲面上の
任意の場所の反射率を測定することが出来る。尚測定中
に両ビームが通る集光レンズは夫々異なるが、測定面お
よび参照面での反射光の検出された値の比を求めるので
、集光レンズの透過率による影響はない。
Further, the light reflected on the measurement surface 27 is transmitted through the condenser lenses 24, 2.
6 and reaches the detector 29. The beam 22, on the other hand, passes through a condenser lens 26 and is directed onto a reference surface 28. The light reflected from the reference surface 281 passes through the condenser lens 25, is reflected by the reflective surface 23, passes through the condenser lens 26, and reaches the detector 29. The light reflected by the measurement surface 27 and the reference surface 28 in this manner is both detected by the detector 29 and compared to measure the relative reflectance. In this measuring device, most of the light reflected from the back surface of the object to be measured can be removed by the aperture. Moreover, even if the measurement surface is a curved surface, highly accurate measurement is possible without being affected by reflection from the back surface. If the measurement surface is a curved surface, the reflectance at any location on the curved surface can be measured by moving the measurement surface around the center of curvature. Although the condensing lenses through which both beams pass during measurement are different, since the ratio of the detected values of the reflected light on the measurement surface and the reference surface is determined, there is no influence from the transmittance of the condensing lenses.

しかし更に精度を向上させたい時は、測定面と参照面と
を交換して測定するようにすれ‘ま良い。第7図は第6
図の実施例において検出器を二つ配置した例で、32,
33が検出器で測定面および参照面にて反射した光を夫
々反射面34,35で反射させた後集光レンズ36,3
7にて集光せしめ絞り38,39を通して検出器32,
33にて側光するようにしてある。第8図は第二の実施
例で二つのビームのうちビーム41はしンズ43によっ
て参照面45上に集光され、又ビーム42は反射鏡44
にて反射された後測定面46上に集光される。
However, if you want to further improve the accuracy, you can replace the measurement surface and the reference surface. Figure 7 is the 6th
In the example shown in the figure, two detectors are arranged, 32,
33 is a detector which reflects the light reflected from the measurement surface and the reference surface by reflection surfaces 34 and 35, respectively, and then condensing lenses 36 and 3.
7, the light is focused through the apertures 38 and 39 to the detector 32,
It is designed to have side lighting at 33. FIG. 8 shows a second embodiment in which a beam 41 of the two beams is focused onto a reference surface 45 by a lens 43, and a beam 42 is focused by a reflecting mirror 44.
After being reflected at , the light is focused on the measurement surface 46 .

更に参照面45で反射された光は反射鏡44の裏面で反
射された後レンズ47にて検出器48に集光され、一方
測定面46で反射された光もしンズ47にて検出器48
に集光され検出される。尚49,50は夫々絞りである
。この実施例の場合は第一の実施例よりレンズの数が少
なくて良く、またコンパクトに構成することが出来る。
本発明の反射率測定装置は以上説明したような構成であ
るので、反射鏡等の光学素子を従来のものより少なくす
ることができ、装置全体をコンパクトになし得る。
Further, the light reflected from the reference surface 45 is reflected from the back surface of the reflecting mirror 44 and then focused on the detector 48 by the lens 47, while the light reflected from the measurement surface 46 is also collected by the lens 47 and collected by the detector 48.
The light is focused and detected. Note that 49 and 50 are apertures, respectively. This embodiment requires fewer lenses than the first embodiment, and can be constructed more compactly.
Since the reflectance measuring device of the present invention has the configuration as described above, the number of optical elements such as reflecting mirrors can be reduced compared to conventional devices, and the entire device can be made compact.

又光学素子が少ないので、光学素子の配置誤差による測
定誤差は極めて少ない。更に光路の途中に絞りを挿入す
ることによって測定物の裏面での反射光を除くことが出
来る。又、測定面および参照面からの光を受光面に集光
するようにしたので、測定面、参照面の夫々の前に絞り
を置くことなく、受光面の前のみで良いので絞りの調整
が容易である。このように測定面の前に絞りがないこと
により、平面のみでなく任意の形状(曲面)の反射率を
測定することが可能である。そして測定物が球面の場合
、その曲率中心を中心にして測定物を回動させれば、球
面上の各点での反射率の測定が可能になる。尚第1図に
示すような従来例においても集光レンズを配置して検出
器上に集光するようにすることは可能である。
Furthermore, since there are few optical elements, measurement errors due to errors in the arrangement of optical elements are extremely small. Furthermore, by inserting a diaphragm in the middle of the optical path, reflected light from the back surface of the object to be measured can be removed. In addition, since the light from the measurement surface and the reference surface is focused on the light receiving surface, there is no need to place an aperture in front of the measurement surface and the reference surface, but only in front of the light receiving surface, making it easy to adjust the aperture. It's easy. Since there is no aperture in front of the measurement surface, it is possible to measure the reflectance of not only a flat surface but also any shape (curved surface). If the object to be measured is a spherical surface, the reflectance at each point on the spherical surface can be measured by rotating the object around its center of curvature. Note that even in the conventional example shown in FIG. 1, it is possible to arrange a condensing lens to condense the light onto the detector.

しかし、光源(この場合は反射点)からの光路が長いた
めにし集光レンズと検出器の間隔を大にしなければ絞り
の径を大きくすることが出来ないので具合いが悪い。つ
まり集光レンズと検出器の間隔を大にした場合装置全体
が大型になる。これに対し、本発明では、反射点からの
集光レンズまでの距離が短いので、集光レンズと検出器
との距離が短かくとも絞りの径を極端に小さくしなくと
も良いので好ましい。更に第一の実施例においては集光
レンズ26に入る光が平行光束であるので、絞りの径は
反射点から集光レンズまでの距離には影響されない。図
面の簡単な説明第1図は従来の反射率測定装置の構成を
示す図、第2図および第3図は夫々測定物の測定面およ
び裏面での反射の状況を示す図、第4図および第5図は
裏面での反射光を除去する方法を示す図、第6図は本発
明の第一の実施例の構成を示す図、第7図は本発明実施
例における検出器の配置の他の例を示す図「第8図は本
発明の第二の実施例の構成を示す図である。
However, since the optical path from the light source (in this case, the reflection point) is long, the diameter of the aperture cannot be increased unless the distance between the condenser lens and the detector is increased, which is inconvenient. In other words, if the distance between the condenser lens and the detector is increased, the entire device becomes larger. In contrast, in the present invention, since the distance from the reflection point to the condensing lens is short, the diameter of the aperture does not need to be extremely small even if the distance between the condensing lens and the detector is short, which is preferable. Furthermore, in the first embodiment, since the light entering the condenser lens 26 is a parallel beam, the diameter of the aperture is not affected by the distance from the reflection point to the condenser lens. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows the configuration of a conventional reflectance measuring device, FIGS. FIG. 5 is a diagram showing a method for removing reflected light on the back surface, FIG. 6 is a diagram showing the configuration of the first embodiment of the present invention, and FIG. 7 is a diagram showing the arrangement of the detector in the embodiment of the present invention. FIG. 8 is a diagram showing the configuration of a second embodiment of the present invention.

21,22,41,42……光ビーム、24,25,2
6,43……集光レンズ、27,46……測定面、28
,45…・・・参照面「 30,31,149,50…
…絞り「 29,32,33,48……検出器。
21, 22, 41, 42...light beam, 24, 25, 2
6, 43... Condensing lens, 27, 46... Measurement surface, 28
, 45...Reference plane "30, 31, 149, 50...
...Aperture "29, 32, 33, 48...Detector.

第1図 第2図 第3図 第4図 第5図 第6図 第7図 第8図Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8

Claims (1)

【特許請求の範囲】[Claims] 1 同一光源よりの光軸に平行で該光軸外を通る二つの
ビームのうちの一方のビームを測定面もしくは参照面の
うちの一方の面上に集光させまた他方のビームを表裏両
面が反射面である反射鏡にて反射させた後に上記測定面
、参照面のうちの他方の面上に集光させるためのレンズ
系と、上記の一方の面にての反射光を上記反射鏡の裏に
て反射させた後に検出器に集光させまた上記の他方の面
にての反射光を直接検出器に集光させるためのレンズ系
と、上記検出器の直前に配置された絞りとを備え、上記
検出器にて検出された測定面および参照面での反射光に
より測定面の反射率を測定するようにした反射率測定装
置。
1 One of the two beams from the same light source that is parallel to the optical axis and passes outside the optical axis is focused on one of the measurement or reference surfaces, and the other beam is A lens system for condensing the light on the other of the measurement surface and the reference surface after the light is reflected by the reflection mirror, which is a reflection surface; A lens system for condensing the light reflected on the back side onto the detector and directly concentrating the light reflected on the other surface on the detector, and a diaphragm disposed just in front of the detector. A reflectance measuring device comprising: a reflectance measuring device configured to measure the reflectance of a measuring surface using reflected light from the measuring surface and the reference surface detected by the detector.
JP53040615A 1978-04-06 1978-04-06 Reflectance measuring device Expired JPS605896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53040615A JPS605896B2 (en) 1978-04-06 1978-04-06 Reflectance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53040615A JPS605896B2 (en) 1978-04-06 1978-04-06 Reflectance measuring device

Publications (2)

Publication Number Publication Date
JPS54133180A JPS54133180A (en) 1979-10-16
JPS605896B2 true JPS605896B2 (en) 1985-02-14

Family

ID=12585423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53040615A Expired JPS605896B2 (en) 1978-04-06 1978-04-06 Reflectance measuring device

Country Status (1)

Country Link
JP (1) JPS605896B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6046283U (en) * 1983-09-05 1985-04-01 ティーディーケイ株式会社 Straightedge for drafting machine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0627706B2 (en) * 1985-04-25 1994-04-13 オリンパス光学工業株式会社 Reflectance measuring device
JPS6454231A (en) * 1987-08-26 1989-03-01 Hitachi Ltd Measurement of surface reflection for transparent material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6046283U (en) * 1983-09-05 1985-04-01 ティーディーケイ株式会社 Straightedge for drafting machine

Also Published As

Publication number Publication date
JPS54133180A (en) 1979-10-16

Similar Documents

Publication Publication Date Title
JPH05256647A (en) Inclination measuring device
US4818108A (en) Phase modulated ronchi testing of aspheric surfaces
EP0248479A1 (en) Arrangement for optically measuring a distance between a surface and a reference plane
US20050018194A1 (en) Surface plasmon resonance sensor
US4690565A (en) Optical apparatus for the detection of scattered light
JP4694290B2 (en) Method and apparatus for measuring transmittance of finite optical element
JPS6249925B2 (en)
JPS605896B2 (en) Reflectance measuring device
JPS5979104A (en) Optical device
JPH09250966A (en) Apparatus for measuring reflectivity
JP3871415B2 (en) Spectral transmittance measuring device
JPS63173940A (en) Optical type defect detector
JP2000097622A (en) Interferometer
JP2000097657A (en) Interferometer
JPH0118370B2 (en)
JP3040131B2 (en) Spherical surface scratch inspection device
JPH0518893A (en) Refractive index measuring device
JPS57199909A (en) Distance measuring device
JPH03172728A (en) Reflectivity measurement device for light-transmissive member
JP3365881B2 (en) Lens refractive index inspection device
SU1281952A1 (en) Device for measuring lens spectral transmittance factor
SU1601564A1 (en) Device for measuring reflection factor of concave spherical surfaces
SU1728650A1 (en) Interferometer for controlling concave aspheric surfaces
JP2814255B2 (en) How to measure the refractive index distribution
JPH05340870A (en) Total-reflection absorption spectrum measuring instrument