JPH0852327A - 排ガス浄化材及び排ガス浄化方法 - Google Patents

排ガス浄化材及び排ガス浄化方法

Info

Publication number
JPH0852327A
JPH0852327A JP6210628A JP21062894A JPH0852327A JP H0852327 A JPH0852327 A JP H0852327A JP 6210628 A JP6210628 A JP 6210628A JP 21062894 A JP21062894 A JP 21062894A JP H0852327 A JPH0852327 A JP H0852327A
Authority
JP
Japan
Prior art keywords
exhaust gas
purifying material
catalyst
silver
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6210628A
Other languages
English (en)
Inventor
Akira Abe
晃 阿部
Mika Saitou
美香 斎藤
Kiyohide Yoshida
清英 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP6210628A priority Critical patent/JPH0852327A/ja
Priority to EP95302636A priority patent/EP0682975A1/en
Publication of JPH0852327A publication Critical patent/JPH0852327A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

(57)【要約】 【目的】 窒素酸化物や、一酸化炭素、水素、炭化水素
等の未燃焼分に対する理論反応量以上の酸素及び硫黄酸
化物を含有する燃焼排ガスから、効率良く窒素酸化物を
除去することができる排ガス浄化材を提供する。 【構成】 多孔質の無機酸化物に銀成分を担持してなる
第一の触媒と、多孔質の無機酸化物にW、V、Moから
なる群より選ばれた少なくとも一種の金属酸化物を担持
してなる第二の触媒とからなる排ガス浄化材であり、第
一の触媒の多孔質無機酸化物はアルミナのほかにシリ
カ、チタニア、ジルコニアからなる群より選ばれた一種
以上の酸化物を50重量%以下含有するアルミナ複合酸
化物であり、よって硫黄酸化物が存在する排ガスでも窒
素酸化物を除去できることを特徴とする。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は窒素酸化物と、過剰の酸
素と、硫黄酸化物とを含む燃焼排ガスから、窒素酸化物
を効果的に除去する排ガス浄化材及びそれを用いた浄化
方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】自動車
用エンジン等の内燃機関や、工場等に設置された燃焼機
器、家庭用ファンヒーターなどから排出される各種の燃
焼排ガス中には、過剰の酸素とともに一酸化窒素、二酸
化窒素等の窒素酸化物が含まれている。ここで、「過剰
の酸素を含む」とは、その排ガス中に含まれる一酸化炭
素、水素、炭化水素等の未燃焼成分を燃焼するのに必要
な理論酸素量より多い酸素を含むことを意味する。ま
た、以下における窒素酸化物とは一酸化窒素及び/又は
二酸化窒素を指す。
【0003】この窒素酸化物は酸性雨の原因の一つとさ
れ、環境上の大きな問題となっている。そのため、各種
燃焼機器が排出する排ガス中の窒素酸化物を除去するさ
まざまな方法が検討されている。
【0004】過剰の酸素を含む燃焼排ガスから窒素酸化
物を除去する方法として、特に大規模な固定燃焼装置
(工場等の大型燃焼機等)に対しては、アンモニアを用
いる選択的接触還元法が実用化されている。
【0005】しかしながら、この方法においては、窒素
酸化物の還元剤として用いるアンモニアが高価であるこ
と、またアンモニアは毒性を有すること、そのために未
反応のアンモニアが排出しないように排ガス中の窒素酸
化物濃度を計測しながらアンモニア注入量を制御しなけ
ればならないこと、一般に装置が大型となること等の問
題点がある。
【0006】また、別な方法として、水素、一酸化炭
素、炭化水素等のガスを還元剤として用い、窒素酸化物
を還元する非選択的接触還元法があるが、この方法で
は、効果的な窒素酸化物の低減除去を実行するためには
排ガス中の酸素との理論反応量以上の還元剤を添加しな
ければならず、還元剤を多量に消費する欠点がある。こ
のため非選択的接触還元法は、実際上は、理論空燃比付
近で燃焼した残存酸素濃度の低い排ガスに対してのみ有
効となり、汎用性に乏しく実際的でない。
【0007】そこで、本発明者らはアルミナなどの多孔
質無機酸化物に銀成分を担持した第一の触媒と、多孔質
無機酸化物にW、V成分を担持した第二の触媒とからな
る浄化材を用いて、窒素酸化物を効果的に除去できる方
法を提案した(特願平5−234200号)。
【0008】しかしながら、硫黄酸化物の存在する排ガ
スでは、銀成分のシンダリングが起こりやすくなり、触
媒活性種の表面積が低下し、窒素酸化物の除去率が低下
することが分かった。
【0009】したがって、本発明の目的は、固定燃焼装
置および酸素過剰条件で燃焼するガソリンエンジン、デ
ィーゼルエンジン等からの燃焼排ガスのように、窒素酸
化物や、一酸化炭素、水素、炭化水素等の未燃焼分に対
する理論反応量以上の酸素及び硫黄酸化物を含有する燃
焼排ガスから、効率良く窒素酸化物を除去することがで
きる排ガス浄化材及び排ガス浄化方法を提供することで
ある。
【0010】
【課題を解決するための手段】上記課題に鑑み鋭意研究
の結果、本発明者は、特定量のシリカ等の無機酸化物を
含有するアルミナ複合無機酸化物に銀成分を担持してな
る触媒上で、エタノールなどの含酸素有機化合物、酸
素、及び窒素酸化物の反応の副生成物としてアンモニア
が生成されていることを見出し、排ガス浄化材を上記銀
系触媒と、アンモニアを還元剤として窒素酸化物を還元
できるW、V系触媒とを組み合わせて形成される排ガス
浄化材を用い、排ガス中に含酸素有機化合物を添加して
特定の温度で上記の触媒に排ガスを接触させれば、硫黄
酸化物を含む排ガスでも、広い温度領域で窒素酸化物を
効果的に除去することができることを発見し、本発明を
完成した。
【0011】すなわち、本発明の排ガス浄化材は、多孔
質の無機酸化物に活性種である銀及び/又は銀化合物、
又はそれらの混合物0.2〜15重量%(銀元素換算
値)を担持してなる第一の触媒と、多孔質の無機酸化物
に活性種であるW、V、Moからなる群より選ばれた少
なくとも一種の金属酸化物0.5〜30重量%(金属元
素換算値)を担持してなる第二の触媒とからなり、前記
第一の触媒の多孔質無機酸化物はアルミナのほかにシリ
カ、チタニア、ジルコニアからなる群より選ばれた一種
以上の酸化物を50重量%以下含有するアルミナ複合酸
化物であり、前記第二の触媒の多孔質無機酸化物はチタ
ニア単独、又はアルミナ、シリカ、ジルコニアからなる
群より選ばれた一種以上の酸化物を含有するチタニア複
合酸化物であり、よって硫黄酸化物が存在する排ガスで
も窒素酸化物を除去できることを特徴とする。
【0012】また、窒素酸化物と、共存する未燃焼成分
に対する理論反応量より多い酸素と、硫黄酸化物とを含
む燃焼排ガスから窒素酸化物を除去する本発明の排ガス
浄化方法は、上記の排ガス浄化材を用い、前記排ガス浄
化材を排ガス導管の途中に設置し、前記浄化材の上流側
で炭素数2以上の含酸素有機化合物又はそれを含む燃料
を添加した排ガスを、150〜600℃において前記浄
化材に接触させ、もって前記排ガス中の含酸素有機化合
物との反応により前記窒素酸化物を除去することを特徴
とする。
【0013】以下、本発明を詳細に説明する。本発明で
は、多孔質の無機酸化物に活性種である銀及び/又は銀
化合物、又はそれらの混合物0.2〜15重量%(銀元
素換算値)を担持してなる第一の触媒と、多孔質の無機
酸化物に活性種であるW、V,Moからなる群より選ば
れた少なくとも一種の酸化物0.5〜30重量%(金属
元素換算値)を担持してなる第二の触媒とからなる排ガ
ス浄化材を排ガス導管中に設置し、浄化材の設置位置よ
り上流側で含酸素有機化合物を添加した排ガスをこの浄
化材に接触させて、排ガス中の窒素酸化物を還元除去す
る。本発明では、第一の触媒と第二の触媒を組み合わせ
て用いるが、排ガス流入側に第一の触媒を、流出側に第
二の触媒を配置するのが好ましい。このように配置する
ことによって、広い排ガス温度領域で窒素酸化物を効果
的に還元除去することができる。
【0014】本発明の排ガス浄化材の第一の好ましい形
態は、粉末状の多孔質無機酸化物に触媒活性種を担持し
てなる触媒を浄化材基体にコートしてなる浄化材であ
る。浄化材の基体を形成するセラミックス材料として
は、γ−アルミナ及びその酸化物(γ−アルミナ−チタ
ニア、γ−アルミナ−シリカ、γ−アルミナ−ジルコニ
ア等)、ジルコニア、チタニア−ジルコニアなどの多孔
質で表面積の大きい耐熱性のものが挙げられる。高耐熱
性が要求される場合、コージェライト、ムライト、アル
ミナ及びそれらの複合物等を用いるのが好ましい。ま
た、排ガス浄化材の基体に公知の金属材料を用いること
もできる。
【0015】排ガス浄化材の基体の形状及び大きさは、
目的に応じて種々変更できる。実用的には、入口部分と
出口部分とからなる二つ又は二つ以上の部分からなるこ
とが好ましい。またその構造としては、ハニカム構造
型、フォーム型、繊維状耐火物からなる三次元網目構造
型、あるいは顆粒状、ペレット状等が挙げられる。
【0016】本発明の排ガス浄化材の第二の好ましい形
態は、ペレット状又は顆粒状粉末状の多孔質無機酸化物
に触媒活性種を担持してなる触媒、又は触媒活性種を担
持した粉末状多孔質無機酸化物をペレット状又は顆粒状
に成形したものを所望の順序で充填してなる浄化材であ
る。
【0017】本発明の浄化材には以下の二つの触媒が形
成されている。 (1)第一の触媒 第一の触媒は、多孔質無機酸化物に銀、銀化合物又はそ
れらの混合物を担持してなり、排ガスの流入側に形成さ
れる。銀化合物は銀の酸化物、塩化銀、硫酸銀及び燐酸
銀などからなる群より選ばれた少なくとも一種であり、
好ましくは銀の酸化物、塩化銀又は硫酸銀、更に好まし
くは銀の酸化物又は塩化銀である。
【0018】多孔質の無機酸化物としては、多孔質のシ
リカ、チタニア、ジルコニアからなる群より選ばれた少
なくとも一種以上の酸化物と、アルミナとからなるアル
ミナ複合酸化物等を使用することができるが、好ましく
はアルミナとシリカからなる複合酸化物を用いる。アル
ミナ複合酸化物、特にアルミナ・シリカ複合酸化物を用
いることにより、硫黄酸化物の存在下で、700℃のよ
うな高い排ガス温度でも、浄化材の表面積低下や、触媒
活性種のシンダリングが起こりにくくなり、浄化材の耐
熱性、耐久性が向上する。
【0019】アルミナ複合酸化物はアルミナ・シリカ複
合酸化物などの市販品、又はアルミナにシリカゾルなど
の無機酸化物ゾルを混合して複合化させたものや、ゾル
−ゲル法によって調製して得られるものを用いる。アル
ミナ複合酸化物におけるアルミナ以外の成分の含有量は
50重量%以下であり、好ましくは0.1〜40重量%
である。アルミナ以外の成分の含有量が0.1重量%未
満では、硫黄酸化物の存在下で長時間反応させると窒素
酸化物の除去率が低下し、50重量%を越えると、反応
初期から全温度範囲における窒素酸化物の除去率が低下
する。
【0020】多孔質の無機酸化物の比表面積は10m2
/g以上であるのが好ましい。比表面積が10m2 /g
未満であると、排ガスと無機酸化物(及びこれに担持し
た銀成分)との接触面積が小さくなり、良好な窒素酸化
物の除去が行えない。
【0021】上記したγ−アルミナ等の無機酸化物に活
性種として担持する銀成分の担持量は、無機酸化物10
0重量%に対して0.2〜15重量%(銀元素換算値)
とする。0.2重量%未満では窒素酸化物の除去率が低
下する。また、15重量%を超す量の銀を担持すると含
酸素有機化合物自身の燃焼が起きやすく、窒素酸化物の
除去率はかえって低下する。好ましい銀成分の担持量は
0.5〜15重量%である。
【0022】多孔質無機酸化物に担持された銀成分は粒
状を呈しているが、本発明の浄化材では、銀成分の粒子
の平均直径が10〜1000nmとする。一般的には、
銀成分の粒子径が小さいほど、反応特性が高いが、平均
粒径が10nm未満であると、還元剤である炭化水素及
び/又は含酸素有機化合物の酸化反応のみが進み、窒素
酸化物の除去率が低下する。一方、平均粒径が1000
nmを越えると、銀成分の反応特性が低減し、窒素酸化
物の除去率が下がる。好ましい平均粒径は10〜500
nm、更に好ましくは10〜200nmとする。なお、
ここで言う平均とは算術平均のことを意味する。
【0023】アルミナ複合酸化物に銀成分を担持する方
法としては、公知の含浸法、沈澱法等を用いることがで
きる。含浸法を用いる際、硝酸銀のような硝酸塩、塩化
物、硫酸塩、炭酸塩等の水溶液に多孔質無機酸化物を浸
漬する。沈澱法では硝酸銀とハロゲン化アンモニウムと
を反応させて、ハロゲン化銀として多孔質無機酸化物に
沈澱させる。これを70℃程度で乾燥後、100〜60
0℃で段階的に昇温して焼成するのが好ましい。また、
最後に300〜650℃で酸化処理するのが好ましい。
【0024】なお、上記浄化材の第一の好ましい形態で
は、浄化材基体上に設ける第一の触媒の厚さは、一般
に、基体材と、この触媒との熱膨張特性の違いから制限
される場合が多い。浄化材基体上に設ける触媒の厚さを
300μm以下とするのがよい。このような厚さとすれ
ば、使用中に熱衝撃等で浄化材が破損することを防ぐこ
とができる。浄化材基体の表面に触媒を形成する方法は
公知のウォシュコート法、ゾルーゲル法等によって行わ
れる。
【0025】また、浄化材基体の表面上に設ける第一触
媒の量は、浄化材基体の20〜300g/lとするのが
好ましい。触媒の量が20g/l未満では良好なNOx の
除去が行えない。一方、触媒の量が3000g/lを超
えると除去特性はそれほど上がらず、圧力損失が大きく
なる。より好ましくは、浄化材基体の表面上に設ける第
一の触媒を浄化材基体の50〜250g/lとする。
【0026】(2)第二の触媒 第二の触媒は、多孔質無機酸化物に触媒活性種を担持し
てなる。多孔質無機酸化物としては、チタニア単独、又
は他の多孔質無機酸化物を含むチタニア複合無機酸化物
が挙げられる。好ましくはチタニア単独、又はアルミ
ナ、シリカ、ジルコニアからなる群より選ばれた一種以
上の酸化物を含有するチタニア複合酸化物を用いる。チ
タニア複合酸化物を用いる場合、チタニア以外の成分の
含有量は50重量%以下とし、好ましくは0.1〜40
重量%とする。
【0027】上記の第二触媒の活性種としては、W、
V,Moからなる群より選ばれた少なくとも一種の酸化
物を用いる。第二の触媒で無機酸化物に担持する活性種
の合計は、上述の多孔質の無機酸化物を基準(100重量
%) として0.5〜30重量%(金属元素換算値)と
し、好ましくは1〜20重量%(金属元素換算値)とす
る。触媒活性種の量が前記無機酸化物に対して、30重
量%を超しても効果に変化がなく、また触媒活性種の量
が0.5重量%未満では、窒素酸化物の還元率は低下す
ることになる。W、V、Moの酸化物を用いることによ
り、アンモニアを還元剤とする窒素酸化物の除去が可能
になる。
【0028】また、本発明では、アンモニアによる窒素
酸化物の還元反応を促進する触媒であれば、W、V、M
oの酸化物に限らず用いることが可能である。
【0029】第二の触媒における活性種の担持は、公知
の含浸法、沈澱法等を用いることができる。含浸法を用
いる際、触媒活性種元素のアンモニウム塩、しゅう酸塩
等の水溶液に多孔質無機酸化物を浸漬し、70℃で乾燥
後、100〜600℃で段階的に昇温して焼成すること
によって行われる。この焼成は空気中、酸素雰囲気下、
窒素雰囲気下で行う。通常の浄化材の使用温度条件では
担持成分は酸化物の状態で存在する。
【0030】なお、上記浄化材の第一の好ましい形態で
は、浄化材基体上の表面に設ける第二の触媒の厚さを3
00μm以下とするのがよい。また、浄化材基体の表面
上に設ける第二の触媒の量は、浄化材基体の20〜30
0g/lとするのが好ましい。また、浄化材基体がチタ
ニアなどの多孔質無機酸化物からなるときは、それらに
W、V、Moからなる群より選ばれた少なくとも一種の
酸化物を所定量直接担持して浄化材として用いることが
できる。その他にW、V、Moからなる群より選ばれた
少なくとも一種の酸化物を所定量担持したチタニア等の
粉末状多孔質無機酸化物をハニカム等の成形体に成形し
て用いることができる。
【0031】本発明においては、第一の触媒と、第二の
触媒との重量比は、10:1〜1:5とするのが好まし
い。比率が1:5未満である(第一の触媒が少ない)
と、150〜600℃の広い温度範囲で全体的に窒素酸
化物の浄化率が低下する。一方、比率が10:1を超
え、第二の触媒が少ないと、第一の触媒上でできたアン
モニアが反応せず、そのまま排出され、排出するガス中
のアンモニア濃度が増す。より好ましい第一触媒と第二
触媒の重量比は5:1〜1:4である。
【0032】上述した構成の浄化材を用いれば、150
〜600℃の広い温度領域において、硫黄酸化物を含む
排ガスでも、良好な窒素酸化物の除去を行うことができ
る。また、アンモニアはより優先的に二酸化窒素と反応
するため、窒素酸化物中の有害な二酸化窒素の割合を減
らすことができる。
【0033】次に、本発明の方法について説明する。ま
ず、排ガス浄化材を排ガス導管の途中に設置する。好ま
しくは、第一の触媒が排ガスの入口に面し、第二の触媒
が排ガスの出口に面するように配置する。
【0034】排ガス中には、残留炭化水素としてエチレ
ン、プロピレン等がある程度は含まれるが、一般に排ガ
ス中のNOx を還元するのに十分な量ではないので、外部
から含酸素有機化合物からなる還元剤を排ガス中に導入
する。還元剤の導入位置は、浄化材を設置した位置より
上流側である。
【0035】外部から導入する含酸素有機化合物とし
て、炭素数2以上のエタノール、イソプロピルアルコー
ル等のアルコール類、又それらを含む燃料を用いること
ができる。外部から導入する含酸素有機化合物の量は、
重量比(添加する還元剤の重量/排ガス中の窒素酸化物
の重量)が0.1〜5となるようにするのが好ましい。
この重量比が0.1未満であると、窒素酸化物の除去率
が大きくならない。一方、5を超えると、燃費悪化につ
ながる。
【0036】また、含酸素有機化合物を含む燃料を添加
する場合、燃料としてガソリン、軽油、灯油などを用い
るのが好ましい。この場合、含酸素有機化合物の量は上
記と同様に重量比(添加する還元剤の重量/排ガス中の
窒素酸化物の重量)が0.1〜5となるように設定す
る。
【0037】本発明では、含酸素有機化合物等による窒
素酸化物の還元除去を効率的に進行させるために、第一
の触媒の空間速度は150,000h-1以下、第二の触
媒の空間速度は200,000h-1以下とする。空間速
度が上記範囲を越えると、窒素酸化物の還元反応が十分
に起こらず、窒素酸化物の除去率が低下する。好ましい
第一の触媒の空間速度は100,000h-1以下、好ま
しい第二の触媒の空間速度は150,000h-1以下と
する。
【0038】また、本発明では、含酸素有機化合物と窒
素酸化物とが反応する部位である浄化材設置部位におけ
る排ガスの温度を150〜600℃に保つ。排ガスの温
度が150℃未満であると還元剤と窒素酸化物との反応
が進行せず、良好な窒素酸化物の除去を行うことができ
ない。一方、600℃を超す温度とすると、含酸素有機
化合物自身の燃焼が始まり、窒素酸化物の還元除去が行
えない。好ましい排ガス温度は、250〜600℃であ
る。
【0039】
【実施例】本発明を以下の具体的実施例によりさらに詳
細に説明する。実施例1 市販の粉末状シリカ・アルミナ複合酸化物(シリカ含有
量5重量%、比表面積350m2 /g)10gを硝酸銀
水溶液を用いて、シリカ・アルミナに対して4重量%
(銀元素換算値)の銀を担持し、乾燥後、空気中で段階
的に600℃まで焼成し、これを直径1.5mm、長さ
2〜3mmのペレットに成形して、銀系触媒を調製し
た。
【0040】次に、タングステン酸アンモニウムパラ五
水和物1.8g、しゅう酸1.0gに水6.2mlを加
え、水浴上で加熱して溶解させた後、冷却した水溶液
に、チタニア(粒径0.5〜2.0mm、比表面積35m
2 /g)10gを投入し、30分間浸漬した。その後、
溶液からチタニア粒子を分離し、空気中で、80℃、1
00℃、120℃で各2時間乾燥した。続いて、酸素2
0%を含む窒素気流下で120℃から500℃まで5時
間かけで昇温し、500℃で4時間焼成して、チタニア
に対してWを9重量%(金属元素換算値)担持したW系
浄化材を調製した。
【0041】浄化材を、排ガスの流入側に銀系浄化材
3.6g、流出側にW系浄化材3.6gになるように、
反応管内にセットした。次に、表1に示す組成のガス
(一酸化窒素、酸素、エタノール、二酸化硫黄、窒素、
及び水分)を毎分4.4リットル(標準状態)の流量
で、450℃、100時間流した後(銀系浄化材の空間
速度約30,000h-1、W系浄化材の空間速度は約3
0,000h-1)、反応管内の排ガス温度を300〜6
00℃の範囲に保ち、エタノールと窒素酸化物とを反応
させた。
【0042】 表1 成分 濃度 一酸化窒素 800 ppm (乾燥ベース) 酸素 10 容量% (乾燥ベース) エタノール 1250 ppm (乾燥ベース) (一酸化窒素の重量の3倍) 二酸化硫黄 80 ppm (乾燥ベース) 窒素 残部 水分 10 容量%(上記成分の総体積に対して)
【0043】反応管通過後のガスの窒素酸化物の濃度を
化学発光式窒素酸化物分析計により測定し、窒素酸化物
の除去率を求めた。結果を表2に示す。
【0044】実施例2 実施例1と同様の粉末状シリカ・アルミナ(比表面積2
00m2 /g)に硝酸銀水溶液と塩化アンモニウム水溶
液を用いて塩化銀が4重量%(銀元素換算値)担持され
ている触媒作成し、この触媒約1.0gを市販のコージ
ェライト製ハニカム状成形体(直径30mm、長さ12.
5mm、400セル/平方インチ)にコートし、乾燥後6
00℃まで段階的に焼成し、銀系浄化材を調製した。
【0045】次に、水30mlにV2 5を20g懸濁さ
せて、水浴上で約90℃に保ちながら1時間攪拌した。
放冷した後、水を加えて80mlにした。この水溶液を4
ml採取し、水を2.8ml加えて6.8mlとした後、粉末
チタニア(比表面積50m2/g)10gを投入し、3
0分間浸漬し、スラリー状にした。上記銀系触媒と同様
のハニカム状成形体にスラリーを1.0g(乾燥ベー
ス)コートした。チタニアに対してV2 5の含有量は
5重量%(金属元素換算値)であった。実施例1のWO
3 /チタニア触媒と同様の条件で乾燥、焼成を行い、V
系浄化材を調製した。
【0046】排ガスの流入側に銀系浄化材、流出側にV
系浄化材になるように、反応管内にセットし、表1に示
す組成のガスで実施例1と同じ条件で評価した(銀系浄
化材の空間速度約30,000h-1、V系浄化材の空間
速度は約30,000h-1)。実験結果を表2に示す。
【0047】実施例3 実施例2と同様に粉末チタニア(比表面積50m2
g)にW、Vの酸化物をそれぞれ4、2重量%(金属元
素換算値)担持した触媒1.0g(乾燥ベース)をスラ
リー状にした。実施例2と同様のハニカム状成形体(直
径30mm、長さ12.5mm、400セル/平方インチ)
にこのスラリーをコートした。実施例2と同様の条件で
乾燥、焼成を行い、W、V系浄化材を調製した。
【0048】排ガスの流入側に実施例2の銀系浄化材、
流出側にW、V系浄化材になるように、反応管内にセッ
トし、表1に示す組成のガスで実施例2と同じ条件で評
価した(銀系浄化材の空間速度約30,000h-1
W、V系浄化材の空間速度は約30,000h-1)。実
験結果を表2に示す。
【0049】比較例1 実施例1と同様な方法で市販のペレット状γ−アルミナ
(直径1.5mm、長さ約2〜3mm、比表面積260
2 /g)に銀を4重量%担持して銀系浄化材を作成し
た。3.6gの銀系浄化材を反応管にセットし、表1に
示す組成のガスで評価した。実験結果を表2に示す。
【0050】比較例2 比較例1と同様な方法で作成した銀系浄化材を7.2g
反応管にセットし、表1に示す組成のガスで評価した。
実験結果を表2に示す。
【0051】 表2 窒素酸化物(NOx)の除去率 反応温度 窒素酸化物の除去率(%) (℃) 実施例1 実施例2 実施例3 比較例1 比較例2 300 65 68 64 26 50 350 75 78 75 42 65 400 90 95 94 52 80 450 94 98 97 60 84 500 76 73 75 50 75 550 48 45 48 36 44 600 38 36 38 20 36
【0052】以上からわかるように、実施例1〜3にお
いては、広い排ガス温度領域で窒素酸化物の良好な除去
がみられた。一方、比較例1、2の銀触媒だけでは、窒
素酸化物除去の温度範囲が狭い。
【0053】
【発明の効果】以上詳述したように、本発明の排ガス浄
化材を用いれば、広い温度領域において過剰の酸素を含
む排ガス中の窒素酸化物を効率良く除去することができ
る。本発明の排ガス浄化材及び浄化方法は、各種燃焼
機、自動車等の排ガス浄化に広く利用することができ
る。
フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/28 ZAB A 23/30 ZAB A 23/50 23/52 ZAB A 27/10 ZAB A B01D 53/36 102 B

Claims (7)

    【特許請求の範囲】
  1. 【請求項1】 多孔質の無機酸化物に活性種である銀及
    び/又は銀化合物、又はそれらの混合物0.2〜15重
    量%(銀元素換算値)を担持してなる第一の触媒と、多
    孔質の無機酸化物に活性種であるW、V、Moからなる
    群より選ばれた少なくとも一種の金属酸化物0.5〜3
    0重量%(金属元素換算値)を担持してなる第二の触媒
    とからなる排ガス浄化材において、前記第一の触媒の多
    孔質無機酸化物はアルミナのほかにシリカ、チタニア、
    ジルコニアからなる群より選ばれた一種以上の酸化物を
    50重量%以下含有するアルミナ複合酸化物であり、前
    記第二の触媒の多孔質無機酸化物はチタニア単独、又は
    アルミナ、シリカ、ジルコニアからなる群より選ばれた
    一種以上の酸化物を含有するチタニア複合酸化物であ
    り、よって硫黄酸化物が存在する排ガスでも窒素酸化物
    を除去できることを特徴とする排ガス浄化材。
  2. 【請求項2】 請求項1に記載の排ガス浄化材におい
    て、前記浄化材の排ガス流入側に前記第一の触媒を有
    し、排ガス流出側に前記第二の触媒を有することを特徴
    とする排ガス浄化材。
  3. 【請求項3】 請求項1又は2に記載の排ガス浄化材に
    おいて、前記浄化材は前記第一及び第二の触媒をセラッ
    ミクス製又は金属製の基体の表面にコートしてなること
    を特徴とする排ガス浄化材。
  4. 【請求項4】 請求項1又は2に記載の排ガス浄化材に
    おいて、前記第一及び第二の触媒の多孔質無機酸化物は
    それぞれペレット状又は顆粒状であることを特徴とする
    排ガス浄化材。
  5. 【請求項5】 請求項1〜4のいずれかに記載の排ガス
    浄化材において、前記銀化合物は銀の酸化物、塩化銀、
    硫酸銀及び燐酸銀からなる群より選ばれた少なくとも一
    種であることを特徴とする排ガス浄化材。
  6. 【請求項6】 請求項1〜5のいずれかに記載の排ガス
    浄化材において、前記第一の触媒の多孔質無機酸化物は
    アルミナとシリカからなるアルミナ複合酸化物であるこ
    とを特徴とする排ガス浄化材。
  7. 【請求項7】 窒素酸化物と、共存する未燃焼成分に対
    する理論反応量より多い酸素と、硫黄酸化物とを含む燃
    焼排ガスから窒素酸化物を除去する排ガス浄化方法にお
    いて、請求項1〜6のいすれかに記載の排ガス浄化材を
    用い、前記排ガス浄化材を排ガス導管の途中に設置し、
    前記浄化材の上流側で炭素数2以上の含酸素有機化合物
    又はそれを含む燃料を添加した排ガスを、150〜60
    0℃において前記浄化材に接触させ、もって前記排ガス
    中の含酸素有機化合物との反応により前記窒素酸化物を
    除去することを特徴とする排ガス浄化方法。
JP6210628A 1994-04-20 1994-08-11 排ガス浄化材及び排ガス浄化方法 Pending JPH0852327A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6210628A JPH0852327A (ja) 1994-08-11 1994-08-11 排ガス浄化材及び排ガス浄化方法
EP95302636A EP0682975A1 (en) 1994-04-20 1995-04-20 Device and method for cleaning exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6210628A JPH0852327A (ja) 1994-08-11 1994-08-11 排ガス浄化材及び排ガス浄化方法

Publications (1)

Publication Number Publication Date
JPH0852327A true JPH0852327A (ja) 1996-02-27

Family

ID=16592477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6210628A Pending JPH0852327A (ja) 1994-04-20 1994-08-11 排ガス浄化材及び排ガス浄化方法

Country Status (1)

Country Link
JP (1) JPH0852327A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100392875B1 (ko) * 2000-04-26 2003-07-28 주식회사 제너럴시스템 배기가스의 질소산화물 저감용 촉매 및 그 제조방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100392875B1 (ko) * 2000-04-26 2003-07-28 주식회사 제너럴시스템 배기가스의 질소산화물 저감용 촉매 및 그 제조방법

Similar Documents

Publication Publication Date Title
JP3440290B2 (ja) 排ガス浄化方法
JP3626999B2 (ja) 排ガス浄化材及び排ガス浄化方法
JPH0824583A (ja) 排ガス浄化材及び排ガス浄化方法
JP2700386B2 (ja) 排ガス浄化材及び排ガス浄化方法
JPH0957064A (ja) 排ガス浄化材及び排ガス浄化方法
JP2587000B2 (ja) 排ガス浄化材及び排ガス浄化方法
JPH0852327A (ja) 排ガス浄化材及び排ガス浄化方法
JPH0985053A (ja) 排ガス浄化材及び排ガス浄化方法
JPH06142523A (ja) 排ガス浄化材及び排ガス浄化方法
JP2649217B2 (ja) 排ガス浄化材及び排ガス浄化方法
JP2992629B2 (ja) 排ガス浄化材及びエタノールによる排ガス浄化方法
JPH09262439A (ja) 窒素酸化物除去材及び窒素酸化物除去方法
JPH0857263A (ja) 排ガス浄化材及び排ガス浄化方法
JPH08168650A (ja) 排ガス浄化材及び排ガス浄化方法
JPH0824654A (ja) 排ガス浄化材及び排ガス浄化方法
JPH09248459A (ja) 排ガス浄化材及び排ガス浄化方法
JP3530214B2 (ja) 排ガス浄化材及び排ガス浄化方法
JP3509152B2 (ja) 排ガス浄化材及び排ガス浄化方法
JPH0975739A (ja) 排ガス浄化材及び排ガス浄化方法
JPH10128116A (ja) 排ガス浄化材及び排ガス浄化方法
JPH08257367A (ja) 窒素酸化物除去材、その製造方法及び窒素酸化物除去方法
JPH0824646A (ja) 排ガス浄化材及び排ガス浄化方法
JPH08141371A (ja) 排ガス浄化材及び排ガス浄化方法
JPH08168651A (ja) 排ガス浄化材及び排ガス浄化方法
JPH0852326A (ja) 排ガス浄化材及び排ガス浄化方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050803