JPH0831362B2 - Method of manufacturing voltage non-linear resistor - Google Patents

Method of manufacturing voltage non-linear resistor

Info

Publication number
JPH0831362B2
JPH0831362B2 JP2045727A JP4572790A JPH0831362B2 JP H0831362 B2 JPH0831362 B2 JP H0831362B2 JP 2045727 A JP2045727 A JP 2045727A JP 4572790 A JP4572790 A JP 4572790A JP H0831362 B2 JPH0831362 B2 JP H0831362B2
Authority
JP
Japan
Prior art keywords
firing
oxide
voltage
bismuth
bismuth oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2045727A
Other languages
Japanese (ja)
Other versions
JPH03250605A (en
Inventor
立 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2045727A priority Critical patent/JPH0831362B2/en
Publication of JPH03250605A publication Critical patent/JPH03250605A/en
Publication of JPH0831362B2 publication Critical patent/JPH0831362B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は酸化亜鉛を主成分とする電圧非直線抵抗体の
製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a voltage nonlinear resistor containing zinc oxide as a main component.

(従来の技術) 酸化亜鉛を主成分とする電圧非直線抵抗体は、そのす
ぐれた非直線電圧−電流特性から電圧安定化あるいはサ
ージ吸収を目的とした避雷器やサージアブソーバに広く
利用されている。この電圧非直線抵抗体は、主成分の酸
化亜鉛に電圧非直線性を発現する少量のビスマス、アン
チモン、コバルト、マンガン等の酸化物を添加し、混
合、造粒、成形したのち焼成し、好ましくは側面高抵抗
層を形成するため無機物質を塗布した後再度焼成し、そ
の焼結体に電極を取り付けることにより作製することが
できる。
(Prior Art) Voltage nonlinear resistors containing zinc oxide as a main component are widely used for lightning arresters and surge absorbers for the purpose of voltage stabilization or surge absorption because of their excellent nonlinear voltage-current characteristics. This voltage non-linear resistor is obtained by adding a small amount of an oxide such as bismuth, antimony, cobalt, or manganese that exhibits voltage non-linearity to zinc oxide as a main component, mixing, granulating, molding, and then firing. Can be manufactured by applying an inorganic substance to form a side surface high resistance layer, firing again, and attaching an electrode to the sintered body.

こうした電圧非直線抵抗体を製造する際、従来は密閉
筐体内部に敷粉等を敷設し、積極的に筐体内の雰囲気保
護を行っていた。そして、焼成時には、主成分である酸
化亜鉛粒子を液相によって均一に濡らせるように、液相
となる添加成分、特に酸化ビスマスを所定量必ず加える
必要がある。
When manufacturing such a voltage non-linear resistor, conventionally, spread powder or the like was laid inside a hermetically sealed casing to actively protect the atmosphere inside the casing. Then, at the time of firing, it is necessary to add a predetermined amount of an additive component that becomes a liquid phase, particularly bismuth oxide, so that the zinc oxide particles that are the main component are uniformly wetted by the liquid phase.

(発明が解決しようとする課題) しかし、酸化ビスマスは、焼成後も酸化亜鉛に固溶せ
ず、酸化亜鉛粒子間に粒界を形成する。このため、酸化
ビスマスの添加量が多いと、この粒界が厚くなり、これ
に起因して電圧非直線抵抗体のサージ耐量、課電寿命及
び誘電率特性が低下し、平坦率が増大した。
(Problems to be Solved by the Invention) However, bismuth oxide does not form a solid solution in zinc oxide even after firing, and forms a grain boundary between zinc oxide particles. For this reason, when the amount of bismuth oxide added was large, the grain boundaries became thicker, which resulted in a decrease in the surge withstand voltage of the voltage non-linear resistor, an electric charge life and a dielectric constant characteristic, and an increase in flatness.

その一方、酸化ビスマスの添加量を少なくすると、焼
成時に酸化亜鉛粒子表面の濡れが不充分となり、酸化亜
鉛粒子の焼結が不均一となる。
On the other hand, if the amount of bismuth oxide added is reduced, the surface of the zinc oxide particles will not be sufficiently wet during firing, and the sintering of the zinc oxide particles will be uneven.

本発明の課題は、上記の問題を克服でき、放電耐量、
課電寿命、誘電率の向上が可能で、平坦率を低減できる
ような電圧非直線抵抗体の製造方法を提供することであ
る。
The object of the present invention is to overcome the above-mentioned problems, discharge withstand capability,
It is an object of the present invention to provide a method for manufacturing a voltage nonlinear resistor that can improve the voltage-carrying life and the dielectric constant and can reduce the flatness.

(課題を解決するための手段) 本発明は、酸化亜鉛を主成分として含有しかつ少なく
とも酸化ビスマスを添加成分として含有する混合物を、
造粒、成形、焼成して電圧非直線抵抗体を製造する方法
において、前記混合物へ添加した酸化ビスマスの添加重
量のうち10%以上を前記焼成時に飛散除去し、焼成後の
酸化ビスマスの電圧非直線抵抗体中における含有率を6
重量%以下としたことを特徴とする電圧非直接抵抗体の
製造方法に係るものである。
(Means for Solving the Problems) The present invention provides a mixture containing zinc oxide as a main component and at least bismuth oxide as an additional component,
In the method for producing a voltage non-linear resistor by granulating, molding and firing, 10% or more of the added weight of bismuth oxide added to the mixture is removed by scattering during the firing, and the voltage non-voltage of the bismuth oxide after firing is removed. The content rate in the linear resistor is 6
The present invention relates to a method for manufacturing a voltage non-direct resistance resistor, which is characterized in that the content is not more than wt%.

(作 用) 本発明に係る電圧非直線抵抗体の製造方法によれば、
焼成後の酸化ビスマスの電圧非直線抵抗体中における含
有率を6重量%以下(好ましくは0.5〜4重量%)とし
たので、酸化ビスマスが粒界層に過剰に存在することに
よる酸化亜鉛素子の特性に及ぼす悪影響を抑制でき、平
坦率、誘電率、放電耐量を良好にできる。仮に、この酸
化ビスマスの含有率が6重量%を越えると平坦率が増大
し、誘電率及び放電耐量が低下する。
(Operation) According to the method for manufacturing a voltage non-linear resistor according to the present invention,
Since the content of bismuth oxide after firing in the voltage non-linear resistor is set to 6% by weight or less (preferably 0.5 to 4% by weight), the bismuth oxide is excessively present in the grain boundary layer, so that The adverse effect on the characteristics can be suppressed, and the flatness rate, dielectric constant, and discharge withstand amount can be improved. If the content of bismuth oxide exceeds 6% by weight, the flatness increases and the dielectric constant and discharge withstand capability decrease.

そして、本発明においては、注目すべきことに、混合
物へと添加した酸化ビスマスの添加量のうち10%以上
(好ましくは15〜25重量%)を焼成時に飛散除去してい
る。従って、最初は酸化ビスマスをその最適添加量より
も、焼成時に飛散除去する分だけ過剰に添加することが
できる。即ち、最初の混合物の段階では酸化ビスマスを
過剰に添加し、焼成時に酸化亜鉛粒子表面の濡れ性を高
め、かつ焼成時にこの酸化ビスマスの添加量のうち10%
以上を飛散除去することで、最終的に焼結体中の酸化亜
鉛の含有率を6重量%以下とできるのである。
In the present invention, it should be noted that 10% or more (preferably 15 to 25% by weight) of the added amount of bismuth oxide added to the mixture is scattered and removed during firing. Therefore, initially, bismuth oxide can be added in excess of the optimum addition amount by the amount removed by scattering during firing. That is, in the stage of the first mixture, excess bismuth oxide is added to improve the wettability of the zinc oxide particle surface during firing, and 10% of the added amount of bismuth oxide during firing is used.
By scattering and removing the above, the content ratio of zinc oxide in the sintered body can be finally reduced to 6% by weight or less.

この際、酸化ビスマスの添加量のうち10%以上を焼成
時に飛散除去したのは、これが10%未満では放電耐量及
び誘電率の向上がさほど認められないからである。
At this time, 10% or more of the added amount of bismuth oxide was scattered and removed at the time of firing because when it was less than 10%, the discharge withstand amount and the dielectric constant were not so much improved.

このように、焼成時に酸化ビスマスを飛散除去するに
は、例えば以下の方法を採用することが好ましい。
Thus, in order to scatter and remove the bismuth oxide during firing, it is preferable to employ the following method, for example.

即ち、従来は、前記したように焼成用の筺体を密封
し、雰囲気保護を行なうことが必須のものと考えられて
いた。
That is, conventionally, as described above, it was considered essential to hermetically seal the casing for firing to protect the atmosphere.

しかし、本発明の構成を実現するには、この常識とは
全く逆に、焼成用の筺体に例えば窓を設けて通気性と
し、本焼成時に雰囲気を減圧状態として酸化ビスマスを
飛散させる。この際、更に好ましくは、1000〜1300℃
(好ましくは1100〜1250℃)の温度で密閉状態でまず焼
成を行い、次いで一旦900℃以上の温度(好ましくは900
〜1050℃)へと下げた後に減圧状態とし、所定時間保持
して酸化ビスマスの飛散除去を行う。
However, in order to realize the constitution of the present invention, contrary to this common sense, for example, a window is provided in the casing for firing to make it breathable, and the atmosphere is depressurized during the main firing to scatter bismuth oxide. At this time, more preferably 1000 to 1300 ℃
(Preferably 1100 ~ 1250 ℃) in a closed state first calcination, then once more than 900 ℃ (preferably 900
After reducing the temperature to 1050 ° C), the pressure is reduced and the temperature is maintained for a predetermined time to remove bismuth oxide by scattering.

酸化ビスマスの飛散を行う際、筺体内圧力は100〜700
Torrとすると好ましく、250〜550Torrとすると更に好ま
しい。これが100Torr以下ではバリスタ特性が低下し、7
00Torrを越えると酸化ビスマスの飛散量が低下する。ま
た、この際、一定時間、温度を900℃以上、例えば1000
℃に保持する場合には、この温度保持時間は4〜10時間
とするのが好ましい。
When scattering bismuth oxide, the internal pressure of the housing is 100-700
Torr is preferable, and 250 to 550 Torr is more preferable. If this is 100 Torr or less, the varistor characteristics deteriorate, and
When it exceeds 00 Torr, the scattering amount of bismuth oxide decreases. At this time, the temperature is kept at 900 ° C or higher for a certain period of time, for example, 1000 ° C.
When the temperature is held at 0 ° C, the temperature holding time is preferably 4 to 10 hours.

酸化ビスマスを三酸化ビスマスとした場合は特に顕著
な効果が得られ好ましい。
When bismuth oxide is bismuth trioxide, a particularly remarkable effect is obtained, which is preferable.

なお、本発明によって製造した電圧非線低抗体を、ギ
ャップ付避雷器に適用すると、この抵抗体の誘電率を高
くできる(例えば600以上)ことから、既存の鉄塔に予
め取り付けられているアークホーンとの絶縁強調の点で
非常に有利となる。
When the voltage non-linear low antibody produced by the present invention is applied to a lightning arrester with a gap, it is possible to increase the dielectric constant of this resistor (for example, 600 or more). This is very advantageous in terms of insulation emphasis.

即ち、ギャップ付避雷器とは、概念的には碍子装置の
アークホーンに避雷機能を持たせたもので、限流要素部
と直列ギャップとから構成される。限流要素部は電圧非
直線抵抗特性を有する酸化亜鉛素子を直列に接続し、絶
縁物(碍管)内に収納し、あるいは絶縁物(エチレン−
プロピレンゴム)によりモールドしたものである。これ
により、送電線への落雷で鉄塔電位が上昇したときに直
列ギャップで放電させ、短時間のうちに限流要素部の非
直線抵抗特性を利用して続流を遮断し、変電所の遮断器
が動作することによる停電の防止を狙っている。
That is, the lightning arrester with a gap is conceptually an arc horn of an insulator device having a lightning arresting function, and is composed of a current limiting element portion and a series gap. The current limiting element part is a series of zinc oxide elements having a voltage non-linear resistance characteristic and is housed in an insulator (insulator tube) or is made of an insulator (ethylene-
It is molded with propylene rubber). As a result, when the tower potential rises due to lightning strikes on the transmission line, the series gap is discharged, and the non-linear resistance characteristic of the current limiting element is used to shut off the follow-up current and shut off the substation. The aim is to prevent power outages due to the operation of vessels.

しかし、こうしたギャップ付避雷器では、限流要素部
を既存の鉄塔間に新たに挿入し、取り付けなければなら
ないので、既存のアークホーンとの絶縁協調が問題であ
り、落雷時に直列ギャップに閃絡させてアークホーンで
の閃絡を防止する必要がある。この点、本発明によって
製造した電圧非直線抵抗体であれば、誘電率が高いの
で、直列ギャップで閃絡するフラッシュオーバー電圧を
低減することができるため、既存のアークホーンとの絶
縁強調が容易である。
However, in such a lightning arrester with a gap, the current limiting element must be newly inserted and installed between the existing steel towers, so insulation coordination with the existing arc horn is a problem, and it is necessary to flash into the series gap during a lightning strike. It is necessary to prevent flashover in the arc horn. In this respect, since the voltage non-linear resistor manufactured according to the present invention has a high dielectric constant, it is possible to reduce the flashover voltage flashing in the series gap, so that it is easy to emphasize the insulation with the existing arc horn. Is.

(実施例) 酸化亜鉛を主成分とする電圧非直線抵抗体を得るに
は、まず所定の粒度に調整した酸化亜鉛原料と所定の粒
度に調整した酸化ビスマス、酸化コバルト、酸化マンガ
ン、酸化アンチモン、酸化クロム、好ましくは非晶質の
酸化ケイ素、酸化ニッケル、酸化ホウ素、酸化銀等より
なる添加物の所定量を混合する。なお、この場合酸化
銀、酸化ホウ素の代わりに硝酸銀、ホウ酸を用いてもよ
い。好ましくは銀を含むホウケイ酸ビスマスガラスを用
いるとよい。また、添加物を800〜1000℃で仮焼した後
粉砕し、所定粒度に調整したものと酸化亜鉛原料を混合
してもよい。この際、これらの原料粉末に対して所定量
のポリビニルアルコール水溶液等を加える。
(Example) In order to obtain a voltage nonlinear resistor containing zinc oxide as a main component, first, a zinc oxide raw material adjusted to a predetermined particle size and bismuth oxide, cobalt oxide, manganese oxide, antimony oxide adjusted to a predetermined particle size, A predetermined amount of an additive made of chromium oxide, preferably amorphous silicon oxide, nickel oxide, boron oxide, silver oxide or the like is mixed. In this case, silver nitrate or boric acid may be used instead of silver oxide or boron oxide. Bismuth borosilicate glass containing silver is preferably used. Alternatively, the additive may be calcined at 800 to 1000 ° C. and then pulverized to adjust the particle size to a predetermined value, and the zinc oxide raw material may be mixed. At this time, a predetermined amount of polyvinyl alcohol aqueous solution or the like is added to these raw material powders.

次に好ましくは200mmHg以下の真空度で減圧脱気を行
い、混合泥漿の水分量は30〜35wt%程度に、またその混
合泥漿の粘度は100±50cpとするのが好ましい。次に得
られた混合泥漿を噴霧乾燥装置に供給して平均粒径50〜
150μm、好ましくは80〜120μmで、水分量が0.5〜2.0
wt%、より好ましくは0.9〜1.5wt%の造粒粉を造粒す
る。次に得られた造粒粉を、成形工程において、成形圧
力800〜1000kg/cm2の下で所定の形状に成形する。
Next, it is preferable to carry out degassing under reduced pressure, preferably at a vacuum degree of 200 mmHg or less, so that the water content of the mixed sludge is about 30 to 35 wt% and the viscosity of the mixed sludge is 100 ± 50 cp. Next, the mixed sludge obtained was fed to a spray dryer to give an average particle size of 50-
150μm, preferably 80-120μm, water content 0.5-2.0
Granules of wt%, more preferably 0.9-1.5 wt%, are granulated. Next, the obtained granulated powder is molded into a predetermined shape under a molding pressure of 800 to 1000 kg / cm 2 in a molding step.

次に、その成形体を昇降温速度50〜70℃/hr、温度800
〜900℃、保持時間1〜5時間という条件で仮焼成す
る。なお、仮焼成の前に成形体を昇降温速度10〜100℃/
hrで400〜600℃、保持時間1〜10時間で結合剤等有機成
分を飛散除去すると好ましい。
Next, the molded body is heated up / down at a temperature of 50 to 70 ° C / hr and at a temperature of 800.
Pre-baking is performed under the conditions of ~ 900 ° C and holding time of 1-5 hours. In addition, the temperature rising / falling rate of the molded body is 10 to 100 ° C. /
It is preferable to scatter and remove organic components such as a binder at a temperature of 400 to 600 ° C. for 1 hour and a holding time of 1 to 10 hours.

次に、仮焼体の側面に高抵抗層を形成する。本例では
Bi2O3,Sb2O3,ZnO,SiO2等の所定量に有機結合剤としてエ
チルセルロース、ブチルカルビトール、酢酸nブチル等
を加えた絶縁被覆用混合物ペーストを、60〜300μmの
厚さに仮焼体の側面を塗布する。
Next, a high resistance layer is formed on the side surface of the calcined body. In this example
A mixture paste for insulation coating with a predetermined amount of Bi 2 O 3 , Sb 2 O 3 , ZnO, SiO 2 etc. added with ethyl cellulose, butyl carbitol, n-butyl acetate as an organic binder to a thickness of 60-300 μm Apply the side of the calcined body.

次に、これを昇降温速度20〜100℃/hr、最高保持温度
1000〜1300℃好ましくは1050〜1250℃という条件で本焼
成する。そして、本発明の電圧非直線抵抗体を製造する
ためには、前記したように、一旦高温で本焼成した後、
900〜1050℃まで温度を下げ、この温度で筺体内を減圧
し、所定時間温度を一定に保持して三酸化ビスマスの飛
散除去を行う。
Then, increase and decrease the temperature by 20-100 ° C / hr, the maximum holding temperature
The main calcination is carried out under the conditions of 1000 to 1300 ° C, preferably 1050 to 1250 ° C. Then, in order to manufacture the voltage nonlinear resistor of the present invention, as described above, after the main firing is performed once at a high temperature,
The temperature is lowered to 900 to 1050 ° C, the inside of the housing is depressurized at this temperature, and the temperature is kept constant for a predetermined time to remove bismuth trioxide by scattering.

なお、ガラス粉末に有機結合剤としてエチルセルロー
ス、ブチルカルビトール、酢酸nブチル等を加えたガラ
スペーストを前記側面の高抵抗層上に100〜300μmの厚
さに塗布し、空気中で昇降温速度50〜200℃/hr、400〜9
00℃、保持時間0.5〜4時間という条件で熱処理するこ
とによりガラス層を形成すると好ましい。
In addition, a glass paste obtained by adding ethyl cellulose, butyl carbitol, n-butyl acetate, etc. as an organic binder to glass powder is applied on the high resistance layer on the side surface to a thickness of 100 to 300 μm, and the temperature rising / falling rate is 50 in air. ~ 200 ℃ / hr, 400 ~ 9
It is preferable to form the glass layer by heat treatment under the conditions of 00 ° C. and a holding time of 0.5 to 4 hours.

その後、得られた電圧非直線抵抗体の両端面をSiC,Al
2O3,ダイヤモンド等の#400〜#2000相当の研磨剤によ
り水好ましくは油を研磨液として使用して研磨する。次
に、研磨面を洗浄後、研磨した両端面に例えばアルミニ
ウム等によって電極を例えば溶射により設けて電圧非直
線抵抗体を得る。
After that, both end surfaces of the obtained voltage nonlinear resistor are
Polishing is performed with water, preferably oil, as a polishing liquid with an abrasive corresponding to # 400 to # 2000 such as 2 O 3 and diamond. Next, after cleaning the polished surface, electrodes are provided, for example, by spraying, on both polished end surfaces by, for example, aluminum or the like to obtain a voltage nonlinear resistor.

以下、実際に本発明の範囲内および範囲外の電圧非直
線抵抗体において、各種特性を測定した結果について説
明する。
Hereinafter, the results of actually measuring various characteristics of the voltage nonlinear resistor within and outside the range of the present invention will be described.

実施例1 上述した方法に従って、表1に示す所定量のBi2O3,Co
2O31.0モル%、MnO20.5モル%、Sb2O31.0モル%、Cr2O3
0.5モル%、NiO1.0モル%、SiO21.0モル%および残部が
ZnOからなる原料に、ホウケイ酸ビスマスガラスを外配
で0.1wt%添加し、この混合物を成形、仮焼、高抵抗層
形成、焼成等し、直径47mm、厚さ22.5mmの表1に示す本
発明例及び比較例の電圧非直線抵抗体を製造した。但
し、本焼成工程は、図面に示すような昇温−温度保持−
降温スケジュールで行った。即ち、まず常圧で50℃/hr
の速度で昇温し、1200℃で5時間保持し、60℃/hrの速
度で1000℃まで降温した。次いで、筺体内(窯内)を表
1に示す圧力にまで減圧し、1000℃の温度で表1に示す
所定時間の間保持した。次いで、窯内を常圧に戻し、60
℃/hrの速度で降温した。1000℃での保持時間とこのと
きの窯内圧力を種々変化させることにより、三酸化ビス
マスの飛散量を変化させた。
Example 1 According to the method described above, a predetermined amount of Bi 2 O 3 , Co shown in Table 1 was used.
2 O 3 1.0 mol%, MnO 2 0.5 mol%, Sb 2 O 3 1.0 mol%, Cr 2 O 3
0.5 mol%, NiO 1.0 mol%, SiO 2 1.0 mol% and the balance
0.1 wt% of bismuth borosilicate glass was added to the raw material made of ZnO, and this mixture was molded, calcined, formed into a high resistance layer, baked, etc. The voltage non-linear resistors of the invention example and the comparative example were manufactured. However, in the main firing step, the temperature rise-temperature retention-as shown in the drawing
It was done according to the cooling schedule. That is, first, at normal pressure, 50 ° C / hr
The temperature was raised at a rate of 1, the temperature was maintained at 1200 ° C for 5 hours, and the temperature was lowered to 1000 ° C at a rate of 60 ° C / hr. Next, the inside of the housing (inside the kiln) was depressurized to the pressure shown in Table 1 and kept at a temperature of 1000 ° C. for a predetermined time shown in Table 1. Then, the pressure inside the kiln is returned to normal pressure, and 60
The temperature was lowered at a rate of ° C / hr. The scattering amount of bismuth trioxide was changed by changing the holding time at 1000 ℃ and the pressure in the kiln at this time.

こうして得た各電圧非直線抵抗体につき、それぞれ誘
電率(ε)、ΔV1mA(%)及び平坦率V40KA/V1mAを測定
した。ΔV1mA(%)は、雷サージ(100KA)印加後のV
1mAの変化率であり、平坦率V40KA/V1mAは40KAと1mAとに
おける制限電圧の比である。これらの測定結果を表1に
示す。
The dielectric constant (ε), ΔV 1mA (%), and flatness V 40KA / V 1mA of each voltage nonlinear resistor thus obtained were measured. ΔV 1mA (%) is V after applying lightning surge (100 KA )
The rate of change is 1 mA , and the flat rate V 40KA / V 1mA is the ratio of the limiting voltage between 40 KA and 1 mA . The results of these measurements are shown in Table 1.

表1の結果から解るように、本発明に従うことによ
り、ΔV1mA、平坦率を小さくでき、同時に誘電率を大き
くすることができる。また、1000℃での保持時間、窯内
圧力を変化させることで、三酸化ビスマスの飛散量を制
御できることが明らかである。
As can be seen from the results in Table 1, according to the present invention, ΔV 1mA and flatness can be reduced, and at the same time, the dielectric constant can be increased. It is also clear that the amount of bismuth trioxide scattered can be controlled by changing the holding time at 1000 ° C and the pressure inside the kiln.

実施例2 実施例1におけると全く同様にして、表2に示す本発
明例及び比較例の各電圧非直線抵抗体を製造した。但
し、本実施例では、三酸化ビスマスの飛散量の割合はい
ずれも10%以上とし、焼成後の焼結体中の三酸化ビスマ
ス量を種々変化させた。これらの各電圧非直線抵抗体に
つき、実施例1と同様の測定を行った。結果を表2に示
す。
Example 2 In exactly the same manner as in Example 1, the voltage non-linear resistors of the present invention example and the comparative example shown in Table 2 were manufactured. However, in this example, the proportion of the scattered amount of bismuth trioxide was 10% or more, and the amount of bismuth trioxide in the sintered body after firing was variously changed. The same measurement as in Example 1 was performed for each of these voltage non-linear resistors. Table 2 shows the results.

表2に示す結果から解るように、焼結体中に残る三酸
化ビスマスの量を6.0重量%以下とすることが重要であ
る。
As can be seen from the results shown in Table 2, it is important that the amount of bismuth trioxide remaining in the sintered body be 6.0% by weight or less.

実施例3 実施例1と同様にして電圧非直線抵抗体を製造した。
但し、本実施例では、三酸化ビスマスの添加量は6.7重
量%に統一し、また1000℃で三酸化ビスマスを飛散させ
る際の保持時間はいずれも5時間とし、この時の窯内圧
力のみを表3に示すように種々変化させ、焼成時のBi2O
3の飛散量を変化させて表3に示す各電圧非直線抵抗体
を製造した。そして、これらの各抵抗体につき、実施例
1と同様の測定を行い、その結果を表3に示した。
Example 3 A voltage non-linear resistor was manufactured in the same manner as in Example 1.
However, in this example, the addition amount of bismuth trioxide was unified to 6.7% by weight, and the holding time when scattering bismuth trioxide at 1000 ° C. was 5 hours in all, and only the pressure inside the kiln at this time was set. As shown in Table 3, various changes were made to Bi 2 O during firing.
The voltage non-linear resistors shown in Table 3 were manufactured by changing the scattering amount of 3. Then, for each of these resistors, the same measurement as in Example 1 was performed, and the results are shown in Table 3.

(発明の効果) 本発明に係る電圧非直線抵抗体の製造方法によれば、
焼成後の酸化ビスマスの電圧非直線抵抗体中における含
有率を6重量%以下としたので、焼結体中における酸化
ビスマスの粒界層による悪影響を抑制でき、平坦率、誘
電率、放電耐量を良好とできる。
(Effect of the Invention) According to the method of manufacturing the voltage nonlinear resistor of the present invention,
Since the content of bismuth oxide after firing in the voltage non-linear resistor is set to 6% by weight or less, the adverse effect of the grain boundary layer of bismuth oxide in the sintered body can be suppressed, and the flatness, the dielectric constant, and the discharge withstand capability can be reduced. Can be good.

そして、混合物へと添加した酸化ビスマスの添加量の
うち10%以上を焼成時に飛散除去しているので、混合物
へと添加する時点では、酸化ビスマスをその最適量より
も、焼成時に飛散除去する分だけ過剰に添加することが
できる。即ち、最初の段階では酸化ビスマスを過剰に添
加し、焼成時に酸化亜鉛粒子表面の濡れ性を高め、かつ
焼成時にこの酸化ビスマスの添加量のうち10%以上を飛
散除去することで、最終的に焼結体中の酸化ビスマス粒
界層を減らし、含有率を6重量%以下とできる。従っ
て、焼成時に酸化亜鉛粒子の濡れ性の不足によって支障
が生ずることはなく、誘電率、放電耐量が劣化すること
はない。
Since 10% or more of the added amount of bismuth oxide added to the mixture is scattered and removed during firing, at the time of adding to the mixture, the amount of bismuth oxide that is scattered and removed during firing is less than the optimum amount. Can be added in excess only. That is, in the first stage, bismuth oxide is excessively added to improve the wettability of the zinc oxide particle surface during firing, and 10% or more of the added amount of bismuth oxide is scattered and removed during firing, so that finally The bismuth oxide grain boundary layer in the sintered body can be reduced and the content can be set to 6% by weight or less. Therefore, the insufficient wettability of the zinc oxide particles does not cause any trouble during firing, and the dielectric constant and discharge withstand capacity do not deteriorate.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本焼成工程において三酸化ビスマスを飛散除
去するための温度スケジュールを示すグラフである。
FIG. 1 is a graph showing a temperature schedule for scattering and removing bismuth trioxide in the main firing step.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】酸化亜鉛を主成分として含有しかつ少なく
とも酸化ビスマスを添加成分として含有する混合物を、
造粒、成形、焼成して電圧非直線抵抗体を製造する方法
において、前記混合物へと添加した酸化ビスマスの添加
重量のうち10%以上を前記焼成時に飛散除去し、焼成後
の酸化ビスマスの電圧非直線抵抗体中における含有率を
6重量%以下としたことを特徴とする電圧非直線抵抗体
の製造方法。
1. A mixture containing zinc oxide as a main component and at least bismuth oxide as an additional component,
In the method of producing a voltage non-linear resistor by granulating, molding and firing, 10% or more of the added weight of bismuth oxide added to the mixture is scattered and removed during the firing, and the voltage of the bismuth oxide after firing is removed. A method for producing a voltage non-linear resistor, characterized in that the content rate in the non-linear resistor is 6% by weight or less.
JP2045727A 1990-02-28 1990-02-28 Method of manufacturing voltage non-linear resistor Expired - Lifetime JPH0831362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2045727A JPH0831362B2 (en) 1990-02-28 1990-02-28 Method of manufacturing voltage non-linear resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2045727A JPH0831362B2 (en) 1990-02-28 1990-02-28 Method of manufacturing voltage non-linear resistor

Publications (2)

Publication Number Publication Date
JPH03250605A JPH03250605A (en) 1991-11-08
JPH0831362B2 true JPH0831362B2 (en) 1996-03-27

Family

ID=12727354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2045727A Expired - Lifetime JPH0831362B2 (en) 1990-02-28 1990-02-28 Method of manufacturing voltage non-linear resistor

Country Status (1)

Country Link
JP (1) JPH0831362B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116835973B (en) * 2023-06-16 2024-06-04 华中科技大学 Bismuth oxide coated zinc oxide powder and preparation method and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5662301A (en) * 1979-10-26 1981-05-28 Tokyo Shibaura Electric Co Method of manufacturing metal oxide nonnlinear resistor
JPS5828802A (en) * 1981-08-13 1983-02-19 株式会社東芝 Method of producing voltage non-linear resistor

Also Published As

Publication number Publication date
JPH03250605A (en) 1991-11-08

Similar Documents

Publication Publication Date Title
JPH0831362B2 (en) Method of manufacturing voltage non-linear resistor
JPH0734403B2 (en) Voltage nonlinear resistor
JP2692210B2 (en) Zinc oxide varistor
JPH0379850B2 (en)
JPH01228105A (en) Manufacture of non-linear voltage resistance
JPH0817123B2 (en) Method of manufacturing voltage non-linear resistor
JPS6249961B2 (en)
JPH05234716A (en) Zinc oxide varistor
JP2003007512A (en) Nonlinear resistor element
JP2533597B2 (en) Method of manufacturing voltage non-linear resistor
JPS6028121B2 (en) Manufacturing method of voltage nonlinear resistor
JPS63132401A (en) Manufacture of voltage nonlinear resistor
JPH0734405B2 (en) Voltage nonlinear resistor
JP2719023B2 (en) Zinc oxide element for gap type lightning arrester
JPH07105286B2 (en) Voltage nonlinear resistor
JPH0734402B2 (en) Voltage nonlinear resistor
JPH0744088B2 (en) Method for manufacturing voltage non-linear resistor
JP2003077707A (en) Method for manufacturing non linear resistor
JPS63114104A (en) Manufacture of nonlinear resistor
JPS6322602B2 (en)
JPH0510804B2 (en)
JPH0812805B2 (en) Voltage nonlinear resistor
JPH0247802A (en) Voltage nonlinear resistor body
JPH0744089B2 (en) Method for manufacturing voltage non-linear resistor
JPH0812806B2 (en) Voltage nonlinear resistor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090327

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090327

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100327

Year of fee payment: 14

EXPY Cancellation because of completion of term