JPH0817123B2 - Method of manufacturing voltage non-linear resistor - Google Patents

Method of manufacturing voltage non-linear resistor

Info

Publication number
JPH0817123B2
JPH0817123B2 JP1278692A JP27869289A JPH0817123B2 JP H0817123 B2 JPH0817123 B2 JP H0817123B2 JP 1278692 A JP1278692 A JP 1278692A JP 27869289 A JP27869289 A JP 27869289A JP H0817123 B2 JPH0817123 B2 JP H0817123B2
Authority
JP
Japan
Prior art keywords
mol
converted
temperature
rate
hour
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1278692A
Other languages
Japanese (ja)
Other versions
JPH03142801A (en
Inventor
今井  修
立 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP1278692A priority Critical patent/JPH0817123B2/en
Publication of JPH03142801A publication Critical patent/JPH03142801A/en
Publication of JPH0817123B2 publication Critical patent/JPH0817123B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は酸化亜鉛を主成分とする電圧非直線抵抗体の
製造法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for producing a voltage nonlinear resistor containing zinc oxide as a main component.

(従来の技術及び発明が解決しようとする課題) 酸化亜鉛を主成分とする電圧非直線抵抗体は、そのす
ぐれた非直線電圧−電流特性から電圧安定化あるいはサ
ージ吸収を目的とした避雷器やサージアブソーバに広く
利用されている。この電圧非直線抵抗体は、主成分の酸
化亜鉛に電圧非直線性を発現する少量のビスマス、アン
チモン、コバルト、マンガン等の金属酸化物を添加し、
混合、造粒、成形したのち焼成し、側面高抵抗層を形成
するため無機物質を側面に塗布した後焼成し、その焼成
体の両端面に電極を取り付けることにより構成されてい
る。
(Problems to be Solved by the Related Art and Invention) A voltage non-linear resistor containing zinc oxide as a main component is a surge arrester or surge for the purpose of voltage stabilization or surge absorption because of its excellent non-linear voltage-current characteristics. Widely used for absorbers. This voltage non-linear resistor is obtained by adding a small amount of metal oxide such as bismuth, antimony, cobalt, manganese, etc. expressing voltage non-linearity to zinc oxide as the main component,
It is configured by mixing, granulating, shaping, and then firing, applying an inorganic substance to the side surface to form a side surface high resistance layer, firing, and attaching electrodes to both end surfaces of the fired body.

このようにして得られた電圧非直線抵抗体を大きなサ
ージ吸収を目的とする避雷器に適用する場合には、電圧
非直線抵抗体の開閉サージ、雷サージ放電耐量は大きい
ことが望ましく、また側面高抵抗層の素子本体に対する
付着強度が高いことが望まれる。
When the voltage nonlinear resistor obtained in this way is applied to a lightning arrestor for the purpose of absorbing large surges, it is desirable that the voltage nonlinear resistor has a large switching surge and lightning surge discharge withstand capability. It is desired that the resistance layer has high adhesion strength to the element body.

特開昭60−74403号公報では、ビスマス、コバルト、
マンガン、アンチモン、ニッケル、ホウ素、アルミニウ
ムがそれぞれBi2O3,Co2O3,MnO,Sb2O3,NiO,B2O3,Al3+
換算して、 Bi2O3 0.1〜5モル%,Co2O3 0.1〜5モル%, MnO 0.1〜5モル%,Sb2O3 0.1〜5モル%, NiO 0.1〜5モル%,B2O3 0.002〜0.2モル%, Al3+ 0.001〜0.05モル% 含まれる混合物を成形した後焼結させ、この焼結体に熱
処理を施す方法が開示されてい。しかしこの電圧非直線
抵抗体はギャップ間放電特性が低く、開閉サージ(2m
S)耐量が低いため、特性的に満足できるものではな
い。
In JP-A-60-74403, bismuth, cobalt,
Manganese, antimony, nickel, boron, and aluminum are converted into Bi 2 O 3 , Co 2 O 3 , MnO, Sb 2 O 3 , NiO, B 2 O 3 , and Al 3+ , respectively, and Bi 2 O 3 0.1-5. Mol%, Co 2 O 3 0.1-5 mol%, MnO 0.1-5 mol%, Sb 2 O 3 0.1-5 mol%, NiO 0.1-5 mol%, B 2 O 3 0.002-0.2 mol%, Al 3+ A method is disclosed in which a mixture containing 0.001 to 0.05 mol% is molded and then sintered, and the sintered body is heat-treated. However, this voltage non-linear resistor has a low gap discharge characteristic, and the switching surge (2m
S) Since the withstand capacity is low, the characteristics are not satisfactory.

また、特開昭61−204902号公報では、所定のガラスフ
リットを抵抗体素子の側面に施し、加熱により側面高抵
抗層の形成と酸化ビスマスの体心立方晶への転化とを同
時に行う方法が開示されている。しかし、この電圧非直
線抵抗体は雷サージ放電耐量が低く、側面高抵抗層の付
着強度が低い。
Further, in JP-A-61-204902, a method of applying a predetermined glass frit to the side surface of the resistor element and simultaneously performing heating to form a side surface high resistance layer and conversion of bismuth oxide into body-centered cubic crystal is disclosed. It is disclosed. However, this voltage non-linear resistor has low lightning surge discharge withstand capability and low adhesion strength of the lateral high-resistance layer.

本発明の課題は、大電流領域の制限電圧を低減でき、
避雷装置として使用したときのギャップ間放電特性を向
上させることができ、抵抗体素子のサージに対する安定
化、長寿命化を図ることができ、かつサージ耐量を向上
させられるような電圧非直線抵抗体を製造することであ
る。
An object of the present invention is to reduce the limiting voltage in a large current region,
A voltage non-linear resistor that can improve the gap discharge characteristics when used as a lightning arrester, can stabilize the resistor element against surges, can prolong the life, and can improve surge withstand capability. Is to manufacture.

(課題を解決するための手段) 本発明は、酸化亜鉛を主成分として含有し、添加成分
として酸化ビスマスをBi2O3に換算して0.1〜2.0モル
%、非晶質シリカをSiO2に換算して0.5〜9モル%、硝
酸アルミニウムをAl2O3に換算して0.001〜0.05モル%、
及びホウケイ酸ビスマスガラスをB2O3に換算して0.005
〜0.1モル%を少なくとも含む混合物を成形、仮焼して
仮焼体を作成し、この仮焼体に酸化物ペーストを塗布
し、焼成を行って側面高抵抗層が形成された焼成体を作
成し、この焼成体に最高温度520〜650℃,昇温速度200
℃/時間以下、降温速度20〜150℃/時間の熱処理を施
すことを特徴とする電圧非直線抵抗体の製造法に係るも
のである。
(Means for Solving the Problems) The present invention contains zinc oxide as a main component, and bismuth oxide as an additive component is converted into Bi 2 O 3 in an amount of 0.1 to 2.0 mol%, and amorphous silica is converted into SiO 2 . Converted to 0.5 to 9 mol%, aluminum nitrate converted to Al 2 O 3 0.001 to 0.05 mol%,
And bismuth borosilicate glass converted to B 2 O 3 0.005
A mixture containing at least 0.1 mol% is molded and calcined to form a calcined body, and the calcined body is coated with an oxide paste and then calcined to form a calcined body with a lateral high resistance layer formed. Then, the maximum temperature of this fired body is 520 to 650 ℃, and the heating rate is 200.
The present invention relates to a method for producing a voltage non-linear resistor, which is characterized by performing heat treatment at a temperature lowering rate of 20 to 150 ° C./hour or less.

(作 用) 本発明においては、添加成分を限定し、なおかつ本焼
成後に特定の条件で熱処理を行うことにより、大電流領
域での制限電圧比の低減、雷サージ放電耐量の向上、サ
ージに対する安定性の飛躍的向上を実現できた。
(Operation) In the present invention, by limiting the additive components and performing heat treatment under specific conditions after the main firing, the limiting voltage ratio in the large current region is reduced, the lightning surge discharge withstand capability is improved, and the stability against surge is ensured. We were able to achieve a dramatic improvement in sex.

酸化ビスマスの添加量をBi2O3に換算して0.1〜2.0モ
ル%(更に好ましくは0.5〜1.5モル%)としたことによ
り、雷サージ放電耐量が向上し、制限電圧比の低減、課
電寿命特性の向上が可能となる。これが0.1モル%未満
では雷サージ放電耐量、課電寿命特性が低下し、2モル
%を超えると制限電圧比が増大する。
By adjusting the amount of bismuth oxide added to Bi 2 O 3 to 0.1-2.0 mol% (more preferably 0.5-1.5 mol%), the lightning surge discharge withstand capability is improved, the limiting voltage ratio is reduced, and the voltage is reduced. The life characteristics can be improved. If this content is less than 0.1 mol%, the lightning surge discharge withstand capability and the life span of voltage application are deteriorated, and if it exceeds 2 mol%, the limiting voltage ratio increases.

非晶質シリカの添加量を0.5モル%〜9モル%(更に
好ましくは1.0〜3.0モル%)としたことにより、雷サー
ジ放電耐量の向上、制限電圧比の低減が可能となる。こ
れが0.5モル%未満では雷サージ放電耐量が低下し、制
限電圧比が増大し、9モル%を超えるとやはり雷サージ
放電耐量が低下する。
By setting the addition amount of the amorphous silica to 0.5 mol% to 9 mol% (more preferably 1.0 to 3.0 mol%), it becomes possible to improve the lightning surge discharge withstand capacity and reduce the limiting voltage ratio. If it is less than 0.5 mol%, the lightning surge discharge withstand capability decreases, and the limiting voltage ratio increases, and if it exceeds 9 mol%, the lightning surge discharge withstand capability also decreases.

硝酸アルミニウム(水溶液として添加するのが好まし
い)の添加量をAl2O3に換算して0.001〜0.05モル%(更
に好ましくは0.002〜0.02モル%)とすることで、制限
電圧比の低減、課電寿命特性の向上が可能となる。これ
が0.001モル%未満では制限電圧比が増大し、0.05モル
%を超えると漏洩電流が増えて課電寿命特性が低下す
る。
By reducing the amount of aluminum nitrate (preferably added as an aqueous solution) to 0.001 to 0.05 mol% (more preferably 0.002 to 0.02 mol%) in terms of Al 2 O 3 , it is possible to reduce the limiting voltage ratio. It is possible to improve the electric life characteristics. If this content is less than 0.001 mol%, the limiting voltage ratio increases, and if it exceeds 0.05 mol%, the leakage current increases and the electrical life characteristics deteriorate.

ホウケイ酸ビスマスガラスの添加量をB2O3に換算して
0.005〜0.1モル%(更に好ましくは0.01〜0.08モル%)
とすることで制限電圧比の低減、雷サージ印加後のV1mA
の変化率の低減が可能になる。この値が0.005モル未満
になると制限電圧比が増大し課電寿命特性も低下する。
また、0.1モル%を越えると電サージ放電耐量が低下し
制限電圧比も増大する。
Convert the added amount of bismuth borosilicate glass to B 2 O 3
0.005-0.1 mol% (more preferably 0.01-0.08 mol%)
The reduction of the limiting voltage ratio and V 1mA after lightning surge application
It is possible to reduce the rate of change of. If this value is less than 0.005 mol, the limiting voltage ratio is increased and the voltage life characteristic is also deteriorated.
On the other hand, if it exceeds 0.1 mol%, the electric surge discharge withstand capability decreases and the limiting voltage ratio also increases.

焼成体の熱処理温度を520℃〜650℃(更に好ましくは
550〜600℃)とすることも重要であり、熱処理温度が52
0℃未満では粒界の酸化ビスマスが相転移をほとんどし
ないため、課電寿命特性が向上せず熱処理の効果が現れ
ず、650℃を超えると酸化ビスマスがすべて体心立方晶
となって雷サージ放電耐量が低下する。
The heat treatment temperature of the fired body is 520 ℃ ~ 650 ℃ (more preferably
550-600 ℃) is also important, and the heat treatment temperature is 52
Below 0 ° C, bismuth oxide at the grain boundaries hardly undergoes phase transition, so the electrical life characteristics are not improved and the effect of heat treatment does not appear. Above 650 ° C, all bismuth oxide becomes body-centered cubic and lightning surge occurs. The discharge withstand capability decreases.

熱処理時の昇温速度は200℃/時間以下とするが、50
〜150℃/時間とすると更に好ましい。昇温速度が200℃
/時間を超えると抵抗体素子に熱歪みが生じて雷サージ
放電耐量が低下する。
The rate of temperature rise during heat treatment is 200 ° C / hour or less, but 50
More preferably, it is set to 150 ° C./hour. Temperature rising rate is 200 ℃
If the time exceeds / hour, thermal distortion occurs in the resistor element and the lightning surge discharge withstand capability decreases.

また、熱処理時の降温速度は20〜150℃/時間とする
が50〜100℃/時間とすると更に好ましい。降温速度が2
0℃/時間未満では酸化ビスマスの結晶のほとんどが体
心立方晶となって雷サージ放電耐量が低下し、150℃/
時間を超えると酸化ビスマスが単斜晶系となり、課電寿
命特性が向上せず、雷サージ放電耐量も低下する。
The rate of temperature decrease during heat treatment is 20 to 150 ° C./hour, more preferably 50 to 100 ° C./hour. The cooling rate is 2
If the temperature is less than 0 ° C / hour, most of the bismuth oxide crystals become body-centered cubic crystals and the lightning surge discharge withstand capability decreases, resulting in 150 ° C / hour.
When the time is exceeded, the bismuth oxide becomes a monoclinic system, the life characteristics of charging is not improved, and the lightning surge discharge withstand capability is also reduced.

(実施例) 酸化亜鉛を主成分とする電圧非直線抵抗体を得るに
は、まず所定の粒度に調整した酸化亜鉛原料を主成分と
して含有し、添加成分として酸化ビスマスをBi2O3に換
算して0.1〜2.0モル%、非晶質シリカをSiO2に換算して
0.5〜9モル%、硝酸アルミニウムをAl2O3に換算して0.
001〜0.05モル%、ホウケイ酸ビスマスガラスをB2O3
換算して0.005〜0.1モル%を少なくとも含む混合物を調
整する。この混合物中には、他に酸化コバルト、酸化マ
ンガン、酸化アンチモン、酸化クロム、酸化ニッケル、
酸化銀、硝酸銀等を含有させてもよい。また、上記の添
加物を800〜1000℃で仮焼した後粉砕し、所定粒度に調
整したものと酸化亜鉛原料を混合してもよい。この際、
これらの原料粉末に対して所定量のポリビニルアルコー
ル水溶液等を加える。
(Example) In order to obtain a voltage nonlinear resistor containing zinc oxide as a main component, first, a zinc oxide raw material adjusted to a predetermined particle size is contained as a main component, and bismuth oxide is converted into Bi 2 O 3 as an additive component. 0.1-2.0 mol%, and convert the amorphous silica to SiO 2.
0.5-9 mol%, aluminum nitrate converted to Al 2 O 3 of 0.
A mixture containing at least 001 to 0.05 mol% and at least 0.005 to 0.1 mol% of bismuth borosilicate glass converted to B 2 O 3 is prepared. In this mixture, other than cobalt oxide, manganese oxide, antimony oxide, chromium oxide, nickel oxide,
You may contain silver oxide, silver nitrate, etc. Alternatively, the above additives may be calcined at 800 to 1000 ° C. and then pulverized to adjust the particle size to a predetermined value, and the zinc oxide raw material may be mixed. On this occasion,
A predetermined amount of polyvinyl alcohol aqueous solution or the like is added to these raw material powders.

次に好ましくは200mmHg以下の真空度で減圧脱気を行
い。混合泥漿の水分量は30〜35wt%程度に、またその混
合泥漿の粘度は100±50cpとするのが好ましい。次に得
られた混合泥漿を噴霧乾燥装置に供給して平均粒径50〜
150μm、好ましくは80〜120μmで、水分量が0.5〜2.0
wt%、より好ましくは0.9〜1.5wt%の造粒粉を造粒す
る。次に得られた造粒粉を、成形工程において、成形圧
力800〜1000kg/cm2の下で所定の形状に成形する。
Next, vacuum degassing is performed preferably at a vacuum degree of 200 mmHg or less. The water content of the mixed slurry is preferably about 30 to 35 wt%, and the viscosity of the mixed slurry is preferably 100 ± 50 cp. Next, the mixed sludge obtained was fed to a spray dryer to give an average particle size of 50-
150μm, preferably 80-120μm, water content 0.5-2.0
Granules of wt%, more preferably 0.9-1.5 wt%, are granulated. Next, the obtained granulated powder is molded into a predetermined shape under a molding pressure of 800 to 1000 kg / cm 2 in a molding step.

次に、その成形体を昇降温速度50〜70℃/時間、温度
800〜1000℃、保持時間1〜5時間という条件で仮焼成
する。なお、仮焼成の前に成形体を昇降温速度10〜100
℃/hrで400〜600℃、保持時間1〜10時間で結合剤を飛
散除去することが好ましい。
Next, the molded body is heated at a temperature raising / lowering rate of 50 to 70 ° C./hour and temperature.
Pre-baking is performed under the conditions of 800 to 1000 ° C. and holding time of 1 to 5 hours. It should be noted that the temperature rising / falling rate of the molded body is 10 to 100 before the preliminary firing.
It is preferable that the binder is scattered and removed at 400 to 600 ° C. at a temperature of 100 ° C./hr and a holding time of 1 to 10 hours.

次に、仮焼体の側面に高抵抗層を形成する。本例では
Bi2O3,Sb2O3,ZnO,SiO2等の所定量に有機結合剤としてエ
チルセルロース、ブチルカルビトール、酢酸nブチル等
を加えた絶縁被覆用混合物ペーストを、60〜300μmの
厚さに仮焼体の側面に塗布する。
Next, a high resistance layer is formed on the side surface of the calcined body. In this example
A mixture paste for insulation coating with a predetermined amount of Bi 2 O 3 , Sb 2 O 3 , ZnO, SiO 2 , etc., added with ethyl cellulose, butyl carbitol, n-butyl acetate as an organic binder to a thickness of 60-300 μm Apply to the side of the calcined body.

次に、これを昇降温速度20〜100℃/時間、最高保持
温度1000〜1300℃、好ましくは1050〜1250℃、3〜7時
間という条件で本焼成する。
Next, this is main-baked under conditions of a temperature rising / falling rate of 20 to 100 ° C./hour and a maximum holding temperature of 1000 to 1300 ° C., preferably 1050 to 1250 ° C. for 3 to 7 hours.

本焼成後、得られた焼成体に、最高温度520〜650℃、
昇温速度200℃/時間以下、降温速度20〜150℃/時間の
熱処理を行う。
After the main firing, the obtained fired body, the maximum temperature 520 ~ 650 ℃,
Heat treatment is performed at a temperature rising rate of 200 ° C./hour or less and a temperature lowering rate of 20 to 150 ° C./hour.

なお、この時ガラス粉末に有機結合剤としてエチルセ
ルロース、ブチルカルビトール、酢酸nブチル等を加え
たガラスペーストを前記側面の高抵抗層上に100〜300μ
mの厚さに塗布し、熱処理することによりガラス層を形
成することが更に好ましい。
At this time, a glass paste in which ethyl cellulose, butyl carbitol, n-butyl acetate, etc. were added to the glass powder as an organic binder was added to the high resistance layer on the side surface at 100 to 300 μm.
It is more preferable that the glass layer is formed by applying a coating having a thickness of m and heat treating.

その後、得られた電圧非直線抵抗体の両端面をSiC,Al
2O3,ダイヤモンド等の#400〜#2000相当の研磨剤によ
り水、好ましくは油を研磨液として使用して研磨する。
次に、研磨面を洗浄後、研磨した両端面に例えばアルミ
ニウム等によて電極を例えば溶射により設けて電圧非直
線抵抗体を得る。
After that, both end surfaces of the obtained voltage nonlinear resistor are
Polishing is performed using water, preferably oil, as a polishing liquid with an abrasive corresponding to # 400 to # 2000 such as 2 O 3 and diamond.
Next, after cleaning the polished surface, electrodes are provided, for example, by thermal spraying, on both polished end surfaces by, for example, aluminum or the like to obtain a voltage nonlinear resistor.

以下、実際に本発明の範囲内および範囲外の電圧非直
線抵抗体において、各種特性を測定した結果について説
明する。
Hereinafter, the results of actually measuring various characteristics of the voltage nonlinear resistor within and outside the range of the present invention will be described.

実施例1 酸化ビスマス、非晶質シリカ、硝酸アルミニウム及び
ホウケイ酸ビスマスガラスをそれぞれBi2O3,SiO2,Al
2O3,B2O3に換算して下記表1に示す添加量だけ含有し、
かつCo3O40.66モル%,MnO20.5モル%,Sb2O31.0モル%,C
r2O30.5モル%,NiO 1.0モル%を添加物として含有し、
残部がZnOからなる原料を上述した方法に従って混合、
造粒、成形、仮焼し、高抵抗層を形成し、本焼成を行っ
た。次いで、昇温速度150℃/時間で昇温し、500℃で熱
処理し、降温速度100℃/時間で降温しV1A=6.8kV(直
径47mm、厚さ22.5mmの素子の直径47mmの面積に1Aの電流
を流すのに必要な両端面にかかる電圧)、直径47mm、厚
さ22.5mmの形状を有する本発明例および比較例の電圧非
直線抵抗体を準備した。そして、得られた電圧非直線抵
抗体に対し、制限電圧比(V40KA/V1A)、雷サージ放電
耐量及び雷サージ印加後のV1mA変化率を測定し、その結
果を表1に示した。
Example 1 Bi 2 O 3 , SiO 2 and Al were added to bismuth oxide, amorphous silica, aluminum nitrate and bismuth borosilicate glass, respectively.
Converted into 2 O 3 and B 2 O 3 and contained only the addition amount shown in Table 1 below,
And Co 3 O 4 0.66 mol%, MnO 2 0.5 mol%, Sb 2 O 3 1.0 mol%, C
r 2 O 3 0.5 mol%, NiO 1.0 mol% as an additive,
Mixing the raw material whose balance is ZnO according to the method described above,
Granulation, molding, and calcination were performed to form a high resistance layer, and main firing was performed. Next, the temperature is raised at a rate of 150 ° C / hour, heat-treated at 500 ° C, and lowered at a rate of temperature decrease of 100 ° C / hour. V 1A = 6.8kV (diameter 47mm, thickness 22.5mm, element area 47mm in diameter) Voltage non-linear resistors of the present invention example and comparative example having a shape of 47 mm in diameter and 22.5 mm in thickness, which are required to apply a current of 1 A to both end faces) were prepared. Then, with respect to the obtained voltage non-linear resistor, the limiting voltage ratio (V 40KA / V 1A ), the lightning surge discharge withstanding capacity and the V 1mA change rate after lightning surge application were measured, and the results are shown in Table 1. .

電圧比直線抵抗体の雷サージ放電耐量破壊率は、n=
50の試験体を準備し、4/10μsの波形のインパルス電流
(90KA,100KA,110KA,120KA)を2回繰り返し印加し印加
によって破壊した素子の数を試験した個数(50)で除し
た比率(%)で求めた。
The lightning surge discharge withstand voltage destruction rate of the voltage ratio linear resistor is n =
50 specimens were prepared, and impulse currents (90KA, 100KA, 110KA, 120KA) with a waveform of 4/10 μs were repeatedly applied twice, and the number of elements destroyed by the application was divided by the number tested (50) ( %).

表1の結果から、酸化ビスマス、非晶質シリカ硝酸アル
ミニウム、ホウケイ酸ビスマスガラスの添加量を本発明
に従って限定することにより、大電流領域での制限電圧
比を低減でき、雷サージ放電耐量も向上し、雷サージに
対する安定性も向上することが解る。
From the results shown in Table 1, by limiting the addition amounts of bismuth oxide, amorphous silica aluminum nitrate and bismuth borosilicate glass according to the present invention, the limiting voltage ratio in the large current region can be reduced and the lightning surge discharge withstand capability can be improved. However, it can be seen that the stability against lightning surge is also improved.

実施例2 実施例1と同様にして実施例、比較例の各電圧非直線
抵抗体を作成した。但し、酸化ビスマスの添加量はBi2O
3に換算して1.0モル%、非晶質シリカの添加量はSiO2
換算して2.0モル%、硝酸アルミニウムの添加量はAl2O3
に換算して0.005モル%、ホウケイ酸ビスマスガラスの
添加量はBi2O3に換算して0.02モル%とした。また、本
焼成後の熱処理において、昇温速度はすべて150℃/時
間とし、最高温度、降温速度は種々変更した。そして、
各実施例、比較例の電圧非直線抵抗体について課電寿命
特性パターン、雷サージ放電耐量破壊率、雷サージ印加
後のV1mA変化率を測定した。結果を表2に示す。
Example 2 In the same manner as in Example 1, the voltage non-linear resistors of Examples and Comparative Examples were produced. However, the amount of bismuth oxide added is Bi 2 O.
1.0 mol% when converted to 3 , the amount of amorphous silica added is 2.0 mol% when converted to SiO 2 , and the amount of aluminum nitrate added is Al 2 O 3
The amount of bismuth borosilicate glass added was 0.005 mol%, and the addition amount of bismuth borosilicate glass was 0.02 mol% converted to Bi 2 O 3 . In the heat treatment after the main calcination, the rate of temperature increase was 150 ° C./hour, and the maximum temperature and rate of temperature decrease were variously changed. And
With respect to the voltage non-linear resistors of Examples and Comparative Examples, the characteristic life pattern of voltage application, the lightning surge discharge withstand breakdown rate, and the V 1 mA change rate after application of lightning surge were measured. Table 2 shows the results.

また課電寿命特性として、課電率95%、温度150℃で
の加速劣化試験を行い酸化亜鉛素子に流れる抵抗分電流
を測定した結果、試験開始直後より電流値が増加し熱暴
走するパターンa、試験開始後数時間〜数十時間後より
電流値が増加し始め熱暴走に至るパターンb、試験開始
後数十時間のあいだ電流値が増加したのち低下傾向を示
しその後安定的に推移するパターンc、試験開始後すぐ
に電流値の低下傾向を示し、その後も安定的に推移する
最も好ましいパターンdの4種類のパターンに課電寿命
特性を大別することが出来る。
In addition, as the life characteristics of the applied voltage, an accelerated deterioration test was performed at a charge rate of 95% and a temperature of 150 ° C, and the resistance component current flowing in the zinc oxide element was measured. Pattern b in which the current value starts to increase from several hours to several tens of hours after the start of the test, leading to thermal runaway, and a pattern in which the current value increases and then tends to decrease for several tens of hours after the start of the test c. The electric charge life characteristics can be broadly classified into four types of patterns, which are the most preferable pattern d in which the current value tends to decrease immediately after the start of the test and which then stably changes.

このように、課電寿命特性パターンを図面に示すa,b,
c,dの4パターンに分類し、この分類を表2に記載し
た。
As shown in the drawing,
It was classified into 4 patterns of c and d, and this classification is shown in Table 2.

表2から解るように、熱処理時の最高温度を520〜650
℃とし、また降温速度を20〜150℃/時間とすれば、課
電寿命特性パターンはc,dとなって抵抗分電流の増大、
暴走が起こらず、雷サージ放電耐量破壊率を低くでき、
雷サージに対する素子の安定性も向上する。
As can be seen from Table 2, the maximum temperature during heat treatment is 520-650.
If the temperature is set to ℃ and the cooling rate is set to 20 to 150 ℃ / hour, the characteristic life pattern of charging becomes c and d, and the increase of the resistance component current,
Runaway does not occur, lightning surge discharge withstand breakdown rate can be lowered,
The stability of the element against lightning surge is also improved.

実施例3 実施例2と同様にして電圧非直線抵抗体を作成した。
但し、熱処理時の最高温度は560℃、降温速度は100℃/
時間とし、昇温速度を種々変化させて実施例、比較例の
各電圧非直線抵抗体を作成し、それぞれについて雷サー
ジ放電耐量破壊率を測定した。結果を表3に示す。
Example 3 A voltage non-linear resistor was prepared in the same manner as in Example 2.
However, the maximum temperature during heat treatment is 560 ° C, and the cooling rate is 100 ° C /
Each time, the voltage heating rate was changed variously, each voltage non-linear resistor of the example and the comparative example was created, and the lightning surge discharge withstand breakdown rate was measured for each. The results are shown in Table 3.

表3の結果から解るように、昇温速度を200℃/時間
以下とすることにより、雷サージ放電耐量は大幅に向上
する。
As can be seen from the results in Table 3, the lightning surge discharge withstand rate is significantly improved by setting the heating rate to 200 ° C./hour or less.

(発明の効果) 上記したように、本発明の電圧非直線抵抗体の製造法
によれば、課電寿命特性、雷サージ放電耐量、雷サージ
に対する素子の安定性が著しく向上し、また大電流領域
における制限電圧比の低減が可能となる。
(Effects of the Invention) As described above, according to the method for manufacturing a voltage non-linear resistor of the present invention, the life characteristics of voltage application, the lightning surge discharge withstand capability, and the stability of the element against lightning surge are significantly improved, and the large current It is possible to reduce the limiting voltage ratio in the region.

【図面の簡単な説明】[Brief description of drawings]

図面は課電寿命特性パターン例を示すグラフである。 The drawing is a graph showing an example of a charging life characteristic pattern.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】酸化亜鉛を主成分として含有し、添加成分
として酸化ビスマスをBi2O3に換算して0.1〜2.0モル
%、非晶質シリカをSiO2に換算して0.5〜9モル%、硝
酸アルミニウムをAl2O3に換算して0.001〜0.05モル%、
及びホウケイ酸ビスマスガラスをB2O3に換算して0.005
〜0.1モル%を少なくとも含む混合物を成形、仮焼して
仮焼体を作成し、この仮焼体に酸化物ペーストを塗布
し、焼成を行って側面高抵抗層が形成された焼成体を作
成し、この焼成体に最高温度520〜650℃,昇温速度200
℃/時間以下、降温速度20〜150℃/時間の熱処理を施
すことを特徴とする電圧非直線抵抗体の製造法。
1. Zinc oxide as a main component, and bismuth oxide as an additive component is converted into Bi 2 O 3 in an amount of 0.1 to 2.0 mol%, and amorphous silica is converted into SiO 2 in an amount of 0.5 to 9 mol%. , 0.001 to 0.05 mol% of aluminum nitrate converted to Al 2 O 3 ,
And bismuth borosilicate glass converted to B 2 O 3 0.005
A mixture containing at least 0.1 mol% is molded and calcined to form a calcined body, and the calcined body is coated with an oxide paste and then calcined to form a calcined body with a lateral high resistance layer formed. Then, the maximum temperature of this fired body is 520 to 650 ℃, and the heating rate is 200.
A method for producing a voltage non-linear resistor, which comprises performing heat treatment at a temperature lowering rate of 20 to 150 ° C./hour or less at a temperature of not higher than ° C / hour.
JP1278692A 1989-10-27 1989-10-27 Method of manufacturing voltage non-linear resistor Expired - Lifetime JPH0817123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1278692A JPH0817123B2 (en) 1989-10-27 1989-10-27 Method of manufacturing voltage non-linear resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1278692A JPH0817123B2 (en) 1989-10-27 1989-10-27 Method of manufacturing voltage non-linear resistor

Publications (2)

Publication Number Publication Date
JPH03142801A JPH03142801A (en) 1991-06-18
JPH0817123B2 true JPH0817123B2 (en) 1996-02-21

Family

ID=17600846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1278692A Expired - Lifetime JPH0817123B2 (en) 1989-10-27 1989-10-27 Method of manufacturing voltage non-linear resistor

Country Status (1)

Country Link
JP (1) JPH0817123B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106082996B (en) * 2016-06-21 2019-12-10 华南理工大学 Bismuth-based photothermal conversion material and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59903A (en) * 1982-06-25 1984-01-06 株式会社東芝 Voltage nonlinear resistor
JPS62177901A (en) * 1986-01-31 1987-08-04 株式会社東芝 Manufacture of nonlinear resistance element
JPS62237706A (en) * 1986-04-09 1987-10-17 日本碍子株式会社 Manufacture of voltage nonlinear resistance element

Also Published As

Publication number Publication date
JPH03142801A (en) 1991-06-18

Similar Documents

Publication Publication Date Title
JPH0252409B2 (en)
JPH0817123B2 (en) Method of manufacturing voltage non-linear resistor
JPH0734403B2 (en) Voltage nonlinear resistor
JPH0734401B2 (en) Voltage nonlinear resistor
JP2533597B2 (en) Method of manufacturing voltage non-linear resistor
EP0332462A2 (en) Voltage non-linear resistor
JP2572884B2 (en) Voltage nonlinear resistor and manufacturing method thereof
JPH01228105A (en) Manufacture of non-linear voltage resistance
JPH0379850B2 (en)
JPH0734402B2 (en) Voltage nonlinear resistor
JPH07105286B2 (en) Voltage nonlinear resistor
JPH0555008A (en) Voltage-dependent nonlinear resistor
JPH0831362B2 (en) Method of manufacturing voltage non-linear resistor
JP2572859B2 (en) Voltage non-linear resistor and surge arrester
JP2549756B2 (en) Manufacturing method of voltage non-linear resistor for arrester with gap
JPH0812805B2 (en) Voltage nonlinear resistor
JP2572882B2 (en) Voltage nonlinear resistor and manufacturing method thereof
JP2003007512A (en) Nonlinear resistor element
JPH0734404B2 (en) Voltage nonlinear resistor
JPH02239602A (en) Manufacture of voltage dependent nonlinear resistor
JPH07109803B2 (en) Voltage nonlinear resistor and method of manufacturing the same
JPH0734406B2 (en) Voltage nonlinear resistor
JPH07114163B2 (en) Method for manufacturing voltage non-linear resistor
JPH0812806B2 (en) Voltage nonlinear resistor
JPH0547514A (en) Manufacture of non-linearly voltage dependent resistor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090221

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090221

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100221

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100221

Year of fee payment: 14