JPS6028121B2 - Manufacturing method of voltage nonlinear resistor - Google Patents

Manufacturing method of voltage nonlinear resistor

Info

Publication number
JPS6028121B2
JPS6028121B2 JP55082620A JP8262080A JPS6028121B2 JP S6028121 B2 JPS6028121 B2 JP S6028121B2 JP 55082620 A JP55082620 A JP 55082620A JP 8262080 A JP8262080 A JP 8262080A JP S6028121 B2 JPS6028121 B2 JP S6028121B2
Authority
JP
Japan
Prior art keywords
zno
manufacturing
mol
boundary layer
nonlinear resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55082620A
Other languages
Japanese (ja)
Other versions
JPS577903A (en
Inventor
和生 江田
泰治 菊池
道雄 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP55082620A priority Critical patent/JPS6028121B2/en
Publication of JPS577903A publication Critical patent/JPS577903A/en
Publication of JPS6028121B2 publication Critical patent/JPS6028121B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は電圧非道線抵抗器の製造方法にかかり、制限電
圧特性に優れ、かつ製造時の特性のばらつきのきわめて
少ない蟹氏非直線抵抗器の製造方法を提供しようとする
ものである。
[Detailed Description of the Invention] The present invention relates to a method for manufacturing a voltage non-linear resistor, and an object thereof is to provide a method for manufacturing a Kanji non-linear resistor that has excellent limiting voltage characteristics and has very little variation in characteristics during manufacturing. It is something to do.

過電圧保護素子や避雷器に電圧非直線抵抗素子(以下バ
リスタと称す)が広く用いられている。
BACKGROUND ART Voltage nonlinear resistance elements (hereinafter referred to as varistors) are widely used in overvoltage protection elements and lightning arresters.

バリスタの電圧(V)−電流(1)特性は、通常1=(
VノC)Qで表わされる。
The voltage (V) - current (1) characteristic of a varistor is usually 1 = (
V no C) It is represented by Q.

ただし、Cは抵抗に相当する定数、Qは電圧非直線指数
と呼ばれる。一般に、バリスタの特性は、Qと、ある特
定電流における函圧(以下バリスタ電圧と称す)で表わ
される。
However, C is a constant corresponding to resistance, and Q is called a voltage nonlinear index. Generally, the characteristics of a varistor are expressed by Q and the capacitance at a certain current (hereinafter referred to as varistor voltage).

Qは通常0.1〜lmA/のにおける電圧−電流特性よ
り求める。また、バリスタ電圧は便宜的にlmAの電流
を流したときの端子電圧(V,mA)で表わすことが多
い。バリスタとしては、バリスタ電圧が適当な範囲(通
常厚さ1肌あたり数十〜数百Vである)にあり、Qの値
が大きいほど望ましい、さらに、過電圧保護素子や避電
器に用いる場合には、素子の保護性能を表わす制限電圧
比(通常XAにおける電圧Vx^とバリスタ電圧くV,
m^との比で表わす)が小さいほどよL、。バリスタと
しては、炭化けし、素を高温度下で騒き固めたSICバ
リスタと、酸化亜鉛を主成分とする凝結体自身が電圧非
直線性を示す(バルク電圧非直線性)Zn○バリスタが
広く知られている。
Q is usually determined from voltage-current characteristics at 0.1 to lmA/. Further, for convenience, the varistor voltage is often expressed as a terminal voltage (V, mA) when a current of 1 mA flows. As a varistor, the varistor voltage is within an appropriate range (usually tens to hundreds of volts per skin thickness), and the larger the Q value, the more desirable it is. , the limiting voltage ratio that represents the protection performance of the element (usually the voltage Vx^ at XA and the varistor voltage V,
The smaller the value (expressed as a ratio to m^), the better. Widely used varistors include SIC varistors, which are made by agitating carbonized porcelain and raw materials at high temperatures, and Zn○ varistors, which exhibit voltage nonlinearity due to the aggregates themselves consisting mainly of zinc oxide (bulk voltage nonlinearity). Are known.

しかし、過電圧保護素子や避電器用として考えた場合、
上述のほとんど全ての特性でZのバリスタの方力湖Cバ
リスタよりも優れており、現在では主としてZn0バリ
スタが用いられるようになってきている。Zn0バリス
外ま、主成分のZぬに、酸化ビスマス(Bi203)、
酸化コバルト(Cら03)、酸化マンガン(Mの2)な
どを少量加えて混合し、成形の後、1000〜140ぴ
○の範囲内の温度で鱗結させることにより得られる。こ
のようにして作られるZn0バリスタは、従釆のSIC
バリスタのQが3〜7であったのに対して、30〜50
あるいはそれ以上のものが得られるため、過電圧保護素
子の主流となっている。過電圧保護素子として技も重要
な特性は、前述の特性のうち制限電圧比であり、この特
性が少しでもよいものが望まれている。一方、生産の立
場で考えた場合、生産時の特性のばらつきが重要な問題
の一つとなっている。
However, when considered as an overvoltage protection element or earth protector,
The Z varistor is superior to the Holihu C varistor in almost all of the above-mentioned characteristics, and the Zn0 varistor is now mainly used. Outside of Zn0 balis, main component Znuni, bismuth oxide (Bi203),
It is obtained by adding and mixing a small amount of cobalt oxide (C 03), manganese oxide (M 2), etc., molding, and scaling at a temperature within the range of 1000 to 140 pi. The Zn0 varistor made in this way is similar to the subordinate SIC
While the barista's Q was 3-7, it was 30-50.
Since it can provide much more than that, it has become the mainstream of overvoltage protection elements. Among the above-mentioned characteristics, an important characteristic for an overvoltage protection element is the limiting voltage ratio, and it is desired that this characteristic be as good as possible. On the other hand, when considered from a production standpoint, variation in characteristics during production is one of the important issues.

Zn○バリス外ま構造にきわめて敏感な半導体セラミッ
クスであるため、その組成のちよつとした違いによって
大きな特性上の相違を生ずる。そのため、これをいかに
小さくして生産していくかが一つの重要な問題となって
いる。本発明はかかる状況に基づき、制限電圧比に優れ
、かつ製造時の特性ばらつきの少ない電圧非直線抵抗器
の製造方法を提供せんとするもので、以下にその実施例
について詳細に説明する。
Since Zn○ is a semiconductor ceramic that is extremely sensitive to the outer structure, small differences in its composition cause large differences in properties. Therefore, one important issue is how to make it smaller and produce it. In view of this situation, the present invention aims to provide a method for manufacturing a voltage non-linear resistor that has an excellent limiting voltage ratio and less variation in characteristics during manufacturing.Examples thereof will be described in detail below.

実施例 1 第1表に示すZのもしくはZnoと添加物をァルミナ製
るつぼに入れて1100℃で2時間焼成した。
Example 1 Z or Zno shown in Table 1 and additives were placed in an alumina crucible and fired at 1100°C for 2 hours.

また、同じく第2表に示す組成の粒界層形成成分添加物
を別のアルミナ製るつぼにいれて110ぴ○で30分暁
成した。ついで、Zn○とBi203との比が99対1
(モル比)になる割合で、Zn○もしくは添加物を含む
ZNOと粒界層形成成分添加物を混合し、粉砕の後、直
径17.5■の金型に約2夕充てんし、1050qoの
空気中で2時間焼成した。得られた簾結体の両面を研磨
した後、アルミニウムの綾射電極を設け電気特性を測定
した結果を第3表に示す。なお、第3表には比較のため
に、A−8とB−1の組合せ組成について、本実施例の
ような個別の仮燦処理をせずに、Zn0とすべての添加
物を混合して、成型孫成した場合の結果を示している。
これより本実施例の方法により得られた試料は、大きな
Qと、小さな制限離任比を有していることがわかる。第
1表 第2表 第3表 第1図には、同じくA−8とB−1の組合せ組成につい
て、この実施例によって得られた試料100ケのQのば
らつきと、比較例の方法によって得られた試料の100
ケのQの特性のばらつきを示す。
Further, grain boundary layer forming component additives having the same composition shown in Table 2 were placed in another alumina crucible and heated at 110 pi for 30 minutes. Next, the ratio of Zn○ and Bi203 is 99:1.
Zn○ or ZNO containing additives and grain boundary layer forming component additives were mixed at a ratio of It was baked in air for 2 hours. After polishing both sides of the obtained screen structure, aluminum traverse electrodes were provided and the electrical properties were measured. Table 3 shows the results. For comparison, Table 3 shows the combined compositions of A-8 and B-1, in which Zn0 and all additives were mixed together without individual temporary burning treatment as in this example. , shows the results when molding was performed.
This shows that the sample obtained by the method of this example has a large Q and a small limiting separation ratio. Table 1, Table 2, Table 3, and Figure 1 also show the variation in Q of the 100 samples obtained by this example and the results obtained by the method of the comparative example for the combination composition of A-8 and B-1. 100 of the sample
This shows the variation in the Q characteristics of .

また、第2図は同じく制限電圧比のばらつきを、第3図
はV,m^/肋のばらつきをそれぞれ比較して示したも
のである。これよりこの実施例によって得られた試料の
特性のばらつきは、従来の同時混合、成型、焼成のもの
に比べてはるかに少ないことがわかる。実施例 2 次にZn○もしくはZn○と添加物の焼成温度、および
、粒界層形成成分添加物の焼成温度の特性に与える効果
を調べた。
Furthermore, FIG. 2 shows a comparison of variations in the limiting voltage ratio, and FIG. 3 shows a comparison of variations in V and m^/bar. It can be seen from this that the variations in the characteristics of the samples obtained in this example are much smaller than those obtained by conventional simultaneous mixing, molding, and firing. Example 2 Next, the effects of the firing temperature of Zn○ or Zn○ and additives, and the firing temperature of grain boundary layer forming component additives on the characteristics were investigated.

実施例1と同一の手順で、A−8とB−1組成の組合せ
の試料について焼成条件を変えて、試料を作製し、特性
を測定した結果を第4図に示す。これより、Zn○粒を
構成するためのZのもしくはZn0と添加物の焼成温度
は1000〜1400午0、粒界層形成成分となる添加
物の焼成温度は900〜130ぴ○がよいことがわかる
。実施例 3次に添加物の冷却条件について検討した。
Samples were prepared using the same procedure as in Example 1, changing the firing conditions for samples with a combination of compositions A-8 and B-1, and the characteristics were measured. The results are shown in FIG. From this, it is found that the firing temperature of Z or Zn0 and additives to form Zn○ grains is preferably 1000 to 1400 pm, and the firing temperature of additives forming grain boundary layer formation components is 900 to 130 pm. Recognize. Example 3 Next, cooling conditions for additives were studied.

実施例1の方法において、A−8とB−1組成の組合せ
の試料について、粒界層形成成分となる添加物を110
ぴ○で30分嫌成した後、亀気炉中で20ぴ○ノ時間の
速度で降溢したものと、いきなり室温の空気中に取り出
し、冷却して、試料を作り、その電気特性を測定した。
結果を第4表に示す。これより粒界層形成成分添加物は
急冷した方が特性のよいことがわかる。第4表 実施例 4 次に、A−8とB−1の組合せの組成において、Zのと
Bi203の比の効果について調べた。
In the method of Example 1, for the sample with the combination of compositions A-8 and B-1, the additive to be the grain boundary layer forming component was added to 110%
After 30 minutes of anaerobic formation in a pyrotechnic furnace, the material was poured into a furnace at a rate of 20 pm, and then suddenly taken out into the air at room temperature, cooled, and a sample was prepared to measure its electrical properties. did.
The results are shown in Table 4. This shows that the properties of the grain boundary layer forming component additives are better when they are rapidly cooled. Table 4 Example 4 Next, in the composition of the combination of A-8 and B-1, the effect of the ratio of Z and Bi203 was investigated.

試料の製造条件は実施例1と同様とした。結果を第5表
に示す。第5表より、Zn0とBi203の比が99.
9/0.1〜97/30モル比において、良好な特性を
示すことがわかる。第5表 以上の説明から、本発明の方法によれば、特性のより優
れたバリスタの得られることは明らかである。
The manufacturing conditions for the sample were the same as in Example 1. The results are shown in Table 5. From Table 5, the ratio of Zn0 and Bi203 is 99.
It can be seen that good characteristics are exhibited at a molar ratio of 9/0.1 to 97/30. From the explanations in Table 5 and above, it is clear that according to the method of the present invention, a varistor with better characteristics can be obtained.

発明によるバリスタの方が、従来のように混合、成型、
焼成したものよりも特性がよい理由は、次のように考え
られる。まずZび0は格子間亜鉛過剰のn型半導体であ
り、したがってその比抵抗は高温度下で焼成したものほ
ど低い。そのため、実施例で述べたように、Zn○をあ
らかじめ高温度で焼成しておくことにより、ZNOの比
抵抗が下がって、大電流域で問題となる競結体中のZn
○の抵抗が低くなるため、大電流域の電圧上昇が少なく
なることによると考えられる。一方、Bj203の中に
はCo203,MN02などの添加物がトラップを形成
しているが、このトラツプ密度が高いほどQは大きい。
本発明の方法ではあらかじめBj203中に、トラツプ
を形成すると考えられる添加成分を均一にしかも十分に
間落させておくため、これによって得られた粒界層がト
ラツプを均一にしかも高密度に含むこととなり、Qが大
きくなるものと考えられる。すなわち、はじめから全添
加物を混合して焼成すると、粒界層へ入った方が望まし
い添加成分もZn○の中に入りこみ、一方Zn○の中に
だけ入った方がよいような添加成分もBi203の中に
入り込むため、均一性が悪く、またその密度も十分でな
くなる。そのため、特性が悪くなると考えられる。また
、特性のばらつきもそういった添加物の分布のばらつき
起因しているものと推測される。また、Bi203およ
び添加物を急冷した方がよい理由は、徐冷すると、仮鱗
時に高温度下でBi203に溶融していた添加成分が徐
袷によって析出するため、せっかく、均一に固溶させた
効果が薄れ‐ることに起因していると考えられる。
The invented barista can mix, mold, and
The reason why the properties are better than that of fired products is thought to be as follows. First, Z0 is an n-type semiconductor with an excess of interstitial zinc, and therefore its specific resistance is lower as it is fired at a higher temperature. Therefore, as mentioned in the example, by pre-sintering Zn○ at a high temperature, the resistivity of ZNO decreases, and the Zn in the compact, which is a problem in the large current range, is reduced.
This is thought to be because the resistance of ○ is lower, so the voltage rise in the large current range is reduced. On the other hand, additives such as Co203 and MN02 form traps in Bj203, and the higher the trap density, the higher Q becomes.
In the method of the present invention, additive components that are thought to form traps are uniformly and sufficiently spaced out in Bj203 in advance, so that the resulting grain boundary layer contains traps uniformly and at a high density. Therefore, Q is considered to be large. In other words, if all the additives are mixed from the beginning and fired, the additive components that would prefer to enter the grain boundary layer will also enter into the Zn○, while the additive components that would be better to enter only into the Zn○ will also enter the Zn○. Since it penetrates into the Bi203, its uniformity is poor and its density is also insufficient. Therefore, it is considered that the characteristics deteriorate. It is also presumed that the variation in properties is due to variation in the distribution of such additives. In addition, the reason why it is better to rapidly cool Bi203 and additives is that when slowly cooling, the additive components that were molten in Bi203 at high temperatures during tentative scaling will precipitate out due to gradual cooling. This is thought to be due to the effect fading away.

したがって、この実施例では、一つの例しか示していな
いが、どの組成についても、同じような効果が見られる
のは言うまでもないことである。また、本発明の方法で
は、、すでに仮燐において」最終反応生成物を作製して
いるため、成型後の焼成において新たな反応がおこるの
を待つ必要はなく、そのため低い温度で糠結させること
ができる。
Therefore, although this example shows only one example, it goes without saying that similar effects can be seen with any composition. In addition, in the method of the present invention, since the final reaction product is already produced in temporary phosphorus, there is no need to wait for a new reaction to occur in the firing after molding, and therefore it is not necessary to braze at a low temperature. I can do it.

すなわち、従来の方法では、1200〜135ぴ0で燈
結しなければ、十分暁結しなかったものが、本発明の方
法であれば、900〜1150qoという.低い縞度で
競結させることができる。したがって、第2図に示すよ
うに、同一組成、同一焼成温度であっても、従来に比べ
て競結が進んだために、バリス夕電圧(V,m^/肌)
の低いものが得られている。また、ZnO脚への添加成
分の種類および量については、本発明の目的が、Zn0
に固溶して特性改善に効果のある添加成分をあらかじめ
十分Zn0粒子中に岡溶させておくことであるので、当
然、添加物としては、Zn0に固溶して特性改善の効果
のあるもの、すなわちCら03,Mh02,Cも03,
山203,Ga203などの少なくとも一つであり、そ
の添加量はZn0に固溶する範囲内となる。粒界層形成
成分としては、Bi208に、少なくとも0.05〜3
0モル%のCo203,0.05〜30モル%のMn0
2,0.05〜10モル%のSQ03、0.1〜70モ
ル%のSi02、および0.1〜30モル%のZ池のう
ち1種以上を添加含有させたものであればよい。以上詳
細に述べたように、本発明の方法は、Zn○バリスタの
微細構造と、生成反応機構を十分理解し、それを制御す
ることによって得られたものであり、高性能の過電圧保
護素子を安定に生産する上で有効なものである。
In other words, in the conventional method, the light was not sufficiently lit at 1200 to 135 qo, but with the method of the present invention, it is 900 to 1150 qo. Competitive binding can be achieved with a low degree of fringe. Therefore, as shown in Fig. 2, even with the same composition and the same firing temperature, the varis voltage (V, m^/skin) is higher due to more competitive bonding than in the past.
A low value is obtained. Furthermore, regarding the types and amounts of components added to the ZnO legs, the object of the present invention is to
Since the additive components that are solid dissolved in Zn0 and are effective in improving properties are sufficiently dissolved in Zn0 particles in advance, it is natural that the additives should be those that are solid dissolved in Zn0 and effective in improving properties. , that is, C et al 03, Mh02, C also 03,
It is at least one of the peaks 203, Ga 203, etc., and the amount added is within the range where it can be dissolved as a solid solution in Zn0. As a grain boundary layer forming component, Bi208 contains at least 0.05 to 3
0 mol% Co203, 0.05-30 mol% Mn0
2, 0.05 to 10 mol% of SQ03, 0.1 to 70 mol% of Si02, and 0.1 to 30 mol% of Z pond may be added. As described in detail above, the method of the present invention was obtained by fully understanding and controlling the fine structure and formation reaction mechanism of Zn○ varistors, and enables the creation of high-performance overvoltage protection elements. This is effective for stable production.

図面の簡単な説明第1図から第3図までは本発明の方法
によってバリスタの特性のばらつきを低減する効果を、
第・4図は本発明の方法の最適実施条件をそれぞれ示す
ものである。
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 to 3 illustrate the effect of reducing variations in varistor characteristics by the method of the present invention.
FIG. 4 shows the optimum implementation conditions of the method of the present invention.

第1図 第2図 第3図 第4図Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1 ZnO粒成分、および、粒界層形成分となる添加物
をそれぞれ別々に仮焼し、粉砕して、その両者の粉末を
混合し、成型、焼成することを特徴とする電圧非直線抵
抗器の製造方法。 。2 ZnO粒成分としてZnOと少なくともコバルト
、マンガン、ニツケル、クロム、アルミニウム、ガリウ
ムのうち1種以上とをZnOの固溶限界範囲内の量だけ
、添加、混合し、仮焼してZnO内に固溶させるととも
に、粒界層形成成分としてBi_2O_3と少なくとも
酸化コバルトをCo_2O_3の形に換算して0.05
〜30モル%、酸化マンガンをMnO_2の形に換算し
て0.05〜30モル%、酸化アンチモンをSb_2O
_3の形に換算して0.05〜10モル%、酸化珪素を
SiO_2の形に換算して0.1〜70モル%、ZnO
を0.1〜30モル%のうち1種以上を添加して、混合
、仮焼することを特徴とする特許請求の範囲第1項記載
の電圧非直線抵抗器の製造方法。 3 ZnO粒成分の仮焼温度を1000〜1400℃と
し、粒界層形成成分としての添加物の仮焼温度を900
〜1300℃とすることを特徴とする特許請求の範囲第
1項または第2項記載の電圧非直線抵抗器の製造方法。 4 ZnO粒成分と粒界層形成成分との混合時にZnO
成分に対してBi_2O_3を0.1〜3モル%添加す
ることを特徴とする特許請求の範囲第1項記載の電圧非
直線抵抗器の製造方法。5 粒界層形成成分を仮焼した
後、仮焼温度より室温以下の温度にまで急冷することを
特徴とする特許請求の範囲第1項または第2項記載の電
圧非直線抵抗器の製造方法。
[Claims] 1. A ZnO grain component and an additive forming a grain boundary layer are separately calcined and pulverized, and the powders of both are mixed, molded, and fired. A method of manufacturing a voltage nonlinear resistor. . 2. As ZnO grain components, ZnO and at least one or more of cobalt, manganese, nickel, chromium, aluminum, and gallium are added and mixed in an amount within the solid solubility limit range of ZnO, and calcined to solidify into ZnO. At the same time, Bi_2O_3 and at least cobalt oxide are dissolved as grain boundary layer forming components in the form of Co_2O_3, 0.05
~30 mol%, manganese oxide converted to MnO_2 form 0.05 to 30 mol%, antimony oxide Sb_2O
0.05 to 10 mol% in terms of the form of _3, 0.1 to 70 mol% in terms of silicon oxide in the form of SiO_2, ZnO
2. The method for manufacturing a voltage nonlinear resistor according to claim 1, wherein one or more of 0.1 to 30 mol % of the above components are added, mixed, and calcined. 3 The calcination temperature of the ZnO grain component is 1000 to 1400°C, and the calcination temperature of the additive as a grain boundary layer forming component is 900°C.
The method for manufacturing a voltage nonlinear resistor according to claim 1 or 2, characterized in that the temperature is 1300°C to 1300°C. 4 When mixing ZnO grain components and grain boundary layer forming components, ZnO
The method for manufacturing a voltage nonlinear resistor according to claim 1, characterized in that 0.1 to 3 mol% of Bi_2O_3 is added to the components. 5. A method for manufacturing a voltage nonlinear resistor according to claim 1 or 2, which comprises calcining the grain boundary layer forming component and then rapidly cooling it to a temperature below room temperature from the calcining temperature. .
JP55082620A 1980-06-17 1980-06-17 Manufacturing method of voltage nonlinear resistor Expired JPS6028121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55082620A JPS6028121B2 (en) 1980-06-17 1980-06-17 Manufacturing method of voltage nonlinear resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55082620A JPS6028121B2 (en) 1980-06-17 1980-06-17 Manufacturing method of voltage nonlinear resistor

Publications (2)

Publication Number Publication Date
JPS577903A JPS577903A (en) 1982-01-16
JPS6028121B2 true JPS6028121B2 (en) 1985-07-03

Family

ID=13779496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55082620A Expired JPS6028121B2 (en) 1980-06-17 1980-06-17 Manufacturing method of voltage nonlinear resistor

Country Status (1)

Country Link
JP (1) JPS6028121B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0795482B2 (en) * 1986-04-03 1995-10-11 松下電器産業株式会社 Varistor manufacturing method
JPH068211B2 (en) * 1988-06-15 1994-02-02 ソマール株式会社 Manufacturing method of varistor material
JP2021522673A (en) * 2018-04-17 2021-08-30 エイブイエックス コーポレイション Varistor for high temperature applications

Also Published As

Publication number Publication date
JPS577903A (en) 1982-01-16

Similar Documents

Publication Publication Date Title
US4038217A (en) Ceramics having non-linear voltage characteristics and method of producing the same
JPS6028121B2 (en) Manufacturing method of voltage nonlinear resistor
JPS606522B2 (en) semiconductor composition
JPS6249961B2 (en)
JPS644651B2 (en)
JPH0128481B2 (en)
JPH06204006A (en) Manufacture of zinc oxide varistor
JPS6115303A (en) Method of producing oxide voltage nonlinear resistor
KR900001979B1 (en) Process for the preparation of voltage non-linearity type resistors
JPH0249521B2 (en)
JP2572882B2 (en) Voltage nonlinear resistor and manufacturing method thereof
JPS5919444B2 (en) Manufacturing method of voltage nonlinear resistor
KR20040078915A (en) Zinc Oxide Sintered Body, and Manufacturing Method thereof and Zinc Oxide Varistor
JPS648442B2 (en)
JPS644648B2 (en)
JPS6156843B2 (en)
JPH0574608A (en) Manufacture of voltage-dependent nonlinear resistor
JPS5818901A (en) Voltage nonlinear resistance porcelain
JPS6055968B2 (en) semiconductor composition
JPS644647B2 (en)
JPS6321324B2 (en)
JPS6321326B2 (en)
JPS6320363B2 (en)
JPH04299504A (en) Manufacture of voltage dependent nonlinear resistor
JPS6321327B2 (en)