JPS606522B2 - semiconductor composition - Google Patents

semiconductor composition

Info

Publication number
JPS606522B2
JPS606522B2 JP55044274A JP4427480A JPS606522B2 JP S606522 B2 JPS606522 B2 JP S606522B2 JP 55044274 A JP55044274 A JP 55044274A JP 4427480 A JP4427480 A JP 4427480A JP S606522 B2 JPS606522 B2 JP S606522B2
Authority
JP
Japan
Prior art keywords
voltage
oxide
silicon
ceramic
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55044274A
Other languages
Japanese (ja)
Other versions
JPS56140602A (en
Inventor
正忠 淀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP55044274A priority Critical patent/JPS606522B2/en
Priority to DE3033511A priority patent/DE3033511C2/en
Priority to US06/184,953 priority patent/US4320379A/en
Publication of JPS56140602A publication Critical patent/JPS56140602A/en
Publication of JPS606522B2 publication Critical patent/JPS606522B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は酸化亜鉛を主成分とし、これに添加物としてプ
ラセオジウム(Pr)、ランタン(La)、コバルト(
Co)および珪素(Si)を含有した電圧非直線抵抗特
性を有する半導体磁器組成物(示下セラミック・バリス
タと呼ぶ)に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention has zinc oxide as its main component, and additives such as praseodymium (Pr), lanthanum (La), and cobalt (
The present invention relates to a semiconductor ceramic composition (hereinafter referred to as a ceramic varistor) containing voltage nonlinear resistance characteristics containing Co) and silicon (Si).

近年、酸化亜鉛を主成分とした電圧非直線抵抗特性の優
れたセラミック・バリスタが電子部品として回路の保護
や誤動作防止に広く用いられつつある。そして、大電流
側においても電圧非直線抵抗特性の優れたバリスタが求
められて来ている。バリスタの電圧電流特性は第1図に
示すように電圧に対し電流が非直線的に変化するもので
ある。したがって、電圧電流特性は通常次のような実験
式で示される。1:(き)Q ここで1は素子を流れる電流であり、Vはその時の印加
電圧である。
In recent years, ceramic varistors, which are mainly composed of zinc oxide and have excellent voltage nonlinear resistance characteristics, have been widely used as electronic components to protect circuits and prevent malfunctions. There is a growing demand for varistors with excellent voltage non-linear resistance characteristics even on the large current side. As shown in FIG. 1, the voltage-current characteristics of a varistor are such that the current changes non-linearly with respect to the voltage. Therefore, the voltage-current characteristics are usually expressed by the following empirical formula. 1:(ki)Q Here, 1 is the current flowing through the element, and V is the applied voltage at that time.

通常1のAの電流が流れる時の電圧をバリスタ電圧と呼
んでいる。Cは抵抗に対応する定数である。また、Qは
非直線性の度合を示す指数として、通常多く用いられる
。しかし、広い電流領域にわたると、Q自身も電圧に依
存して変るので、広い範囲にわたる非直線性を示す場合
には低電流側の電圧と大軍流側の電圧との比(たとえば
第1図に示すVIのAとV5Mとの比)で示した方が合
理的である。この場合、電圧比は4・さし、程電圧非直
線抵抗特性が優れている。近年、酸化亜鉛を主成分とす
るセラミック・バリスタとして、ビスマス(Bi)、ア
ンチモン(Sb)、マンガン(Mn)、コバルト(Co
)およびクロム(Cr)などの酸化物を添加物として含
む磁器に電極を付与したバリスタが開発されている。こ
の種のセラミック・バリスタは、その電圧非直線抵抗特
性が暁結体自体に起因しており、非直線性が広い電流範
囲にわたって非常に磯れているという長所を持っている
。しかし、その反面、バリス夕素体の焼成時に必要とさ
れる高温下ではきわめて蒸発しやすいビスマスやアンチ
モンのような物質を含んでいるために、同一特性のバリ
スタを歩留まり良く大量に焼成するためには特別の工夫
が必要であり、製造コストが割り高になるという欠点が
あった。また一方、酸化亜鉛を主成分とするセラミック
・バリスタとしては、他にプラセオジウム(Pr)、コ
バルト(Co)、クロム(Cr)およびカリウム(K)
などの酸化物を添加物として含む磁器に電極を付与した
ものが開発されて来ている(特開昭53一114093
)。
The voltage when a current of 1 A normally flows is called the varistor voltage. C is a constant corresponding to resistance. Further, Q is commonly used as an index indicating the degree of nonlinearity. However, over a wide current range, Q itself changes depending on the voltage, so if nonlinearity is exhibited over a wide range, the ratio of the voltage on the low current side to the voltage on the high current side (for example, as shown in Figure 1) It is more reasonable to express it by the ratio of A of VI shown to V5M). In this case, the voltage ratio is 4.0, and the voltage nonlinear resistance characteristics are excellent. In recent years, ceramic varistors whose main component is zinc oxide include bismuth (Bi), antimony (Sb), manganese (Mn), and cobalt (Co).
) and varistors in which electrodes are provided on porcelain containing oxides such as chromium (Cr) as additives have been developed. This type of ceramic varistor has the advantage that its voltage nonlinear resistance characteristic is caused by the crystalline structure itself, and its nonlinearity is very stable over a wide current range. However, on the other hand, since it contains substances such as bismuth and antimony that are extremely prone to evaporation under the high temperatures required when firing varistors, it is difficult to fire large quantities of varistors with the same characteristics at a high yield. This method requires special measures and has the disadvantage of being relatively expensive to manufacture. On the other hand, ceramic varistors whose main component is zinc oxide include praseodymium (Pr), cobalt (Co), chromium (Cr), and potassium (K).
Porcelain containing oxides such as oxides as additives and provided with electrodes has been developed (Japanese Patent Application Laid-Open No. 53-114093
).

これはビスマスやアンチモンのような蒸発しやすい成分
も含まず、電圧非直線抵抗特性も良好であるが、大電流
領域の電圧非直線抵抗特性を改善するために、カリウム
およびクロム添加が必須とされている。しかし、このカ
リウムの添加のために、電子部品としてはきわめて重要
な耐湿特性に問題を生じている。このためこの素子を実
際に使う場合には焼成素体の表面を融着したガラスで覆
うなどの保護が必要であり、製造工程も増え、かつ製造
コストが割り高になるという欠点を生じていた。また、
資源が乏しい高純度のプラセオジゥムを比較的多量に用
いる必要があるので、経済的でないという欠点を生じて
いた。これに対し、本発明は酸化亜鉛を主成分とするセ
ラミック・バリス外こおける上記の欠点を解決すること
を目的とするものである。
It does not contain components that easily evaporate, such as bismuth or antimony, and has good voltage nonlinear resistance characteristics, but it is essential to add potassium and chromium to improve the voltage nonlinear resistance characteristics in the large current region. ing. However, the addition of potassium causes problems in moisture resistance, which is extremely important for electronic components. For this reason, when this element is actually used, it is necessary to protect the surface of the fired element by covering it with fused glass, which increases the number of manufacturing steps and increases manufacturing costs. . Also,
Since it is necessary to use a relatively large amount of highly purified praseodymium, which is a scarce resource, this method has the disadvantage of being uneconomical. In contrast, the present invention aims to solve the above-mentioned drawbacks of ceramic burrs outer shells containing zinc oxide as a main component.

すなわち、酸化亜鉛を主成分とし、これにプラセオジウ
ム、ランタン、コバルトを含むセラミック・バリスタに
おいて次の事実を見出したことにより、上記の欠点の解
決に成功したものである。すなわち、本発明によると、
珪素元素を添加することによりカリウムのようなアルカ
リ金属元素を用いなくとも、大電流領域における電圧非
直線抵抗特性の優れたものを得ることができるものであ
る。セラミック。
That is, by discovering the following fact in a ceramic varistor whose main component is zinc oxide and which also contains praseodymium, lanthanum, and cobalt, the above-mentioned drawbacks have been successfully solved. That is, according to the present invention,
By adding silicon element, it is possible to obtain excellent voltage nonlinear resistance characteristics in a large current region without using an alkali metal element such as potassium. ceramic.

バリス外こおける添加物としての珪素の役割については
まだ十分に解明されていない点も多いが、本発明者によ
ると次のように考えられる。すなわち、酸化亜鉛を主成
分とするセラミック・バリスタの微細構造は次のように
推定される。
Although there are still many aspects of the role of silicon as an additive outside the burr that have not been fully elucidated, the inventors believe the following. That is, the microstructure of a ceramic varistor whose main component is zinc oxide is estimated as follows.

すなわち、比抵抗の低い酸化亜鉛結晶が比抵抗の高い粒
界または粒界層によって取り囲まれている。結晶の抵抗
は小さければ小さい程好ましく、一方、粒界近傍の抵抗
は大きければ大きい程、非直線抵抗特性にとって好まし
い。微量の樟素元素は酸化亜鉛結晶中に固落し結晶の比
抵抗を下げ、電圧非直線抵抗特性を改善する。しかし、
珪素の含有量が多くなると、この珪素元素が非直線抵抗
の発現に寄与している結晶粒界近傍の比抵抗をも下げて
しまうために、非直線性がかえって低下してしまう。こ
のためもし、一つの素体内で桂素元素の分布が不均一で
あると、一つの素体内での抵抗の分布さらに電圧非直線
抵抗特性の分布にも不均一性が生じる。このためこのよ
うな素子に電界を印奴すると、一部分に電流が造中し、
その部分の温度が上昇し破壊するという欠点がある。し
かし、珪素元素の利点はイオン半径が小さくて拡散しや
すいために、一つの素体内での分布はきわめて均一にな
りやすい事である。このため珪素元素を用いると上述し
たような原因による破壊現象が起りにくく、電流サージ
に強い素子を得やすいという長所がある。これらのこと
から適量の珪素元素を含有することにより優れた電圧非
直線抵抗特性と同時に電流サージに強い素子を得られる
ものと考えられる。本発明では上記の方法により珪素を
含有させることにより、カリウムのようなアルカリ金属
元素を全く使うことなく、以上に述べた問題を解決した
ものである。
That is, zinc oxide crystals with low resistivity are surrounded by grain boundaries or grain boundary layers with high resistivity. The smaller the resistance of the crystal, the better. On the other hand, the larger the resistance near the grain boundaries, the better for non-linear resistance characteristics. A trace amount of camphor element settles into the zinc oxide crystal, lowers the specific resistance of the crystal, and improves the voltage nonlinear resistance characteristics. but,
When the silicon content increases, the silicon element also lowers the specific resistance near the grain boundaries, which contributes to the development of nonlinear resistance, so that the nonlinearity actually decreases. Therefore, if the distribution of the borosilicate element is non-uniform within one element body, non-uniformity will occur in the distribution of resistance and the distribution of voltage non-linear resistance characteristics within one element body. Therefore, when an electric field is applied to such an element, a current is generated in a part of it,
The disadvantage is that the temperature of that part increases and it breaks down. However, the advantage of silicon element is that its ionic radius is small and it is easily diffused, so the distribution within a single element body tends to be extremely uniform. For this reason, the use of silicon element has the advantage that breakdown phenomena due to the causes mentioned above are less likely to occur and it is easier to obtain an element that is resistant to current surges. From these facts, it is considered that by containing an appropriate amount of silicon element, it is possible to obtain an element that has excellent voltage nonlinear resistance characteristics and is resistant to current surges. The present invention solves the above-mentioned problems by incorporating silicon by the above-described method without using any alkali metal elements such as potassium.

さらに、珪素の分布が均一になりやすいために均一な粒
度の結晶よりなる焼成素体が得られ信頼性の点でも優れ
たものが得られるようになった。また、このように珪素
を添加するには、プラセオジウムやランタンの量もきわ
めて少量である方が好ましく、かっこのため省資源的で
あり、経済的にも優れている。本発明による組成は次の
ようなものである。
Furthermore, since the distribution of silicon tends to be uniform, it has become possible to obtain a fired body made of crystals with uniform grain size, which is also excellent in terms of reliability. Furthermore, in order to add silicon in this way, it is preferable that the amount of praseodymium or lanthanum be extremely small, and because of the parentheses, resources are saved and it is also economically advantageous. The composition according to the invention is as follows.

すなわち、酸化亜鉛をZn○の形に換算して99.87
99〜84.88hol%、酸化プラセオジウムおよび
酸化ランタンをR203(ただし、RはPrおよびLa
)の形に換算してそれぞれ0.01〜0.038ho1
%、酸化コバルトをCooの形に換算して0.1〜15
hol%および酸化珪素をSi02の形に換算して0.
0001〜0.08hol%よりなる組成である。以下
実施例によって本発明を説明する。
In other words, when converting zinc oxide into the form of Zn○, it is 99.87
99-84.88 hol%, praseodymium oxide and lanthanum oxide in R203 (however, R is Pr and La
) in the form of 0.01 to 0.038 ho1, respectively.
%, 0.1 to 15 in terms of cobalt oxide in Coo form
hol% and silicon oxide are converted to Si02 form and are 0.
It has a composition of 0001 to 0.08 hol%. The present invention will be explained below with reference to Examples.

実施例 市販の酸化亜鉛、酸化プラセオジウム、酸化ランタン、
酸化コバルト、酸化珪素を所定の比になるように秤量し
ボールミルで緑式混合した。
Examples Commercially available zinc oxide, praseodymium oxide, lanthanum oxide,
Cobalt oxide and silicon oxide were weighed to a predetermined ratio and mixed using a ball mill.

混合物を乾燥後、PVA溶液を混ぜて、頚粒状にして1
5mぐ、1.5mtの円板に加圧成形した。成形試料を
1250〜1500qoの温度で2時間焼成した。焼成
試料に11.5の少のAg電極を暁付けて電圧非直線抵
抗特性を測定した。結果の代表例を第一表に示す。
After drying the mixture, mix it with PVA solution and make it into neck granules.
It was press-molded into a disc of 5 m long and 1.5 mt. The molded samples were fired for 2 hours at a temperature of 1250-1500 qo. A 11.5 mm Ag electrode was attached to the fired sample to measure the voltage nonlinear resistance characteristics. Representative examples of the results are shown in Table 1.

第一表 表中の試料No.1〜No.7は本発明による試料であ
る。
Sample No. in Table 1. 1~No. 7 is a sample according to the present invention.

試料No.&No9は比較例として、珪素を添加しなか
った場合である。第1表からもわかるように、本発明の
試料はいずれもoが15前後以上、電圧比V5船/Vi
mAも2以下と低電流領域から高電流領域まで優れた電
圧非直線抵抗特性を示しており、実用上非常に有用であ
ることが明らかである。
Sample No. &No.9 is a comparative example in which silicon was not added. As can be seen from Table 1, all of the samples of the present invention have an o of around 15 or more and a voltage ratio of V5/Vi.
It exhibits excellent voltage non-linear resistance characteristics from the low current region to the high current region, with mA of 2 or less, and is clearly very useful in practice.

この電圧非直線抵抗特性は焼結体自体のバルクの特性に
よるものであるので、バリスタ電圧については、用途に
応じて所望の値のものを、試料の厚み、焼成条件等を変
えることにより容易に実現できる。各添加物の限定理由
は次のとおりである。
This voltage nonlinear resistance characteristic is due to the bulk characteristics of the sintered body itself, so the varistor voltage can be easily set to the desired value depending on the application by changing the sample thickness, firing conditions, etc. realizable. The reasons for limiting each additive are as follows.

酸化ブラセオジウム、および酸化ランタンの量は、それ
ぞれ0.01mol%より少ないと、効果が小さく0.
03帥ol%を越えると、抵抗が下がり低電流領域の電
圧非直線抵抗特性が悪くなる。
If the amount of braceodymium oxide and lanthanum oxide is less than 0.01 mol%, the effect will be small and 0.01 mol%.
When it exceeds 0.3 ol%, the resistance decreases and the voltage non-linear resistance characteristics in the low current region deteriorate.

酸化コバルトの量は0.1mol%より少ないと効果が
小さく、15hol%を越えると大電流領域の電圧非直
線性が悪くなる。酸化珪素の量は0.0001mol%
より少なくては効果がなく、一方、0.05mol%を
越えると低電流領域の電圧非直線性が急速に悪化する。
なお、珪素原料としては、できるかぎり微分末を用いた
方が特性がより向上することはいうまでもない。溶液の
形で他の原料と湿式混合すればさらに良好な結果が得ら
れる。
If the amount of cobalt oxide is less than 0.1 mol %, the effect will be small, and if it exceeds 15 hol %, voltage nonlinearity in a large current region will deteriorate. The amount of silicon oxide is 0.0001 mol%
If the amount is less than 0.05 mol %, there is no effect, while if it exceeds 0.05 mol %, the voltage nonlinearity in the low current region deteriorates rapidly.
Incidentally, it goes without saying that the characteristics will be further improved if a differential powder is used as much as possible as the silicon raw material. Even better results are obtained if wet mixed with other raw materials in the form of a solution.

また、実施例では、原料について酸化物を用いたが、炭
酸塩、硝酸塩、水酸化物、塩化物など、焼成中に酸化物
に変わるものであれば同等の特性が得られる。
Further, in the examples, oxides were used as raw materials, but equivalent characteristics can be obtained from carbonates, nitrates, hydroxides, chlorides, etc., which can be converted into oxides during firing.

その他の製造法については通常の窯業的手法で十分であ
る。
For other manufacturing methods, ordinary ceramic methods are sufficient.

仮競条件については、仮焼後の粉砕を十分に行うならば
、特に問題になることはない。本焼成条件については通
常空気中あるいは酸素中で良いが、窯素やアルゴンなど
の中性ガスによって適度の酸素分圧にすることにより、
さらに性能の優れたものを実現することも可能である。
電極は焼成秦体とオーム性接触をするものでも非オーム
接触をするものでも良く、付与の方法も孫付、メッキ、
溶射、蒸着、スパッタなどいずれの方法も可能である。
Concerning the preliminary conditions, there will be no particular problem as long as the pulverization after calcining is carried out sufficiently. The main firing conditions are normally air or oxygen, but by creating an appropriate oxygen partial pressure with a neutral gas such as kiln or argon,
It is also possible to realize something with even better performance.
The electrode may be in ohmic contact with the fired body or in non-ohmic contact, and the electrodes may be applied using any of the following methods: grating, plating,
Any method such as thermal spraying, vapor deposition, or sputtering is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、セラミック・バリスタの電圧非直線抵抗特性
を示す概念図である。 第1図
FIG. 1 is a conceptual diagram showing the voltage nonlinear resistance characteristics of a ceramic varistor. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1 酸化亜鉛をZnOの形に換算して99.8799〜
84.88mol%、酸化プラセオジウムおよび酸化ラ
ンタンをR_2O_3(ただし、RはPrおよびLa)
の形に換算してそれぞれ0.01〜0.035mol%
、酸化コバルトをCoOの形に換算して0.1〜15m
ol%および酸化硅素をSiO_2の形に換算して0.
0001〜0.05mol%よりなる組成の半導体組成
物。
1 Zinc oxide converted to ZnO form: 99.8799~
84.88 mol%, praseodymium oxide and lanthanum oxide in R_2O_3 (R is Pr and La)
0.01 to 0.035 mol% each in terms of
, 0.1 to 15 m in terms of cobalt oxide in the form of CoO
ol% and silicon oxide in the form of SiO_2 are 0.
A semiconductor composition having a composition of 0001 to 0.05 mol%.
JP55044274A 1979-09-07 1980-04-04 semiconductor composition Expired JPS606522B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP55044274A JPS606522B2 (en) 1980-04-04 1980-04-04 semiconductor composition
DE3033511A DE3033511C2 (en) 1979-09-07 1980-09-05 Voltage dependent resistance
US06/184,953 US4320379A (en) 1979-09-07 1980-09-08 Voltage non-linear resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55044274A JPS606522B2 (en) 1980-04-04 1980-04-04 semiconductor composition

Publications (2)

Publication Number Publication Date
JPS56140602A JPS56140602A (en) 1981-11-04
JPS606522B2 true JPS606522B2 (en) 1985-02-19

Family

ID=12686923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55044274A Expired JPS606522B2 (en) 1979-09-07 1980-04-04 semiconductor composition

Country Status (1)

Country Link
JP (1) JPS606522B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04830Y2 (en) * 1988-06-14 1992-01-13

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6239001A (en) * 1985-08-14 1987-02-20 富士電機株式会社 Voltage non-linear resistance element
JP4146450B2 (en) * 2005-04-19 2008-09-10 Tdk株式会社 Light emitting device
US7505239B2 (en) 2005-04-14 2009-03-17 Tdk Corporation Light emitting device
JP4146849B2 (en) * 2005-04-14 2008-09-10 Tdk株式会社 Light emitting device
JP4683068B2 (en) * 2008-04-21 2011-05-11 Tdk株式会社 Multilayer chip varistor
US9242902B2 (en) 2010-04-05 2016-01-26 Tdk Corporation Nonlinear resistor ceramic composition and electronic component
JP5594462B2 (en) * 2010-04-05 2014-09-24 Tdk株式会社 Voltage nonlinear resistor ceramic composition and electronic component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04830Y2 (en) * 1988-06-14 1992-01-13

Also Published As

Publication number Publication date
JPS56140602A (en) 1981-11-04

Similar Documents

Publication Publication Date Title
JPH0252409B2 (en)
JPS62237703A (en) Manufacture of voltage nonlinear resistance element
JPS606522B2 (en) semiconductor composition
JPH0425681B2 (en)
JPS605201B2 (en) semiconductor composition
JPS5939884B2 (en) Voltage nonlinear resistor ceramic composition and its manufacturing method
JP2751511B2 (en) Method of manufacturing voltage non-linear resistor
JPS6156843B2 (en)
JPH04245602A (en) Nonlinearly voltage-dependent resistor
JPH04139702A (en) Voltage-dependent nonlinear resistor
JPH05234716A (en) Zinc oxide varistor
JPH01228105A (en) Manufacture of non-linear voltage resistance
JPS6055968B2 (en) semiconductor composition
JPS6024566B2 (en) Method for producing voltage nonlinear resistance ceramic composition
JPS6028121B2 (en) Manufacturing method of voltage nonlinear resistor
JP3089370B2 (en) Voltage non-linear resistance composition
JPH0113202B2 (en)
JP2608626B2 (en) Method of manufacturing voltage non-linear resistor
JPS6236615B2 (en)
JPS60928B2 (en) Manufacturing method of voltage nonlinear resistor
JPS583364B2 (en) Voltage nonlinear resistor
JPS6330765B2 (en)
JPH0352201A (en) Voltage nonlinear resistor
JPH0448703A (en) Manufacture of voltage nonlinear resistor
JPH03139803A (en) Oxide voltage nonlinear resistor