JPH0249521B2 - - Google Patents

Info

Publication number
JPH0249521B2
JPH0249521B2 JP59088917A JP8891784A JPH0249521B2 JP H0249521 B2 JPH0249521 B2 JP H0249521B2 JP 59088917 A JP59088917 A JP 59088917A JP 8891784 A JP8891784 A JP 8891784A JP H0249521 B2 JPH0249521 B2 JP H0249521B2
Authority
JP
Japan
Prior art keywords
zinc oxide
voltage
sintered body
bismuth
grain boundary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59088917A
Other languages
Japanese (ja)
Other versions
JPS60233801A (en
Inventor
Kyoshi Matsuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Original Assignee
Marcon Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcon Electronics Co Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP59088917A priority Critical patent/JPS60233801A/en
Publication of JPS60233801A publication Critical patent/JPS60233801A/en
Publication of JPH0249521B2 publication Critical patent/JPH0249521B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の技術分野] 本発明は酸化亜鉛を主成分とし、電圧非直線性
を有する焼結体中の酸化亜鉛粒界偏析相を主とし
てチタン酸ビスマス層状化合物で構成することに
より立上り電圧の低電圧化と熱的安定性を備えた
電圧非直線抵抗体に関する。 [発明の技術的背景] 近年、IC、トランジスタ、サイリスタなどの
半導体素子および半導体回路とその応用の急速な
発展に伴い、制御、通信機器および電力機器にお
ける半導体および半導体回路の使用が普及し、こ
れら機器の小形化、高性能化が急速に進展してい
る。しかし、他方ではこのような進歩に伴い、こ
れらの機器やその部品の耐電圧、耐サージ、耐ノ
イズ性は十分とは言えない。このためこれらの機
器や部品を異状なサージやノイズから保護するこ
と、あるいは回路電圧を安定化することが必要で
ある。これら目的のためにこれまではSiCやSiバ
リスタが多用されてきた。また最近では酸化亜鉛
を主成分として、これに添加物を加えたバリスタ
が開発されている。しかし最近は半導体および半
導体回路の高密度化、高集積化に伴い半導体およ
び半導体回路の低電圧化、低電力化がいつそう促
進されている。これらの半導体や半導体回路を保
護するためあるいは回路電圧を安定化するために
さらに低電圧で働くバリスタが必要となつてき
た。 バリスタの電圧電流特性は一般につぎの関係式 I=(V/C)〓 で表わされる。ここでVはバリスタ素体に印加さ
れる電圧であり、Iはバリスタ素体を流れる電流
である。またCは与えられた電流を流したときの
電圧に対応する定数である。α=1はオームの法
則にしたがう普通の抵抗体であり、αが大きいほ
ど非直線性は優れている。 ここではバリスタ特性はCとαで表わす代わり
に電流を1mA/cm2の電流密度で流したときの立
上り電圧V1mAとαで表わす。焼結体自体が電
圧非直線性をもつ代表的なものであるSiCバリス
タはSiC粒子を磁器結合剤で焼き固めたもので、
その非直線性はSiC粒子の接触抵抗の電圧依存性
に起因している。バリスタの素体厚さ1mmの場合
電流を1mA/cm2流したときの立上り電圧をV1
mA/mmとするとSiCバリスタはSiC粒子の粒径
と素体厚さを制御することによりV1mAが数V
のものから数千Vのものまで製造可能であるが、
非直線係数αが3〜7と小さいため十分でない。
またSiCバリスタと同様に焼結体自体が非直線性
を有するものに酸化亜鉛系バリスタがある。これ
は酸化亜鉛を主成分とし添加物として少量の酸化
ビスマス、酸化コバルト、酸化マンガン、酸化ア
ンチモンなどを含むものである。酸化亜鉛系バリ
スタの非直線係数は約20〜50でありSiCバリスタ
に比して非常に優れた非直線性を示す。このため
半導体や半導体回路の保護に非常に適している
が、半導体が半導体回路の使用電圧がますます低
電圧化の傾向にある。 [背景技術の問題点] これまでの酸化亜鉛系バリスタでは、上記のよ
うな低電圧化に対応する低電圧バリスタ(V1m
Aが約20V)を製造することが非常に困難であつ
た。この理由として酸化亜鉛系バリスタの微細構
造は第1図に示すように低抵抗の酸化亜鉛結晶粒
1を非直線性を発揮させる高抵抗の粒界層2で取
囲んだものである。図中3は電極、4は端子であ
る。このため焼結体厚さ1mm当たりのV1mA/
mmは素体の厚み方向に存在する粒界層2の数によ
り決定される。酸化亜鉛系バリスタでは1粒界層
当たりの立上り電圧は約2.5V程度である。 酸化亜鉛に酸化ビスマス、酸化コバルト、酸化
マンガンなどを加えたものを1100〜1300℃の温度
で焼結したとき、焼結体中の酸化亜鉛結晶粒1の
粒径は30〜40μm程度である。このためV1mA/
mmは40V以上となる。このためV1mA=20Vのバ
リスタを製造するには厚さ0.5mmの素体をつくる
必要がある。この場合微細構造は酸化亜鉛結晶粒
1が10個直列につながり粒子と粒子との間に8個
の粒界層2が存在するかたちになる。厚さ0.5mm
の素体を製造する方法として焼結体を研磨して所
定の厚さを得る方法がある。しかし焼結体は酸化
亜鉛結晶粒1を主としてビスマス酸化物からなる
粒界層2が取囲んでいるため機械的強度は弱い。
このため研磨中に酸化亜鉛結晶粒1が脱落したり
マイクロクラツクが発生し局部的に電圧の低い欠
陥部が生ずる。またもうひとつの方法として焼結
体が所定の厚さになるように焼結後の収縮率を加
味して薄い板状に成型する方法がある。この場合
は収縮率を加味して0.6〜0.7mmの厚さに成型しな
ければならない。しかし成型体の機械的強度は非
常に弱いため割れや欠けなどが生じ成型体の取扱
いが非常に困難である。 これらの欠点をなくすためには焼結体の酸化亜
鉛結晶粒1の粒径を約100μmまで成長させ、素
体厚さが約1.0mmでV1mA=20Vのバリスタがで
きるようにし、成型体強度を強くするる必要があ
る。最近酸化亜鉛系低電圧バリスタの製造方法と
して例えば特開昭54−140995号公報で提案されて
いるように粒径が100μm程度の酸化亜鉛結晶粒
1を使用する方法がある。これは焼結過程で酸化
亜鉛結晶粒1を100μm程度の大きさまで成長さ
せることが困難なため主成分である酸化亜鉛の一
部に最初から大きく成長させた酸化亜鉛結晶粒1
を使用するものである。しかし大きく成長させた
酸化亜鉛結晶粒1を得るには酸化亜鉛に炭酸バリ
ウムや炭酸ストロンチウムを加えたものを成型、
焼結し、この焼結体を純水中で煮沸することによ
り酸化亜鉛結晶粒1を取囲んだBaやSrを水に溶
解させ焼結体を分解する必要がある。また酸化亜
鉛結晶粒1以外の原料の粒径は数μm以下であ
る。このため焼結過程で酸化亜鉛結晶粒1部分と
他の原料粉末部分とに収縮率の差が生じ焼結体が
多孔質になる。このためV1mA/mmが低く緻密
な素体を得るには酸化亜鉛結晶粒1の焼結温度、
粒径、添加割合、結晶核以外の原料の組成などの
条件の選択が複雑となる。 また添加物に酸化ビスマスを含む酸化亜鉛系バ
リスタの欠点として焼結体の熱処理条件(電極焼
付工程も含む)により寿命特性が大きく変わるこ
とがあげられる。これは非直線性を発揮させる粒
界層2が主として酸化ビスマスからなるためであ
る。熱処理前の焼結体中の酸化ビスマス結晶相は
α相、β相、δ相のうちの少なくとも1種類を含
む。この焼結体を熱処理することにより酸化ビス
マスは全てγ相に変わる。このγ相への変化の過
程により寿命特性が大きく変動すると考えられ
る。このように酸化亜鉛を主成分として添加物に
酸化ビスマスを含む組成系で低電圧バリスタを製
造するには工程数が非常に多く、かつ条件の選択
や管理も複雑であるという欠点があつた。 [発明の目的] 本発明は酸化亜鉛を主成分とし酸化亜鉛粒界偏
析相が主として酸化ビスマスに与えチタン酸ビス
マス層状化合物で構成することにより焼結体中の
酸化亜鉛結晶粒子を100μm以上に成長させた低
電圧の電圧非直線抵抗体を提供せんとするもので
ある。 [発明の概要] 本発明の電圧非直線抵抗体は酸化亜鉛を主成分
とし焼結体自体が電圧非直線性を有する電圧非直
線抵抗体において、焼結体の酸化亜鉛結晶粒界偏
析相が主として(Bi2O2)2+(Bi2Ti3O10)2-で示
されるビスマス層状化合物からなるものである。 [発明の実施例] 以下本発明の詳細について説明する。すなわち
酸化亜鉛粒界偏析相が主としてチタン酸ビスマス
層状化合物からなるバリスタの微細構造は従来の
酸化ビスマスからなるものと同様であり非直線性
を発揮させる粒界層がチタン酸ビスマス層状化合
物からなるものである。これにより熱処理工程に
おける粒界層の結晶相変化をなくすことが可能と
なつた。このように本発明は酸化亜鉛結晶粒界偏
析相が主として酸化ビスマスに代えチタン酸ビス
マス層状化合物で構成したことによつて得られる
高信頼性、低電圧非直線抵抗体である。 つぎに本発明の実施例について説明する。酸化
亜鉛、酸化ビスマス、チタン酸ビスマス層状化合
物、酸化コバルト、酸化マンガン、酸化ニツケル
を出発原料として第1表に示す組成割合に秤量、
混合し、乾燥、造粒、成型後1100〜1300℃の温度
で焼結し直径15mm、厚さ1.0mmの焼結体を得た。
これにオーミツクな接触を示す1.0cm2の電極を形
成しV1mA/mmと非直線係数αを測定した。第
1表にその結果を示す。本発明の実施例は〇印を
付した組成No.5〜8であり、これらは1220℃の温
度で2時間焼結したものである。
[Technical Field of the Invention] The present invention has a zinc oxide grain boundary segregated phase in a sintered body containing zinc oxide as a main component and having voltage nonlinearity, and is composed mainly of a bismuth titanate layered compound, thereby achieving a low voltage rise voltage. Concerning voltage nonlinear resistors with thermal stability and thermal stability. [Technical Background of the Invention] In recent years, with the rapid development of semiconductor elements and circuits such as ICs, transistors, and thyristors, and their applications, the use of semiconductors and semiconductor circuits in control, communication equipment, and power equipment has become widespread. Devices are rapidly becoming smaller and more sophisticated. However, on the other hand, with such progress, the withstand voltage, surge resistance, and noise resistance of these devices and their components cannot be said to be sufficient. Therefore, it is necessary to protect these devices and components from abnormal surges and noise, or to stabilize the circuit voltage. Until now, SiC and Si varistors have been widely used for these purposes. Recently, varistors have been developed that use zinc oxide as a main component and add additives to it. However, recently, with the increase in density and integration of semiconductors and semiconductor circuits, lower voltage and lower power consumption of semiconductors and semiconductor circuits have been promoted. In order to protect these semiconductors and semiconductor circuits or to stabilize circuit voltage, varistors that operate at lower voltages have become necessary. The voltage-current characteristics of a varistor are generally expressed by the following relational expression: I=(V/C). Here, V is the voltage applied to the varistor body, and I is the current flowing through the varistor body. Further, C is a constant corresponding to the voltage when a given current is passed. α=1 is an ordinary resistor that follows Ohm's law, and the larger α is, the better the nonlinearity is. Here, instead of being expressed by C and α, the varistor characteristics are expressed by a rising voltage V1mA and α when a current is passed at a current density of 1 mA/cm 2 . SiC varistors, which are a typical sintered body with voltage nonlinearity, are made by baking SiC particles with a ceramic binder.
The nonlinearity is due to the voltage dependence of the contact resistance of SiC particles. If the thickness of the varistor body is 1 mm, the rising voltage when a current of 1 mA/ cm2 flows is V1.
Assuming mA/mm, SiC varistors can reduce V1mA to several V by controlling the particle size and element thickness of SiC particles.
It is possible to manufacture products with voltages ranging from 1000V to several thousand volts.
Since the non-linear coefficient α is as small as 3 to 7, this is not sufficient.
Also, like SiC varistors, there are zinc oxide varistors whose sintered bodies themselves have nonlinearity. This is mainly composed of zinc oxide and contains small amounts of bismuth oxide, cobalt oxide, manganese oxide, antimony oxide, etc. as additives. The nonlinearity coefficient of zinc oxide-based varistors is about 20 to 50, which shows extremely superior nonlinearity compared to SiC varistors. For this reason, it is very suitable for protecting semiconductors and semiconductor circuits, but the voltage used in semiconductor circuits is becoming increasingly lower. [Problems in the background technology] Conventional zinc oxide varistors have been developed as low voltage varistors (V1m
A is about 20V). The reason for this is that, as shown in FIG. 1, the fine structure of the zinc oxide-based varistor is such that low-resistance zinc oxide crystal grains 1 are surrounded by high-resistance grain boundary layers 2 that exhibit nonlinearity. In the figure, 3 is an electrode and 4 is a terminal. Therefore, V1mA per 1mm of sintered body thickness/
mm is determined by the number of grain boundary layers 2 present in the thickness direction of the element body. In a zinc oxide varistor, the rising voltage per grain boundary layer is about 2.5V. When zinc oxide mixed with bismuth oxide, cobalt oxide, manganese oxide, etc. is sintered at a temperature of 1100 to 1300°C, the size of the zinc oxide crystal grains 1 in the sintered body is about 30 to 40 μm. Therefore, V1mA/
mm is 40V or more. Therefore, in order to manufacture a varistor with V1mA = 20V, it is necessary to make an element body with a thickness of 0.5mm. In this case, the microstructure is such that ten zinc oxide crystal grains 1 are connected in series and eight grain boundary layers 2 are present between the grains. Thickness 0.5mm
As a method of manufacturing the element body, there is a method of polishing the sintered body to obtain a predetermined thickness. However, the mechanical strength of the sintered body is weak because the zinc oxide crystal grains 1 are surrounded by grain boundary layers 2 mainly made of bismuth oxide.
As a result, zinc oxide crystal grains 1 fall off during polishing, microcracks occur, and defective areas with locally low voltage occur. Another method is to mold the sintered body into a thin plate shape, taking into consideration the shrinkage rate after sintering so that the sintered body has a predetermined thickness. In this case, it must be molded to a thickness of 0.6 to 0.7 mm, taking into account the shrinkage rate. However, the mechanical strength of the molded product is very low, and cracks and chips occur, making it extremely difficult to handle the molded product. In order to eliminate these drawbacks, the grain size of the zinc oxide crystal grains 1 of the sintered body should be grown to about 100 μm, so that a varistor with a thickness of about 1.0 mm and V1mA = 20V can be produced, and the strength of the molded body should be increased. I need to make it stronger. Recently, as a method for manufacturing zinc oxide-based low voltage varistors, there is a method of using zinc oxide crystal grains 1 having a grain size of about 100 μm, as proposed in, for example, Japanese Patent Application Laid-open No. 140995/1983. This is because it is difficult to grow zinc oxide crystal grains 1 to a size of about 100 μm during the sintering process, so zinc oxide crystal grains 1 are grown large from the beginning in a part of the main component, zinc oxide.
is used. However, in order to obtain large zinc oxide crystal grains 1, a mixture of zinc oxide and barium carbonate or strontium carbonate is molded.
It is necessary to sinter and boil this sintered body in pure water to dissolve Ba and Sr surrounding the zinc oxide crystal grains 1 in water and decompose the sintered body. Further, the grain size of the raw materials other than the zinc oxide crystal grains 1 is several μm or less. Therefore, during the sintering process, there is a difference in shrinkage rate between one part of the zinc oxide crystal grains and the other part of the raw material powder, making the sintered body porous. Therefore, in order to obtain a dense element body with a low V1mA/mm, the sintering temperature of the zinc oxide crystal grains 1,
Selection of conditions such as particle size, addition ratio, composition of raw materials other than crystal nuclei becomes complicated. Furthermore, a drawback of zinc oxide-based varistors containing bismuth oxide as an additive is that the life characteristics vary greatly depending on the heat treatment conditions of the sintered body (including the electrode baking process). This is because the grain boundary layer 2 that exhibits nonlinearity is mainly composed of bismuth oxide. The bismuth oxide crystal phase in the sintered body before heat treatment includes at least one of an α phase, a β phase, and a δ phase. By heat-treating this sintered body, all bismuth oxide is converted into the γ phase. It is thought that the life characteristics vary greatly due to this process of change to the γ phase. As described above, manufacturing a low voltage varistor using a composition system containing zinc oxide as a main component and bismuth oxide as an additive has the disadvantage that the number of steps is extremely large, and the selection and management of conditions are also complicated. [Purpose of the invention] The present invention uses zinc oxide as the main component, and the zinc oxide grain boundary segregated phase is mainly given to bismuth oxide, and is composed of a bismuth titanate layered compound, thereby growing zinc oxide crystal particles in a sintered body to a size of 100 μm or more. It is an object of the present invention to provide a voltage nonlinear resistor with low voltage. [Summary of the Invention] The voltage nonlinear resistor of the present invention is a voltage nonlinear resistor mainly composed of zinc oxide and in which the sintered body itself has voltage nonlinearity, in which the zinc oxide crystal grain boundary segregated phase of the sintered body is It mainly consists of a bismuth layered compound represented by (Bi2O2) 2+ (Bi2Ti3O10) 2- . [Embodiments of the Invention] The details of the present invention will be described below. In other words, the fine structure of the varistor in which the zinc oxide grain boundary segregated phase is mainly composed of bismuth titanate layered compound is similar to that of conventional bismuth oxide, and the grain boundary layer that exhibits nonlinearity is composed of bismuth titanate layered compound. It is. This has made it possible to eliminate crystal phase changes in the grain boundary layer during the heat treatment process. As described above, the present invention provides a highly reliable, low-voltage nonlinear resistor obtained by having the zinc oxide grain boundary segregated phase mainly composed of a bismuth titanate layered compound instead of bismuth oxide. Next, embodiments of the present invention will be described. Starting materials zinc oxide, bismuth oxide, bismuth titanate layered compound, cobalt oxide, manganese oxide, and nickel oxide were weighed to the composition ratios shown in Table 1.
After mixing, drying, granulation, and molding, the mixture was sintered at a temperature of 1100 to 1300°C to obtain a sintered body with a diameter of 15 mm and a thickness of 1.0 mm.
A 1.0 cm 2 electrode showing ohmic contact was formed on this, and V1 mA/mm and nonlinear coefficient α were measured. Table 1 shows the results. Examples of the present invention are composition Nos. 5 to 8 marked with a circle, and these were sintered at a temperature of 1220° C. for 2 hours.

【表】 第1表において組成No.1〜4は酸化ビスマスの
量を変えた参考例であり、組成No.5〜8はチタン
酸ビスマス化合物の量を変えた実施例である。 第1表から実施例の組成No.5〜8が最もV1m
A/mmが低くなり、かつ非直線係数αも高く効果
が顕著であることがわかる。また酸化ビスマス、
チタン酸ビスマス化合物のそれぞれの添加量に対
する焼結体のV1mA/mmの変化を第2図に、非
直線係数αの変化を第3図に示す。第2図および
第3図において曲線Aは酸化ビスマス、曲線Bは
チタン酸ビスマス化合物の場合を示す。 第2図および第3図からチタン酸ビスマス層状
化合物を添加した曲線Bの実施例は、酸化ビスマ
スを添加した曲線Aの参考例と比較して非直線係
数αをそこなうことなく酸化亜鉛結晶粒を大きく
成長させることがわかる。第4図は熱処理温度に
対する寿命特性、すなわち空気中25℃の雰囲気で
1mA/cm2の電流を1000時間通電したときの立上
り電圧V1mAの変化率ΔV1mAを示すもので、
曲線A2は組成No.2の参考例、曲線B6は組成No.6
の実施例の場合を示す。第4図から酸化亜鉛結晶
粒界偏析相としてチタン酸ビスマス層状化合物を
含む曲線B6の実施例は熱処理温度に影響されな
いことがわかる。またチタン酸ビスマス層状化合
物の添加量が0.05モル%未満では酸化亜鉛結晶粒
を成長させるのに十分でなくV1mA/mmが高く
なるため適当でない。また3.0モル%を越えると
必要量以上となり焼結体表面に析出し焼結体が融
着するなどの幣害が生じ、かつV1mA/mmも高
くなり、非直線係数αも低くなりはじめるので適
当でない。 なお上記実施例で用いた添加物に加えてさらに
Sb、Cr、Sn、Al、Mg、Ba、B、Si、Pb、Fe、
Srの酸化物を少量添加せしめることにより非直
線性をいつそう改善できる。 [発明の効果] 以上詳述したように本発明は酸化亜鉛を主成分
とし、酸化亜鉛結晶粒界偏析相としてチタン酸ビ
スマス層状化合物をBi4Ti3O12の形にして換算し
て0.05〜3.0モル%含むことによつて酸化亜鉛結
晶粒を100μm以上に成長させることができ、か
つ熱処理工程における粒界層の結晶相変化がない
ため信頼性が高く特性の安定した電圧非直線抵抗
体を提供することができる。
[Table] In Table 1, compositions No. 1 to 4 are reference examples in which the amount of bismuth oxide was changed, and compositions No. 5 to 8 are examples in which the amount of bismuth titanate compound was changed. From Table 1, compositions No. 5 to 8 of Examples have the highest V1m
It can be seen that the A/mm is lower and the nonlinear coefficient α is also higher, so the effect is remarkable. Also bismuth oxide,
FIG. 2 shows the change in V1mA/mm of the sintered body with respect to the amount of bismuth titanate compound added, and FIG. 3 shows the change in the nonlinear coefficient α. In FIGS. 2 and 3, curve A shows the case of bismuth oxide, and curve B shows the case of bismuth titanate compound. From FIG. 2 and FIG. 3, the example of curve B in which bismuth titanate layered compound is added is compared with the reference example of curve A in which bismuth oxide is added. I know it will grow significantly. Figure 4 shows the life characteristics with respect to heat treatment temperature, that is, the rate of change ΔV1mA in the rise voltage V1mA when a current of 1mA/cm 2 is applied for 1000 hours in an atmosphere of 25°C in air.
Curve A2 is a reference example of composition No. 2, curve B6 is composition No. 6
The case of the example is shown below. It can be seen from FIG. 4 that the example of curve B6 containing a bismuth titanate layered compound as the zinc oxide grain boundary segregated phase is not affected by the heat treatment temperature. Furthermore, if the amount of the bismuth titanate layered compound added is less than 0.05 mol%, it is not sufficient to grow zinc oxide crystal grains and V1mA/mm becomes high, which is not appropriate. In addition, if it exceeds 3.0 mol%, it will exceed the required amount and cause damage such as precipitation on the surface of the sintered body and fusion of the sintered body, V1mA/mm will also increase, and the nonlinear coefficient α will also start to decrease, so it is not appropriate. Not. In addition to the additives used in the above examples,
Sb, Cr, Sn, Al, Mg, Ba, B, Si, Pb, Fe,
Nonlinearity can be greatly improved by adding a small amount of Sr oxide. [Effects of the Invention] As detailed above, the present invention uses zinc oxide as the main component, and uses bismuth titanate layered compound as the zinc oxide crystal grain boundary segregated phase in the form of Bi 4 Ti 3 O 12 in terms of 0.05~ By containing 3.0 mol%, zinc oxide crystal grains can be grown to 100 μm or more, and there is no crystal phase change in the grain boundary layer during the heat treatment process, making it possible to create a voltage nonlinear resistor with high reliability and stable characteristics. can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は酸化亜鉛系バリスタの微細構造を示す
拡大断面図、第2図〜第4図は本発明の実施例と
参考例との特性比較を示すもので第2図は添加物
の添加量に対するV1mA/mmの変化を示す曲線
図、第3図は同様に非直線係数αの変化を示す曲
線図、第4図は熱処理温度に対するV1mAの変
化率を示す曲線図である。 1……酸化亜鉛結晶粒、2……粒界層、3……
電極、4……端子。
Figure 1 is an enlarged cross-sectional view showing the fine structure of a zinc oxide varistor, Figures 2 to 4 are comparisons of characteristics between examples of the present invention and reference examples, and Figure 2 shows the amount of additives added. FIG. 3 is a curve diagram showing the change in V1mA/mm with respect to heat treatment temperature, FIG. 3 is a curve diagram similarly showing the change in the nonlinear coefficient α, and FIG. 4 is a curve diagram showing the rate of change in V1mA with respect to the heat treatment temperature. 1...Zinc oxide crystal grain, 2...Grain boundary layer, 3...
Electrode, 4...terminal.

Claims (1)

【特許請求の範囲】 1 酸化亜鉛を主成分とし、焼結体自体が電圧非
直線性を有する電圧非直線抵抗体において、焼結
体の酸化亜鉛結晶粒界偏析相が主として
(Bi2O22+(Bi2Ti3O102-で示されるビスマス層状
化合物からなることを特徴とする電圧非直線抵抗
体。 2 ビスマス層状化合物がBi4Ti3O12の型にして
0.05〜3.0モル%含まれることを特徴とする特許
請求の範囲第1項記載の電圧非直線抵抗体。
[Scope of Claims] 1. In a voltage nonlinear resistor whose main component is zinc oxide and in which the sintered body itself has voltage nonlinearity, the zinc oxide grain boundary segregated phase of the sintered body is mainly (Bi 2 O 2 ) 2+ (Bi 2 Ti 3 O 10 ) 2- A voltage nonlinear resistor comprising a bismuth layered compound represented by (Bi 2 Ti 3 O 10 ) 2-. 2 Bismuth layered compound is converted into Bi 4 Ti 3 O 12 type.
The voltage nonlinear resistor according to claim 1, characterized in that the voltage nonlinear resistor contains 0.05 to 3.0 mol%.
JP59088917A 1984-05-02 1984-05-02 Voltage nonlinear resistor Granted JPS60233801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59088917A JPS60233801A (en) 1984-05-02 1984-05-02 Voltage nonlinear resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59088917A JPS60233801A (en) 1984-05-02 1984-05-02 Voltage nonlinear resistor

Publications (2)

Publication Number Publication Date
JPS60233801A JPS60233801A (en) 1985-11-20
JPH0249521B2 true JPH0249521B2 (en) 1990-10-30

Family

ID=13956270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59088917A Granted JPS60233801A (en) 1984-05-02 1984-05-02 Voltage nonlinear resistor

Country Status (1)

Country Link
JP (1) JPS60233801A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5004713A (en) * 1989-07-05 1991-04-02 Corning Incorporated Frequency stable NPO ceramics
US5770113A (en) * 1995-03-06 1998-06-23 Matsushita Electric Industrial Co., Ltd. Zinc oxide ceramics and method for producing the same
US5739742A (en) * 1995-08-31 1998-04-14 Matsushita Electric Industrial Co., Ltd. Zinc oxide ceramics and method for producing the same and zinc oxide varistors

Also Published As

Publication number Publication date
JPS60233801A (en) 1985-11-20

Similar Documents

Publication Publication Date Title
JPS6325685B2 (en)
JPH0249521B2 (en)
KR100441863B1 (en) Fabrication of praseodymium-based zinc oxide varistors
JP3323701B2 (en) Method for producing zinc oxide based porcelain composition
JPS6028203A (en) Method of producing voltage nonlinear resistor
JP2536128B2 (en) Method for manufacturing voltage non-linear resistance element
KR102615494B1 (en) ZnO-BASED VARISTOR COMPOSITION AND VARISTOR INCLUDING THE SAME AND MANUFACTURING METHOD THEREOF
KR950007948B1 (en) Varister
JPH0128481B2 (en)
JP2830321B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JPH03178101A (en) Voltage non-linear resistor
JP3313533B2 (en) Zinc oxide-based porcelain composition and method for producing the same
JPS6028121B2 (en) Manufacturing method of voltage nonlinear resistor
JP2006245111A (en) Bismuth-based zinc oxide varistor
KR20060011309A (en) Dysprosia-doped praseodymia-based zinc oxide varistors and the manufacturing method
JPH038765A (en) Production of voltage-dependent nonlinear resistor porcelain composition and varistor
JPH01189901A (en) Voltage dependent nonlinear resistor and manufacture thereof
JP2816258B2 (en) Method of manufacturing voltage non-linear resistor and lightning arrester
JPH06204006A (en) Manufacture of zinc oxide varistor
JPH0128487B2 (en)
JPH03195003A (en) Voltage-dependent nonlinear resistor
JPH0128486B2 (en)
JPH0128483B2 (en)
JPH0128482B2 (en)
KR20040078915A (en) Zinc Oxide Sintered Body, and Manufacturing Method thereof and Zinc Oxide Varistor