JP2816258B2 - Method of manufacturing voltage non-linear resistor and lightning arrester - Google Patents

Method of manufacturing voltage non-linear resistor and lightning arrester

Info

Publication number
JP2816258B2
JP2816258B2 JP3091931A JP9193191A JP2816258B2 JP 2816258 B2 JP2816258 B2 JP 2816258B2 JP 3091931 A JP3091931 A JP 3091931A JP 9193191 A JP9193191 A JP 9193191A JP 2816258 B2 JP2816258 B2 JP 2816258B2
Authority
JP
Japan
Prior art keywords
heat treatment
temperature
zno
hours
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3091931A
Other languages
Japanese (ja)
Other versions
JPH04322402A (en
Inventor
誠一 山田
守孝 庄司
高橋  研
哲夫 中澤
武夫 山崎
晋吾 白川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3091931A priority Critical patent/JP2816258B2/en
Publication of JPH04322402A publication Critical patent/JPH04322402A/en
Application granted granted Critical
Publication of JP2816258B2 publication Critical patent/JP2816258B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ZnOを主成分とし、
Bi23などの金属酸化物を含む寿命特性の優れた電圧
非直線抵抗体の製法、及び、その電圧非直線抵抗体を用
いた避雷器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention comprises ZnO as a main component,
The present invention relates to a method for producing a voltage non-linear resistor having excellent life characteristics including a metal oxide such as Bi 2 O 3 , and an arrester using the voltage non-linear resistor.

【0002】[0002]

【従来の技術】ZnOを主成分とした非直線抵抗体(Z
nO素子)は、優れた非直線性をもち、避雷器用素子と
して広く利用されている。特に、ギャップレス避雷器に
用いるZnO素子は、常時、課電状態にあるため、素子
に微小なもれ電流が生じ、長期間の課電によってもれ電
流が次第に増加し、素子が発熱して熱暴走現象を起こす
ことがある。素子の熱暴走を防止する(寿命を向上させ
る)には、もれ電流の増加率を小さくすることが重要で
ある。このことから、ZnO素子の常時課電に対して特
性劣化しない長寿命の素子を得る方法として、特開昭58
−159303号公報によれば、1050〜1300℃の高温
で焼結したZnO素子を、500〜700℃に再加熱
し、一,二時間保持後、降温速度100〜300℃/h
で室温まで再冷却する、いわゆる、焼結後の一回の熱処
理によって素子の特性劣化を防止する方法が開示されて
いる。また、特開昭58−200508号公報によれば、ZnO
を主成分とし、少なくともBi23を含む組成で、10
50〜1300℃の高温で焼結したZnO素子を、85
0〜950℃に再加熱し、一,二時間保持後、降温速度
300℃/hで300℃以下まで冷却し、再度500〜
700℃に加熱して一,二時間保持後、降温速度50〜
150℃/hで室温まで再冷却する、いわゆる、焼結後
二回の熱処理によって素子の特性劣化を防止する方法が
開示されている。
2. Description of the Related Art Non-linear resistors (Z
An nO element) has excellent nonlinearity and is widely used as an arrester element. In particular, the ZnO element used for the gapless surge arrester is always in the charged state, so a small leakage current is generated in the element, and the leakage current gradually increases due to the long-term application of electricity, causing the element to generate heat and run away. May cause phenomena. In order to prevent thermal runaway of the element (improve the service life), it is important to reduce the increase rate of the leakage current. For this reason, as a method for obtaining a long-life element which does not deteriorate in its characteristics due to constant application of power to the ZnO element, Japanese Patent Application Laid-Open No.
According to JP-A-159303, a ZnO element sintered at a high temperature of 1050 to 1300 ° C is reheated to 500 to 700 ° C, held for one or two hours, and then cooled at a rate of 100 to 300 ° C / h.
A method of preventing the deterioration of the characteristics of the element by a single heat treatment after sintering, which is to re-cool to room temperature at the same time, is disclosed. According to JP-A-58-200508, ZnO
And a composition containing at least Bi 2 O 3 and
A ZnO element sintered at a high temperature of 50 to 1300 ° C.
After reheating to 0 to 950 ° C and holding for one or two hours, the temperature was lowered to 300 ° C or less at a rate of 300 ° C / h, and then 500 to 500 ° C again.
After heating to 700 ° C and holding for one or two hours,
There is disclosed a method of re-cooling to room temperature at 150 ° C./h, that is, a method of preventing the property deterioration of the element by performing a heat treatment twice after sintering.

【0003】[0003]

【発明が解決しようとする課題】ZnO素子は、ZnO
粒子の周囲をBi23を主成分とした高抵抗の境界層が
取り囲むような構造を持っており、この境界層の抵抗
は、電圧に対して非直線性を示す。
The ZnO element is a ZnO element.
The particles have a structure in which a high-resistance boundary layer mainly composed of Bi 2 O 3 surrounds the periphery of the particles, and the resistance of the boundary layer shows nonlinearity with respect to voltage.

【0004】一般に、ZnO素子の電圧−電流特性は近
似的に下式で示される。
In general, the voltage-current characteristics of a ZnO element are approximately expressed by the following equation.

【0005】[0005]

【数1】 I=KVα …(数1)I = KV α (Equation 1)

【0006】ここでIは電流、Vは電圧、Kは定数、α
は非直線係数を表わす。ZnO素子のαは10〜70位
である。
Where I is a current, V is a voltage, K is a constant, α
Represents a non-linear coefficient. Α of the ZnO element is in the order of 10 to 70.

【0007】ZnO素子の常時課電状態で流れるもれ電
流は、αが大きい程小さい。従って、αの大きいことが
望ましい。また、長期間の課電によるもれ電流の増加を
抑制するには、焼結したZnO素子の熱処理によってZ
nO素子にγ型Bi23相を生成させることが有効であ
ることが知られている。
The leakage current flowing in the ZnO element in the always-on state is smaller as α is larger. Therefore, it is desirable that α is large. In addition, in order to suppress an increase in leakage current due to long-term application of electricity, the heat treatment of the sintered ZnO element
It is known that it is effective to generate a γ-type Bi 2 O 3 phase in an nO element.

【0008】しかし、この従来技術で、焼結したZnO
素子を500〜700℃で加熱する一回の熱処理では、
ZnO素子にγ型Bi23が生成されて特性劣化は防止
できても、素子の電圧−電流特性が悪いという問題があ
った。
However, in this prior art, sintered ZnO
In one heat treatment of heating the element at 500 to 700 ° C,
Even though the γ-type Bi 2 O 3 is generated in the ZnO element and the characteristic deterioration can be prevented, there is a problem that the voltage-current characteristic of the element is poor.

【0009】一方、焼結したZnO素子を二回熱処理し
てZnO素子の寿命向上を図る場合、最初の熱処理でZ
nO素子にγ型Bi23が生成されないときは、二回熱
処理を施してもZnO素子の課電寿命特性が向上しない
という問題がある。例えば、ZnOを主成分としBi2
3を含む組成でも、Sb23,MnCO3,Cr
23 ,Co23,SiO2,NiO,B23、Al(N
3)3 等の多種類の金属酸化物を含むような組成では、
焼結したZnO素子の最初の熱処理工程で、従来技術で
開示されているように降温速度を300℃/hにする
と、ZnO素子にγ型Bi23が生成されにくい場合が
あった。
On the other hand, when the sintered ZnO element is heat-treated twice to extend the life of the ZnO element, the first heat treatment is performed in the first heat treatment.
When γ-type Bi 2 O 3 is not generated in the nO element, there is a problem that the application life property of the ZnO element is not improved even if the heat treatment is performed twice. For example, Bi 2 is mainly composed of ZnO.
Even with a composition containing O 3 , Sb 2 O 3 , MnCO 3 , Cr
2 O 3 , Co 2 O 3 , SiO 2 , NiO, B 2 O 3 , Al (N
In a composition containing various kinds of metal oxides such as O 3 ) 3 ,
In the first heat treatment step of the sintered ZnO element, when the temperature decreasing rate is set to 300 ° C./h as disclosed in the related art, γ-type Bi 2 O 3 may not be easily generated in the ZnO element.

【0010】このようなことから、従来技術では、特に
直流系統に高課電率で使用する多成分系ZnO素子等に
対しては信頼性の点で不充分であった。
For these reasons, the prior art is insufficient in reliability, especially for a multi-component ZnO element or the like used at a high charging rate in a DC system.

【0011】本発明の目的は、長期間の課電に対し、信
頼性が高く、特性劣化しない安定なZnO素子の製造法
及び避雷器を提供することにある。
An object of the present invention is to provide a method for manufacturing a ZnO element which is highly reliable and does not deteriorate its characteristics even when power is applied for a long time, and a lightning arrester.

【0012】[0012]

【課題を解決するための手段】上記目的は、ZnOを主
成分とし、Bi23の他、多種類の金属酸化物(例え
ば、Sb23,MnCO3,Co23,Cr23,Si
2,NiO,B23,Al(NO3)3等)を含むZnO
素子の原材料を混合成形し、成形体を1050〜130
0℃で焼結する工程と、その後、この焼結体を300℃
以下に降温し、次いで900〜950℃に昇温して一な
いし三時間保持した後、300℃以下に降温する第一の
熱処理を施す工程と、再び、650〜900℃に昇温し
て一ないし三時間保持した後、室温まで再冷却する第二
の熱処理を施す工程からなり、第一及び第二の熱処理工
程で、高温に保持した後の降温速度をそれぞれ100℃
/h以下及び150℃/h以下にする製造方法により達
成される。
Above object In order to achieve the above, ZnO as a main component, other Bi 2 O 3, various kinds of metal oxides (e.g., Sb 2 O 3, MnCO 3 , Co 2 O 3, Cr 2 O 3 , Si
ZnO containing O 2 , NiO, B 2 O 3 , Al (NO 3 ) 3 etc.
The raw materials of the element are mixed and molded, and the molded body is 1050 to 130.
A step of sintering at 0 ° C., and thereafter,
The temperature is then lowered to 900 to 950 ° C., held for 1 to 3 hours, and then subjected to a first heat treatment for lowering the temperature to 300 ° C. or less, and again to 650 to 900 ° C. And a step of performing a second heat treatment of re-cooling to room temperature after holding for 3 to 3 hours. In the first and second heat treatment steps, the rate of temperature decrease after holding at a high temperature is 100 ° C.
/ H and 150 ° C / h or less.

【0013】また他の目的は、前記製造方法によって作
製された円盤または円筒状の形状のZnO素子の外周面
を除く端面に電極を形成し、これを碍子管に入れた避雷
器により達成される。
Still another object is achieved by a lightning arrester having electrodes formed on an end surface excluding an outer peripheral surface of a disk-shaped or cylindrical ZnO element manufactured by the above-described manufacturing method, and placing the electrodes in an insulator tube.

【0014】[0014]

【作用】本発明では、図1に示す焼結と熱処理パターン
にする。
According to the present invention, the sintering and heat treatment patterns shown in FIG. 1 are used.

【0015】ZnOを主成分とし、Bi23などの金属
酸化物を含む原材料を混合成形した成形体は、まず、1
050〜1300℃で一ないし十二時間焼結する。この
焼結工程での昇・降温速度は、ZnO素子が熱破壊しな
い300℃/h以下にする。焼結終了時は300℃以下
まで降温して冷却させ、素子の結晶、粒界構造の安定化
を図る。300℃以下までの降温後、保持時間Tをもっ
て、もしくは、直ちに熱処理工程に入る。
A molded body obtained by mixing and molding a raw material containing ZnO as a main component and a metal oxide such as Bi 2 O 3 is first formed by:
Sinter at 050-1300 ° C. for 1-2 hours. The rate of temperature rise / fall in this sintering step is set to 300 ° C./h or less at which the ZnO element does not thermally break. At the end of sintering, the temperature is lowered to 300 ° C. or lower and cooled to stabilize the crystal and grain boundary structure of the device. After the temperature is lowered to 300 ° C. or lower, the heat treatment step is started with the holding time T or immediately.

【0016】第一の熱処理工程では、焼結ZnO素子を
900〜950℃まで昇温して一ないし三時間の熱処理
を施し、ZnO素子内のBi23を溶解し、降温時にZ
nO素子にγ型Bi23を生成させる。素子にγ型Bi
23を生成させると素子の寿命特性が向上する。その理
由は必ずしも明確でないが、次のように推察される。 (1)長期間課電によるZnO素子の特性劣化は、Zn
O素子を窒素ガス中で熱処理すると同様な特性劣化が起
ること、特性劣化したZnO素子を空気中で熱処理する
と特性が元に戻ることなどの理由から、境界層やZnO
結晶粒子表面などに存在する酸素イオンが課電時の素子
の発熱によって外部へ散逸し、この結果、境界層の静電
ポテンシャルが低下(バリスタ電圧が低下)したものと
考えられる。 (2)γ型Bi23は、一般に、α型Bi23,β型B
23,δ型Bi23に比べて結晶性が高く、内部欠陥
が少なく、体積が大きいなどの理由からZnO結晶の境
界層をつたう酸素の拡散を防ぐ効果がある。このため、
ZnO粒子表面に存在する酸素イオンの移動が阻止され
て外部への酸素の散逸が少なくなり、ZnO素子が課電に
対して安定になる。
In the first heat treatment step, the sintered ZnO element is
The temperature was raised to 900 to 950 ° C., and heat treatment was performed for 1 to 3 hours to dissolve Bi 2 O 3 in the ZnO element.
γ-type Bi 2 O 3 is generated in the nO element. Γ-type Bi element
The generation of 2 O 3 improves the life characteristics of the device. The reason is not always clear, but is presumed as follows. (1) The characteristic deterioration of the ZnO element due to long-term power
The same characteristic degradation occurs when the O element is heat-treated in nitrogen gas, and the characteristics return to the original property when the ZnO element with the deteriorated characteristic is heat-treated in air.
It is considered that oxygen ions existing on the surface of the crystal particles and the like dissipated to the outside due to heat generation of the element at the time of application of electric power, and as a result, the electrostatic potential of the boundary layer was reduced (the varistor voltage was reduced). (2) γ-type Bi 2 O 3 is generally composed of α-type Bi 2 O 3 and β-type B
Compared to i 2 O 3 and δ-type Bi 2 O 3 , it has an effect of preventing diffusion of oxygen passing through the boundary layer of the ZnO crystal because of its high crystallinity, few internal defects, and large volume. For this reason,
The movement of oxygen ions present on the surface of the ZnO particles is prevented, the dissipation of oxygen to the outside is reduced, and the ZnO element becomes stable against application of electricity.

【0017】第一の熱処理工程におけるZnO素子の降
温速度は、ZnO素子にγ−Bi2O3を生成させるため1
00℃/h以下とする。100℃/hを超えるとγ型Bi
2O3が生成しなくなる。また、第一の熱処理でBi23
を溶解することにより、焼結体中のボイドを低減し、バ
リスタ電圧の低下を防止してZnO素子の特性劣化を防
ぐ効果がある。900℃以下ではZnO素子粒界のBi
23層が充分溶解せず、その後の熱処理を調整してもγ
型Bi 2 3 の生成が見られない。950℃以上ではZn
O結晶の熱活性化が高くなりすぎてBi23層の溶解が
粒界領域にとどまらないこと、及び、ZnO粒界に吸着
した酸素イオンの散逸が起こり易くなること等で思わし
くない。また、熱処理時間は一時間以下ではその温度に
保持した効果が少なく、三時間以上ではZnO結晶の活
性化の問題が起きる。
The temperature reduction rate of the ZnO element in the first heat treatment step is 1 because the ZnO element generates γ-Bi 2 O 3.
The temperature is set to 00 ° C / h or less. When the temperature exceeds 100 ° C / h, γ-type Bi
2 O 3 is not generated. In the first heat treatment, Bi 2 O 3
Has the effect of reducing voids in the sintered body, preventing a reduction in the varistor voltage, and preventing deterioration of the characteristics of the ZnO element. At 900 ° C or lower, Bi at the grain boundary of ZnO element
The 2 O 3 layer is not sufficiently dissolved, and even if the subsequent heat treatment is adjusted, γ
No formation of type Bi 2 O 3 is observed. Above 950 ° C, Zn
The thermal activation of the O crystal becomes too high, so that the dissolution of the Bi 2 O 3 layer does not stay in the grain boundary region, and the oxygen ions adsorbed on the ZnO grain boundaries are easily dissipated, which is not desirable. When the heat treatment time is one hour or less, the effect of maintaining the temperature is small, and when the heat treatment time is three hours or more, a problem of activation of the ZnO crystal occurs.

【0018】次に第二の熱処理として、第一の熱処理で
の降温が300℃以下に達した後適当な保持時間Tでも
しくは直ちに、650〜900℃まで昇温し、この温度
に一ないし三時間保持して降温する。
Next, as a second heat treatment, after the temperature drop in the first heat treatment reaches 300 ° C. or less, the temperature is raised to 650 to 900 ° C. for an appropriate holding time T or immediately, and the temperature is lowered by one to three times. Hold for a while to cool.

【0019】この第二の熱処理により、第一の熱処理で
γ型Bi23に変態し得なかった残部のBi23をγ型
Bi23に変態させ、かつ粒界層の粒成長を調整する。
このときの温度650〜900℃は、Bi23がγ型B
23に変化するのに必要な温度であり、そのときの保
持時間一ないし三時間は前記と同様の理由から決められ
る。また第二の熱処理の降温速度は、150℃/h以下
にする。これは、ZnO素子の熱歪みを除去して素子の特
性を向上させるのに効果がある。
By this second heat treatment, the remaining Bi 2 O 3 that could not be transformed into γ-type Bi 2 O 3 by the first heat treatment is transformed into γ-type Bi 2 O 3 , and the particles in the grain boundary layer are transformed. Regulate growth.
At this time, when the temperature is 650 to 900 ° C., Bi 2 O 3 is γ-type B
This is the temperature required to change to i 2 O 3 , and the holding time for one to three hours at that time is determined for the same reason as described above. The rate of temperature decrease in the second heat treatment is set to 150 ° C./h or less. This is effective in improving the characteristics of the ZnO element by removing the thermal distortion of the element.

【0020】第二の熱処理と同様の熱処理を、さらに何
回か繰り返すことも有効である。
It is also effective to repeat the same heat treatment as the second heat treatment several times.

【0021】[0021]

【実施例】【Example】

〈実施例1〉出発原料として純度99%以上のZnO9
4〜95モル%、Bi230.1〜1モル%、Sb23
0.8〜1.2モル%、MnCO30.8〜1.2モル%、C
o2O30.8〜1.2モル%、Cr230.1〜1.0モル
%、SiO21.0〜1.5モル%、NiO0.5〜1.0
モル%、B230.1〜0.15モル%、Al(NO3)3
0.005〜0.009モル%になるように各粉末を所定
量だけ秤量し、混合,造粒,加圧成形後、空気中119
0℃で約4h焼結した。焼結後のZnO素子の形状寸法
はφ90×20tである。このときの昇,降温速度は約
70℃/hとして、室温まで降温して冷却した。次に、
焼結体を950℃に加熱して二時間保持した後、約70
℃/hと約300℃/hの降温速度で室温まで冷却した
各焼結体を、再び700℃に加熱して二時間保持した
後、約70℃/hの降温速度で室温まで冷却する二回の
熱処理を施した。このようにして得られた焼結体に電極
を取付けてZnO素子を作製した。
<Example 1> ZnO9 having a purity of 99% or more as a starting material
4-95 mol%, Bi 2 O 3 0.1-1 mol%, Sb 2 O 3
0.8-1.2 mol%, MnCO 3 0.8-1.2 mol%, C
o 2 O 3 0.8 to 1.2 mol%, Cr 2 O 3 0.1 to 1.0 mol%, SiO 2 1.0 to 1.5 mol%, NiO 0.5 to 1.0 mol%
Mol%, B 2 O 3 0.1~0.15 mol%, Al (NO 3) 3
A predetermined amount of each powder was weighed so as to be 0.005 to 0.009 mol%, and after mixing, granulation and pressure molding, 119
Sintered at 0 ° C. for about 4 h. The shape and dimensions of the sintered ZnO element are φ90 × 20t. At this time, the temperature was raised and lowered at a rate of about 70 ° C./h, and the temperature was lowered to room temperature and cooled. next,
After heating the sintered body to 950 ° C. and holding for 2 hours,
Each sintered body cooled to room temperature at a cooling rate of about 300 ° C./h and about 300 ° C./h is again heated to 700 ° C. and maintained for 2 hours, and then cooled to room temperature at a cooling rate of about 70 ° C./h. Heat treatments were performed. An electrode was attached to the thus obtained sintered body to produce a ZnO element.

【0022】作製したZnO素子及び焼結後、熱処理を
施さない素子に直流課電を印加した。この時、ZnO素
子に流れたもれ電流の経時変化を図2に示す。課電条件
は、周囲温度115℃、課電率(=印加電圧/ZnO素
子に1mA流れる時の電圧)=0.85とした。
A DC voltage was applied to the fabricated ZnO element and the element that was not subjected to heat treatment after sintering. FIG. 2 shows the change with time of the leakage current flowing in the ZnO element at this time. The power application conditions were set to an ambient temperature of 115 ° C. and a power application rate (= applied voltage / voltage when 1 mA flows through the ZnO element) = 0.85.

【0023】図2において熱処理を施さない素子(特性
A)では、もれ電流の経時変化が大きく短時間で熱暴走
現象を起こす。また、第一の熱処理工程において、降温
速度を100℃/hを越える300℃/hにして冷却し
た従来の熱処理方法による素子(特性B)は、約30h
の短時間で熱暴走した。本発明の熱処理方法による素子
(特性C)は、長時間課電によるもれ電流の増加がほと
んどなく、長寿命化が達成されている。なお、第一の熱
処理を施した段階の素子について、X線回折法によりγ
型Bi23生成の有無を調べた結果、従来の熱処理方法
による素子ではγ型Bi23の生成がなく、本発明の熱
処理方法による素子ではγ型Bi23が確実に生成され
ていることが確認された。
In FIG. 2, in the element not subjected to the heat treatment (characteristic A), the leakage current has a large change with time and causes a thermal runaway phenomenon in a short time. In the first heat treatment step, the device (characteristic B) obtained by the conventional heat treatment method in which the temperature was lowered at a rate of 300 ° C./h exceeding 100 ° C./h was about 30 hours.
Heat runaway in a short time. The device (characteristic C) obtained by the heat treatment method of the present invention has almost no increase in leakage current due to long-time application of electricity, and has achieved a long life. Note that, for the element at the stage where the first heat treatment was performed, γ was determined by X-ray diffraction.
Type Bi 2 O 3 results of examining the presence or absence of generation, the device according to the conventional heat treatment method without the generation of γ-type Bi 2 O 3, in the device according to the heat treatment method of the present invention is produced reliably γ-type Bi 2 O 3 It was confirmed that.

【0024】〈実施例2〉実施例1で示した第一及び第
二の熱処理工程のうち、第一の熱処理工程の加熱温度を
750,800,900,950,1000℃に変え、
降温速度を70℃/hとして二回熱処理して得たZnO
焼結体に電極を形成し、実施例1と同様の条件で直流課
電を印加した。この時のZnO素子に流れるもれ電流の
経時変化を、図3に示す。
Embodiment 2 Of the first and second heat treatment steps shown in Embodiment 1, the heating temperature in the first heat treatment step was changed to 750, 800, 900, 950, 1000 ° C.
ZnO obtained by heat treatment twice at a temperature lowering rate of 70 ° C./h
An electrode was formed on the sintered body, and a DC voltage was applied under the same conditions as in Example 1. FIG. 3 shows the change with time of the leakage current flowing in the ZnO element at this time.

【0025】素子の第一の熱処理工程での加熱温度が7
50及び1000℃の場合は、図3の特性A及び特性B
に示すように、短時間で熱暴走現象を起こした。この理
由は、750℃ではZnO素子に含まれているBi23
が溶解しなかったこと、及び1000℃ではZnO素子
にγ型Bi23が生成しなかったことなどによるものと
判断された。
The heating temperature of the element in the first heat treatment step is 7
In the case of 50 and 1000 ° C., the characteristics A and B in FIG.
As shown in the figure, a thermal runaway phenomenon occurred in a short time. The reason is that Bi 2 O 3 contained in the ZnO element at 750 ° C.
Was determined not to be dissolved, and that γ-type Bi 2 O 3 was not generated in the ZnO element at 1000 ° C.

【0026】加熱温度が800,900及び950℃の
場合は、図3の特性C,D及び特性Eに示すように、8
00及び900℃の方が950℃に比べてもれ電流が大
きくなるが、いずれも長時間課電によるもれ電流の増加
がほとんどなく素子の長寿命化が達成されている。従っ
て、加熱温度は、800〜950℃の間、より好ましく
は900〜950℃の間が望ましい。 <実施例3> 実施例1で示した第一及び第二の熱処理工程において、
第一の熱処理工程では降温速度を70℃/hに設定し、
第二の熱処理工程では、加熱温度を600,650,7
50,900及び950℃に変えて二回熱処理して得た
ZnO焼結体に電極を形成して、実施例1と同様の条件
で直流課電を印加した。この時のZnO素子に流れるもれ
電流の経時変化を、図4に示す。
When the heating temperatures are 800, 900 and 950 ° C., as shown by characteristics C, D and E in FIG.
Although the leakage current is larger at 00 and 900 ° C. than at 950 ° C., in both cases, the leakage current is hardly increased due to long-time application of electricity, and the life of the element is extended. Therefore, the heating temperature is more preferably between 800 and 950 ° C.
Is preferably between 900 and 950 ° C. <Example 3> In the first and second heat treatment steps shown in Example 1,
In the first heat treatment step, the cooling rate was set to 70 ° C./h,
In the second heat treatment step, the heating temperature is set to 600, 650, 7
An electrode was formed on the ZnO sintered body obtained by performing the heat treatment twice at 50, 900 and 950 ° C., and a DC voltage was applied under the same conditions as in Example 1. FIG. 4 shows the change with time of the leakage current flowing through the ZnO element at this time.

【0027】第二の熱処理工程での加熱温度が600及
び950℃の場合は、図4の特性A及び特性Eに示すよ
うに、もれ電流が大きく、いずれも短時間で熱暴走し
た。これに対し、加熱温度650,750及び900℃
で加熱した素子は、特性B,C,Dに示すように、いず
れももれ電流に大差がなく、かつ長時間課電によるもれ
電流の増加がほとんどないので長寿命の素子になってい
る。このことから第二の熱処理による素子の加熱温度
は、650〜900℃が望ましい。
When the heating temperature in the second heat treatment step was 600 or 950 ° C., as shown by the characteristics A and E in FIG. 4, the leakage current was large, and both of them performed thermal runaway in a short time. On the other hand, heating temperatures of 650, 750 and 900 ° C.
As shown in characteristics B, C, and D, the element heated in step (1) has a long life because there is no large difference in leakage current and there is almost no increase in leakage current due to long-time application of electricity. . For this reason, the heating temperature of the element by the second heat treatment is desirably 650 to 900 ° C.

【0028】〈実施例4〉実施例3で作製した素子(図
4の特性Cの素子)22個を積層して碍子管に納め、図
5に示すDC125kV用避雷器を作製した。素子の寿
命特性より、この避雷器は実使用条件で百年の寿命が保
証される。
Example 4 Twenty-two elements (elements having the characteristic C in FIG. 4) manufactured in Example 3 were stacked and housed in an insulator tube to manufacture a lightning arrester for 125 kV DC shown in FIG. Based on the life characteristics of the element, this arrester is guaranteed for a life of 100 years under actual use conditions.

【0029】[0029]

【発明の効果】本発明によれば、課電寿命特性に優れた
電圧非直線抵抗体及びその抵抗体を用いることによっ
て、寿命の長い避雷器が提供できる。
As described above, according to the present invention, it is possible to obtain an excellent charging life property.
By using a voltage non-linear resistor and its resistor,
Therefore, a lightning arrester having a long life can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による焼結と熱処理パターンの説明図。FIG. 1 is an explanatory view of a sintering and heat treatment pattern according to the present invention.

【図2】本発明による素子の寿命特性を従来方法のもの
と併せて示す説明図。
FIG. 2 is an explanatory view showing the life characteristics of the device according to the present invention together with those of the conventional method.

【図3】本発明における第一の熱処理の加熱温度を変え
たときの素子の寿命特性図。
FIG. 3 is a life characteristic diagram of an element when the heating temperature of the first heat treatment in the present invention is changed.

【図4】本発明における第二の熱処理の加熱温度を変え
たときの素子の寿命特性図。
FIG. 4 is a life characteristic diagram of the element when the heating temperature of the second heat treatment in the present invention is changed.

【図5】本発明方法による電圧非直線抵抗体を用いた避
雷器の構造を示す斜視図。
FIG. 5 is a perspective view showing the structure of an arrester using a voltage non-linear resistor according to the method of the present invention.

【符号の説明】[Explanation of symbols]

1…電圧非直線抵抗体、2…碍子管、3…シールド、4
…絶縁ベース。
DESCRIPTION OF SYMBOLS 1 ... Voltage non-linear resistor, 2 ... Insulator tube, 3 ... Shield, 4
... insulation base.

フロントページの続き (72)発明者 高橋 研 茨城県日立市久慈町4026番地 株式会社 日立製作所 日立研究所内 (72)発明者 中澤 哲夫 茨城県日立市久慈町4026番地 株式会社 日立製作所 日立研究所内 (72)発明者 山崎 武夫 茨城県日立市国分町一丁目1番1号 株 式会社 日立製作所 国分工場内 (72)発明者 白川 晋吾 茨城県日立市国分町一丁目1番1号 株 式会社 日立製作所 国分工場内 (56)参考文献 特開 昭54−61214(JP,A) 特開 平1−313902(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01C 7/10Continued on the front page (72) Inventor Ken Takahashi 4026 Kuji-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi, Ltd.Hitachi Research Laboratory (72) Inventor Tetsuo Nakazawa 4026 Kuji-cho, Hitachi City, Ibaraki Prefecture Hitachi, Ltd. Inventor Takeo Yamazaki 1-1-1, Kokubuncho, Hitachi City, Ibaraki Prefecture Inside Hitachi, Ltd.Kokubu Plant (72) Inventor Shingo Shirakawa 1-1-1, Kokubuncho, Hitachi City, Ibaraki Prefecture Hitachi Kokubu, Ltd. In-plant (56) References JP-A-54-61214 (JP, A) JP-A-1-313902 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01C 7/10

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ZnOを主成分とし、Bi23を必須成分
として含む原材料を混合、成形して成形体を得る工程、 該成形体を1050〜1300℃の温度で一定時間保持
した後、300℃以下の温度に冷却して焼結体を得る工
程、 該焼結体を900〜950℃の温度で1〜3時間保持し
た後、100℃/h以下の降温速度で300℃以下に降
温する第1の熱処理工程、 前記第1の熱処理工程後に、更に650〜900℃の温
度で1〜3時間保持した後、150℃/h以下の降温速
度で室温まで冷却する第2の熱処理工程、の少なくとも
2つの熱処理工程を含む熱処理を行うことを特徴とする
電圧非直線抵抗体の製造方法。
1. A step of mixing and molding raw materials containing ZnO as a main component and Bi 2 O 3 as an essential component to obtain a molded body. After the molded body is held at a temperature of 1050 to 1300 ° C. for a certain time, A step of cooling to a temperature of 300 ° C. or lower to obtain a sintered body; holding the sintered body at a temperature of 900 to 950 ° C. for 1 to 3 hours; A first heat treatment step, after the first heat treatment step, after further holding at a temperature of 650 to 900 ° C. for 1 to 3 hours, cooling to a room temperature at a temperature lowering rate of 150 ° C./h or less, Performing a heat treatment including at least two heat treatment steps of the above.
【請求項2】請求項1記載の製造方法を用いて製造した
円板状または円筒状の電圧非直線抵抗体の、外周面を除
く端面に電極を形成したものを、碍子管に入れて形成し
たことを特徴とする避雷器。
2. A disk-shaped or cylindrical voltage non-linear resistor manufactured by using the manufacturing method according to claim 1 having electrodes formed on an end surface excluding an outer peripheral surface, and formed in an insulator tube. A surge arrester characterized by the following.
JP3091931A 1991-04-23 1991-04-23 Method of manufacturing voltage non-linear resistor and lightning arrester Expired - Fee Related JP2816258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3091931A JP2816258B2 (en) 1991-04-23 1991-04-23 Method of manufacturing voltage non-linear resistor and lightning arrester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3091931A JP2816258B2 (en) 1991-04-23 1991-04-23 Method of manufacturing voltage non-linear resistor and lightning arrester

Publications (2)

Publication Number Publication Date
JPH04322402A JPH04322402A (en) 1992-11-12
JP2816258B2 true JP2816258B2 (en) 1998-10-27

Family

ID=14040337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3091931A Expired - Fee Related JP2816258B2 (en) 1991-04-23 1991-04-23 Method of manufacturing voltage non-linear resistor and lightning arrester

Country Status (1)

Country Link
JP (1) JP2816258B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115368128A (en) * 2022-08-08 2022-11-22 江苏科技大学 Preparation method of ZnO varistor material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2834461A1 (en) * 1977-09-26 1979-04-05 Gen Electric METHOD OF MANUFACTURING A ZINC OXIDE VARISTOR WITH A REDUCED VOLTAGE DRIFT
JPS58200508A (en) * 1982-05-18 1983-11-22 株式会社明電舎 Method of producing nonlinear resistor
JPH01313902A (en) * 1988-06-13 1989-12-19 Hitachi Ltd Voltage nonlinear resistor and manufacture thereof

Also Published As

Publication number Publication date
JPH04322402A (en) 1992-11-12

Similar Documents

Publication Publication Date Title
CN1055170C (en) Voltage nonlinear resistance and its producing method
CN108409306A (en) A kind of Zinc oxide pressure-sensitive ceramic material and preparation method thereof
JPS5823722B2 (en) Manufacturing method of voltage nonlinear resistor porcelain
JP2816258B2 (en) Method of manufacturing voltage non-linear resistor and lightning arrester
JP2933881B2 (en) Voltage nonlinear resistor, method of manufacturing the same, and lightning arrester mounted with the voltage nonlinear resistor
JP2985619B2 (en) Method of manufacturing voltage non-linear resistor and lightning arrester
JP3254950B2 (en) Voltage non-linear resistor, its manufacturing method and application
JP2625178B2 (en) Varistor manufacturing method
JPH04186702A (en) Manufacture of voltage dependent nonlinear resistor and arrestor
JP2825485B2 (en) Method of manufacturing voltage non-linear resistor
JP2002217006A (en) Nonlinear resistor
JPH04245602A (en) Nonlinearly voltage-dependent resistor
JP2985559B2 (en) Varistor
JP3286515B2 (en) Voltage non-linear resistor
JPH01313902A (en) Voltage nonlinear resistor and manufacture thereof
JPH0249521B2 (en)
JPS5858801B2 (en) Manufacturing method of voltage nonlinear resistor
JPS61294803A (en) Manufacture of voltage non-linear resistor
JP2002305105A (en) Method for manufacturing voltage nonlinear resistor
JPH0817608A (en) Manufacture of nonlinear resistor
JPH02156506A (en) Voltage non-linear resistor
JPS648442B2 (en)
JPH0142605B2 (en)
JPS59169104A (en) Method of producing metal oxide nonlinear resistor
JPH08130103A (en) Nonlinear resistor and manufacture thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070814

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080814

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080814

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090814

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100814

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees