JPH0128482B2 - - Google Patents

Info

Publication number
JPH0128482B2
JPH0128482B2 JP57065641A JP6564182A JPH0128482B2 JP H0128482 B2 JPH0128482 B2 JP H0128482B2 JP 57065641 A JP57065641 A JP 57065641A JP 6564182 A JP6564182 A JP 6564182A JP H0128482 B2 JPH0128482 B2 JP H0128482B2
Authority
JP
Japan
Prior art keywords
sintered body
zinc oxide
varistor
foreign particles
v1ma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57065641A
Other languages
Japanese (ja)
Other versions
JPS58182204A (en
Inventor
Kyoshi Matsuda
Keiji Juki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Original Assignee
Marcon Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcon Electronics Co Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP57065641A priority Critical patent/JPS58182204A/en
Publication of JPS58182204A publication Critical patent/JPS58182204A/en
Publication of JPH0128482B2 publication Critical patent/JPH0128482B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、バリスタ組成物や焼結体厚さ又は焼
結条件を変えることなく、高い非直線係数αと高
い信頼性を維持し、任意の立上がり電圧が得られ
る電圧非直線抵抗体の製造方法に関する。 近年、IC、トランジスタ、サイリスタなどの
半導体素子及び半導体回路とその応用の急速な発
展にともない計測制御機器、通信機器及び電力機
器における半導体素子及び半導体回路の使用が普
及し、これらの機器の小形化、高性能化が急速に
進展している。しかしながら、これらの機器やそ
の部品の耐電圧、耐サージ及び耐ノイズ性能は必
ずしも十分と言えない状況にある。 このためこれらの機器や部品を異常なサージや
ノイズから保護することや回路電圧を安定化する
ことが極めて重要な課題になつてきている。この
課題達成のため、優れたバリスタとして酸化亜鉛
系バリスタが開発されている。 バリスタの電圧電流特性は一般に次の関係 I=(V/C)〓 で表示される。ここでVはバリスタに印加されて
いる電圧であり、Iはバリスタを流れる電流であ
る。また、Cは与えられた電流を流したときの電
圧に対流する定数である。ここではバリスタ特性
をCとαで表わすかわりに、1mAにおける立上
がり電圧V1mAとαで表わすこととなる。αは
非直線係数でα=1はオームの法則に従う普通の
抵抗体であり、αが大きいほど非直線が優れてい
ると言える。前記酸化亜鉛係バリスタはV1mA
の値の各種のものが製造されている。焼結体厚さ
1mmにおける立上がり電圧をV1mA/mmとする
と、おおよそV1mA/mm22V,40V,100V,
200Vの4種類のバリスタが製造されている。こ
れらのV1mA/mmをもつ酸化亜鉛系バリスタに
おいてV1mA/mmは焼結体内の酸化亜鉛結晶粒
の大きさによつて決まる。低いV1mA/mmを得
るためにはこの結晶粒を大きく成長させ、また、
高いV1mA/mmを得るためには結晶粒の成長を
小さく抑えることが必要となる。 しかして、以上の内容を前提に高い非直線係数
αと高い信頼性を有し、かつ所望のV1mA/mm
をもつ酸化亜鉛系バリスタを得る手段として、従
来は次のような手段が考えられていた。 すなわち、バリスタ組成物の種類やその比率を
種々変更するか、焼結条件を変更するか、又は焼
結体を構成する成形体の厚さを変更するか、ある
いはこれらの要素を組合せるかなどである。 しかしながら、これらの手段を実施した場合、
製造条件が複雑化し、工業的な製造手段として好
ましいものとは言えず、実用上多くの問題をかか
える結果となつていた。 本発明は、上記のような問題を解消するために
種々検討を重ね完成したもので、バリスタ組成
物、焼結条件あるいは成形体の成形厚さを変える
ことなく、酸化亜鉛結晶粒界に所望の窒化物から
なる異物粒子を存在させて結晶粒界の移動を抑制
し酸化亜鉛結晶粒成長を抑制することによつて高
い非直線係数αと高い信頼性を維持し、任意の立
上がり電圧V1mA/mmをもつバリスタが得られ
る電圧非直線抵抗体の製造方法を提供することを
目的とするものである。 以下、本発明につき詳細に説明する。 すなわち、バリスタ組成物を構成する主成分と
しての酸化亜鉛と添加物としてのMgO,Bi2O3
Sb2O3,CoO,MnO,Cr2O3,Fe2O3,Al2O3
SiO2,TiO2,SnO2,CuO,BaO,CaO,NiO,
PbO,B2O3,MoO3,Li2O,V2O5,ZrO2
In2O3,WO3,Ta2O5,SrO,Ga2O3,GeO2など
の他の金属酸化物を所定量秤量し、例えばボール
ミルで数時間混合・粉砕してスラリ化する。しか
る後、このスラリに焼結過程において前記バリス
タ組成物と反応せず、焼結体中の酸化亜鉛結晶粒
界に最後まで異物粒子として存在するAIN,
Si3N4,NbN,CrN,Mg3N2,TiN,ZrN,
TaN又はVNなどの窒化物からなる不純物を所定
量粉砕しないで混入し分散混合する。 次にこの混合物を乾燥した後、例えばポリビニ
ルアルコールを加え造粒し、しかる後、所定の形
状に成形し1000〜1450℃の高温で焼結し焼結体中
の酸化亜鉛結晶粒界に前記した窒化物からなる異
物粒子を存在させるようにしてなるものである。 なお、この場合酸化亜鉛結晶粒界に異物粒子を
存在させるために混入する窒化物からなる不純物
をバリスタ組成物といつしよに混合・粉砕しない
のは、例えばバリスタ組成特性原料と同時に秤量
し、これら原料といつしよに混合・粉砕しスラリ
化した場合、粉砕過程で不純物が粉砕されて微粒
子となり、焼結過程においてバリスタ組成物と反
応(添加物と同じ作用によるバリスタ組成の変
質)し、焼結体の酸化亜鉛結晶粒界に異物粒子と
して存在できなくなり、本発明の目的を達成し得
なくなるためである。 また、この場合の前記窒化物からなる不純物の
粒径は、特別な手段によつてコントロールするこ
となく、一般的な原料状態である。 次に具体的な実験結果に基づき説明する。 まず、V1mA/mm=22V,40V,100V,200V
それぞれのバリスタを得る場合の本発明による実
施例と不純物を一切混入しない従来の参考例との
製造条件について検討した結果を表1に示す。 表1に示す実施例(A),(B),(C)はバリスタ組成物
の構成及び焼結温度を一定にして窒化物からなる
不純物の混入量を適宜選定し、得られたバリスタ
における立上がり電圧(V1mA/mm)と焼結体
の酸化亜鉛結晶粒界に存在する焼結体1cm3中の異
物粒子の個数の関係を明らかにしたものである。
試料に用いた成形体(焼結前)は実施例及び参考
例とも直径15mmで、厚さは1mmの寸法をもつ円板
形である。 なお、焼結体の酸化亜鉛結晶粒界に存在する異
物粒子の確認は、電子顕微鏡で行つた。 また、酸化亜鉛結晶粒界に存在する異物粒子の
個数については、スラリに混入する不純物の重量
(W)を求める次式から換算した。 W=N×ρ2×4/3π(D/―/2)3×10-12×WG
K/ρ1 上式は次の手順によつて求めた式に式を代
入して得たものである。すなわち、焼結体1cm3
の異物粒子個数をNとし不純物の比重をρ2とした
とき、焼結体1cm3当たりの重量は N×ρ2×4/3π(D/―/2)3×10-12 ……式 は不純物の平均粒子量 焼結体1cm3を構成するための必要バリスタ組成
物重量は WG×K=WS ……式 WGはバリスタ組成物重量 Kは焼結減量系数 WSは焼結体重量 ここで式を焼結体比重(ρ1)で割ると焼結体
の体積(VS)が算出される。 WS/ρ1=VS WS=VS・ρ1 ……式 式に式を代入し WG×K=VS・ρ1 VS=WGK/ρ1 ……式 ここで式に焼結体体積をかけることによつて
必要不純物重量(W)が求められる。 W=N×ρ2×4/3π(D/―/2)3×10-12×VS
……式
The present invention provides a method for manufacturing a voltage nonlinear resistor that maintains a high nonlinear coefficient α and high reliability and can obtain any desired rise voltage without changing the varistor composition, sintered body thickness, or sintering conditions. Regarding. In recent years, with the rapid development of semiconductor elements and circuits such as ICs, transistors, and thyristors, and their applications, the use of semiconductor elements and circuits in measurement control equipment, communication equipment, and power equipment has become widespread, and the miniaturization of these equipment has increased. , high performance is progressing rapidly. However, the voltage resistance, surge resistance, and noise resistance of these devices and their components are not necessarily sufficient. Therefore, protecting these devices and components from abnormal surges and noise and stabilizing circuit voltages have become extremely important issues. To achieve this goal, a zinc oxide varistor has been developed as an excellent varistor. The voltage-current characteristics of a varistor are generally expressed by the following relationship: I=(V/C). Here, V is the voltage applied to the varistor and I is the current flowing through the varistor. Further, C is a constant that convects the voltage when a given current is passed. Here, instead of expressing the varistor characteristics by C and α, it will be expressed by the rising voltage V1mA at 1 mA and α. α is a nonlinear coefficient, and α=1 is an ordinary resistor that follows Ohm's law, and it can be said that the larger α is, the better the nonlinearity is. The zinc oxide varistor has V1mA
A variety of values are manufactured. If the rising voltage at a sintered body thickness of 1 mm is V1mA/mm, approximately V1mA/mm22V, 40V, 100V,
Four types of 200V varistors are manufactured. In these zinc oxide varistors having V1mA/mm, V1mA/mm is determined by the size of zinc oxide crystal grains within the sintered body. In order to obtain a low V1mA/mm, this crystal grain must be grown large, and
In order to obtain a high V1mA/mm, it is necessary to suppress the growth of crystal grains. Therefore, on the premise of the above contents, it is possible to have a high non-linear coefficient α and high reliability, and to achieve the desired V1mA/mm.
Conventionally, the following methods have been considered as means for obtaining a zinc oxide-based varistor with In other words, the types of varistor compositions and their ratios should be changed, the sintering conditions should be changed, the thickness of the compact forming the sintered body should be changed, or these elements should be combined. It is. However, if these measures are implemented;
The manufacturing conditions are complicated, and this method cannot be said to be suitable as an industrial manufacturing method, resulting in many practical problems. The present invention was completed after various studies in order to solve the above-mentioned problems, and the present invention allows the desired alignment of zinc oxide grain boundaries to be achieved without changing the varistor composition, sintering conditions, or molding thickness of the molded body. By suppressing the movement of grain boundaries and suppressing the growth of zinc oxide crystal grains by the presence of foreign particles made of nitride, a high nonlinear coefficient α and high reliability are maintained, and an arbitrary rise voltage V1 mA/mm is maintained. It is an object of the present invention to provide a method for manufacturing a voltage nonlinear resistor that allows a varistor to be obtained. Hereinafter, the present invention will be explained in detail. That is, zinc oxide as the main component constituting the varistor composition and MgO, Bi 2 O 3 as additives,
Sb 2 O 3 , CoO, MnO, Cr 2 O 3 , Fe 2 O 3 , Al 2 O 3 ,
SiO 2 , TiO 2 , SnO 2 , CuO, BaO, CaO, NiO,
PbO, B 2 O 3 , MoO 3 , Li 2 O, V 2 O 5 , ZrO 2 ,
A predetermined amount of other metal oxides such as In 2 O 3 , WO 3 , Ta 2 O 5 , SrO, Ga 2 O 3 , GeO 2 is weighed out, and the mixture is mixed and ground in a ball mill for several hours to form a slurry. Thereafter, AIN, which does not react with the varistor composition during the sintering process and remains as foreign particles at the zinc oxide grain boundaries in the sintered body, is added to the slurry.
Si 3 N 4 , NbN, CrN, Mg 3 N 2 , TiN, ZrN,
A predetermined amount of impurities consisting of nitrides such as TaN or VN is mixed in without being crushed and dispersed. Next, after drying this mixture, for example, polyvinyl alcohol is added and granulated, after which it is formed into a predetermined shape and sintered at a high temperature of 1000 to 1450°C to form the zinc oxide grain boundaries in the sintered body. It is made in such a way that foreign particles made of nitride are present. In this case, the impurity consisting of nitride mixed in in order to have foreign particles present in the zinc oxide crystal grain boundaries is not mixed and pulverized with the varistor composition at the same time, for example, by weighing it at the same time as the varistor composition characteristic raw material, If these raw materials are mixed and ground into a slurry at any time, impurities will be ground into fine particles during the grinding process, and will react with the varistor composition during the sintering process (altering the varistor composition due to the same effect as additives). This is because the particles cannot exist as foreign particles at the zinc oxide grain boundaries of the sintered body, making it impossible to achieve the object of the present invention. Further, the particle size of the impurity made of nitride in this case is not controlled by any special means and is in a general raw material state. Next, explanation will be given based on specific experimental results. First, V1mA/mm=22V, 40V, 100V, 200V
Table 1 shows the results of examining the manufacturing conditions of the embodiment according to the present invention and the conventional reference example in which no impurities are mixed when obtaining each varistor. In Examples (A), (B), and (C) shown in Table 1, the composition of the varistor composition and the sintering temperature were kept constant, and the amount of impurities made of nitride was appropriately selected. The relationship between the voltage (V1 mA/mm) and the number of foreign particles in 1 cm 3 of the sintered body existing at the zinc oxide grain boundaries of the sintered body is clarified.
The molded bodies (before sintering) used as samples were disk-shaped in both Examples and Reference Examples with a diameter of 15 mm and a thickness of 1 mm. Note that foreign particles present in the zinc oxide grain boundaries of the sintered body were confirmed using an electron microscope. Furthermore, the number of foreign particles present at the zinc oxide crystal grain boundaries was calculated using the following formula for calculating the weight (W) of impurities mixed into the slurry. W=N×ρ 2 ×4/3π(D/-/2) 3 ×10 -12 ×W G
K/ρ 1 The above equation was obtained by substituting the equation into the equation obtained by the following procedure. That is, when the number of foreign particles in 1 cm 3 of the sintered body is N and the specific gravity of impurities is ρ 2 , the weight per 1 cm 3 of the sintered body is N×ρ 2 ×4/3π (D/-/2) 3 ×10 -12 ...Formula is the average particle amount of impurities.The required weight of the varistor composition to constitute 1 cm3 of the sintered body is W G ×K=W S ...Formula W G is the weight of the varistor composition K is the sinter The weight loss series W S is the weight of the sintered body. Here, the volume of the sintered body (V S ) is calculated by dividing the formula by the specific gravity of the sintered body (ρ 1 ). W S / ρ 1 = V S W S = V S・ρ 1 ...Formula Substitute the formula into the formula W G ×K=V S・ρ 1 V S = W G K/ρ 1 ...Formula Here, the formula The required impurity weight (W) is determined by multiplying by the volume of the sintered body. W=N×ρ 2 ×4/3π(D/-/2) 3 ×10 -12 ×V S
……formula

【表】 表1から明らかなように、任意の立上がり電圧
V1mA/mmのバリスタを得るために従来例では
成形体厚さを一定にした場合、バリスタ組成物及
び焼結温度を都度変更しなければならず、工程が
複雑化して工業的な製造手段としては好ましくな
いのに対し、実施例(A),(B),(C)はバリスタ組成物
及び焼結温度を変えることなく、焼結体の酸化亜
鉛結晶粒界に存在させる窒化物からなる異物粒子
の個数を変えるだけで可能となることにより、バ
リスタ組成物のスラリに所望のV1mA/mmに応
じた所定の窒化物からなる不純物を混入するのみ
のきわめて簡単な手段でよいことがわかる。 以上のことは次に述べる実験結果によつて一層
明瞭となる。すなわち、焼結体の酸化亜鉛結晶粒
界に存在する異物粒子の個数を変えたときの酸化
亜鉛結晶粒子の平均粒径の変化とV1mA/mmの
変化を調べた結果、第1図及び第2図に示すとお
りであつた。 第1図及び第2図から明らかなように、焼結体
の酸化亜鉛結晶粒界に存在する異物粒子の存在率
によつて酸化亜鉛結晶粒子の成長が抑制でき、よ
つてV1mA/mmを任意にコントロールできるこ
とがわかる。 次に表1の参考例と実施例(A)とのV1mA/mm
に対応する非直線係数αと電流波形が8×20μsで
1000Aの衝撃電流を10回印加したときのV1m
A/mmに対応する立上がり電圧の変化率を比較し
た結果、第3図及び第4図に示すとおりであつ
た。これによれば、実施例(A)がバリスタ組成物及
び焼結温度を変えないで焼結体の酸化亜鉛結晶粒
界に所望の異物粒子の個数を存在させるように、
単に窒化物からなる不純物の混入量を変えるだけ
で参考例と同じ特性のバリスタが得られることが
わかる。 なお、焼結体の酸化亜鉛結晶粒界に存在する異
物粒子が105個/cm3未満では、バリスタ組成物及
び焼結条件を一定にしてV1mA/mm=22Vを確
保することは困難で、また2×107個/cm3を越え
ると焼結体の焼結性が悪く、本発明の主旨に反す
ることが実験上確認された。 以上詳述したように、本発明によればバリスタ
組成物、焼結温度あるいは成形体厚さなどの複雑
な製造条件を変えることなく、酸化亜鉛結晶粒界
に所望の窒化物からなる異物粒子を存在させて結
晶粒界の移動を抑制し酸化亜鉛結晶粒成長を抑制
することによつて高い非直線係数αと高い信頼性
を維持し、任意の立上がり電圧V1mA/mmをも
つバリスタが得られる電圧非直線抵抗体の製造方
法を得ることができる。
[Table] As is clear from Table 1, any rising voltage
In order to obtain a varistor of V1mA/mm, in the conventional example, when the thickness of the molded body was kept constant, the varistor composition and sintering temperature had to be changed each time, making the process complicated and making it difficult to use as an industrial manufacturing method. On the other hand, in Examples (A), (B), and (C), foreign particles made of nitride are allowed to exist in the zinc oxide grain boundaries of the sintered body without changing the varistor composition or sintering temperature. This can be achieved by simply changing the number of , which means that it is sufficient to simply mix a predetermined nitride impurity in accordance with the desired V1mA/mm into the slurry of the varistor composition. The above will become clearer from the experimental results described below. That is, as a result of investigating the change in the average grain size of zinc oxide crystal particles and the change in V1mA/mm when the number of foreign particles existing in the zinc oxide crystal grain boundaries of the sintered body was changed, the results shown in Figs. 1 and 2 It was as shown in the figure. As is clear from Figures 1 and 2, the growth of zinc oxide crystal grains can be suppressed depending on the abundance of foreign particles present at the zinc oxide grain boundaries of the sintered body, and therefore V1mA/mm can be set arbitrarily. It can be seen that it can be controlled. Next, V1mA/mm of the reference example and Example (A) in Table 1
The nonlinear coefficient α and current waveform corresponding to are 8 × 20 μs.
V1m when applying 1000A impact current 10 times
The results of comparing the rate of change in rising voltage corresponding to A/mm were as shown in FIGS. 3 and 4. According to this, Example (A) allows the desired number of foreign particles to be present at the zinc oxide grain boundaries of the sintered body without changing the varistor composition and sintering temperature.
It can be seen that a varistor with the same characteristics as the reference example can be obtained by simply changing the amount of nitride impurity mixed in. In addition, if the number of foreign particles existing in the zinc oxide grain boundaries of the sintered body is less than 10 5 /cm 3 , it is difficult to maintain V1mA/mm = 22V by keeping the varistor composition and sintering conditions constant. Furthermore, it has been experimentally confirmed that if the number exceeds 2×10 7 pieces/cm 3 , the sinterability of the sintered body is poor, which is contrary to the spirit of the present invention. As described in detail above, according to the present invention, foreign particles made of a desired nitride are added to the zinc oxide grain boundaries without changing complicated manufacturing conditions such as the varistor composition, sintering temperature, or compact thickness. A voltage that maintains a high nonlinear coefficient α and high reliability by suppressing the movement of grain boundaries and suppressing the growth of zinc oxide crystal grains, and provides a varistor with an arbitrary rise voltage of V1mA/mm. A method for manufacturing a non-linear resistor can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は異物粒子の存在量に対する酸化亜鉛結
晶粒子の平均粒径を示す曲線図、第2図は異物粒
子の存在量に対するV1mA/mmの変化を示す曲
線図、第3図はV1mA/mmに対する非直線係数
αの比較を示す曲線図、第4図は衝撃電流を印加
したときのV1mA/mmに対する立上がり電圧の
変化率比較を示す曲線図である。
Figure 1 is a curve diagram showing the average particle size of zinc oxide crystal particles versus the amount of foreign particles present, Figure 2 is a curve diagram showing the change in V1mA/mm versus the amount of foreign particles present, and Figure 3 is a curve diagram showing V1mA/mm. FIG. 4 is a curve diagram showing a comparison of the rate of change in the rising voltage with respect to V1 mA/mm when an impact current is applied.

Claims (1)

【特許請求の範囲】 1 酸化亜鉛を主成分とし他に数種類の金属酸化
物を添加してなるバリスタ組成物を混合・粉砕し
スラリを作る手段と、このスラリに焼結過程で前
記バリスタ組成物と反応せず焼結体の酸化亜鉛結
晶粒界に最後まで異物粒子として存在する窒化物
からなる不純物を混入し分散混合する手段と、こ
の混合物を成形焼結し焼結体を得る手段からなる
ことを特徴とする電圧非直線抵抗体の製造方法。 2 窒化物がAIN,Si3N4,NbN,CrN,
Mg3N2,TiN,ZrN,TaN又はVNであること
を特徴とする、特許請求の範囲第1項記載の電圧
非直線抵抗体の製造方法。 3 不純物の混入量として焼結体1cm3中の異物粒
子の個数が105〜2×107個になるようにしたこと
を特徴とする特許請求の範囲第1項又は第2項記
載の電圧非直線抵抗体の製造方法。
[Scope of Claims] 1. A means for preparing a slurry by mixing and pulverizing a varistor composition comprising zinc oxide as a main component and adding several other metal oxides, and adding the varistor composition to this slurry in a sintering process. This method consists of a means for mixing and dispersing an impurity made of nitride that does not react with the zinc oxide crystal grain boundaries of the sintered body and exists as foreign particles until the end, and a means for forming and sintering this mixture to obtain a sintered body. A method of manufacturing a voltage nonlinear resistor, characterized by: 2 Nitride is AIN, Si 3 N 4 , NbN, CrN,
The method for manufacturing a voltage nonlinear resistor according to claim 1, characterized in that the material is Mg 3 N 2 , TiN, ZrN, TaN, or VN. 3. The voltage according to claim 1 or 2, characterized in that the amount of impurities mixed in is such that the number of foreign particles in 1 cm 3 of the sintered body is 10 5 to 2 × 10 7 . A method of manufacturing a nonlinear resistor.
JP57065641A 1982-04-19 1982-04-19 Method of producing voltage nonlinear resistor Granted JPS58182204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57065641A JPS58182204A (en) 1982-04-19 1982-04-19 Method of producing voltage nonlinear resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57065641A JPS58182204A (en) 1982-04-19 1982-04-19 Method of producing voltage nonlinear resistor

Publications (2)

Publication Number Publication Date
JPS58182204A JPS58182204A (en) 1983-10-25
JPH0128482B2 true JPH0128482B2 (en) 1989-06-02

Family

ID=13292844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57065641A Granted JPS58182204A (en) 1982-04-19 1982-04-19 Method of producing voltage nonlinear resistor

Country Status (1)

Country Link
JP (1) JPS58182204A (en)

Also Published As

Publication number Publication date
JPS58182204A (en) 1983-10-25

Similar Documents

Publication Publication Date Title
US6011459A (en) Voltage-dependent non-linear resistor member, method for producing the same and arrester
JPH0128481B2 (en)
JPH0128482B2 (en)
US3836483A (en) Oxide varistor
JPH0128485B2 (en)
JPH0128486B2 (en)
JPH0128487B2 (en)
JPH0128483B2 (en)
JPH0128484B2 (en)
JP3323701B2 (en) Method for producing zinc oxide based porcelain composition
KR920005155B1 (en) Zno-varistor making method
JPH0552642B2 (en)
JPH0249521B2 (en)
JPS6249961B2 (en)
JPH1131605A (en) Voltage nonlinear resistor
JP2546726B2 (en) Voltage nonlinear resistor
JPH02114603A (en) Manufacture of glaze varistor
JPS6028121B2 (en) Manufacturing method of voltage nonlinear resistor
JPH0383846A (en) Production of varistor
KR900001979B1 (en) Process for the preparation of voltage non-linearity type resistors
JPS6028203A (en) Method of producing voltage nonlinear resistor
JPH038765A (en) Production of voltage-dependent nonlinear resistor porcelain composition and varistor
JPS6322602B2 (en)
JP2572882B2 (en) Voltage nonlinear resistor and manufacturing method thereof
JPH0574608A (en) Manufacture of voltage-dependent nonlinear resistor