JPS60233801A - Voltage nonlinear resistor - Google Patents

Voltage nonlinear resistor

Info

Publication number
JPS60233801A
JPS60233801A JP59088917A JP8891784A JPS60233801A JP S60233801 A JPS60233801 A JP S60233801A JP 59088917 A JP59088917 A JP 59088917A JP 8891784 A JP8891784 A JP 8891784A JP S60233801 A JPS60233801 A JP S60233801A
Authority
JP
Japan
Prior art keywords
zinc oxide
voltage
sintered body
nonlinear resistor
bismuth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59088917A
Other languages
Japanese (ja)
Other versions
JPH0249521B2 (en
Inventor
清 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Original Assignee
Marcon Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcon Electronics Co Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP59088917A priority Critical patent/JPS60233801A/en
Publication of JPS60233801A publication Critical patent/JPS60233801A/en
Publication of JPH0249521B2 publication Critical patent/JPH0249521B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は酸化亜鉛を主成分とし、電圧非直線性を有する
焼結体中の酸化亜鉛粒界偏析相を主としてチタン酸ビス
マス層状化合物で構成することにより立上り電圧の低電
圧化と熱的安定性を備えた電圧非直線抵抗体に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention is directed to a method in which the zinc oxide grain boundary segregated phase in a sintered body containing zinc oxide as a main component and having voltage nonlinearity is mainly composed of a bismuth titanate layered compound. This invention relates to a voltage nonlinear resistor that has low rise voltage and thermal stability.

[発明の技術的前JQI 近年、IC,l−ランジスタ、サイリスタなどの半導体
素子および半導体回路とその応用の急速な発展に伴い、
制御2通信機器および電力機器における半導体および半
導体回路の使用が普及し、これら機器の小形化、高性能
化が急速に進展している。しかし、他方ではこのような
進歩に伴い、これらの機器やその部品の耐電圧、耐サー
ジ、耐ノイズ性は十分とは言えない。このためこれらの
機器や部品を異状なサージやノイズから保護すること、
あるいは回路電圧を安定化することが必要である。これ
らの目的のためこれまではSiCやSiバリスタが多用
されてきた。また最近では酸化亜鉛を主成分として、こ
れに添加物を加えたバリスタが開発されている。しかし
最近は半導体および半導体回路の高密度化、高集積化に
伴い半導体および半導体回路の低電圧、化、低電力化が
いっそう促進されている。これらの半導体や半導体回路
を保護するためあるいは@IBM圧を安定化す・るため
にさらに低電圧で働くバリスタが必要となっχきた。
[Technical pre-invention JQI In recent years, with the rapid development of semiconductor devices and circuits such as ICs, L-transistors, and thyristors, and their applications,
Control 2 The use of semiconductors and semiconductor circuits in communication equipment and power equipment has become widespread, and these equipment are rapidly becoming smaller and more sophisticated. However, on the other hand, with such progress, the withstand voltage, surge resistance, and noise resistance of these devices and their components cannot be said to be sufficient. Therefore, it is necessary to protect these devices and parts from abnormal surges and noise.
Alternatively, it is necessary to stabilize the circuit voltage. Until now, SiC and Si varistors have been widely used for these purposes. Recently, varistors have been developed that use zinc oxide as a main component and add additives to it. However, in recent years, as semiconductors and semiconductor circuits have become more dense and highly integrated, semiconductors and semiconductor circuits have become increasingly low-voltage and low-power. In order to protect these semiconductors and semiconductor circuits, or to stabilize @IBM pressure, varistors that work at even lower voltages have become necessary.

バリスタの電圧電流特性は一般につぎの関係式1式%) で表わされる。ここでVはバリスタ素体に印加される電
圧であり、■はバリスタ素体を流れる電流である。また
Cは与えられた電流を流したときの電圧に対応する定数
である。α−1はオームの法則にしたがう普通の抵抗体
であり、αが大きいほど非直線性は優れている。
The voltage-current characteristics of a varistor are generally expressed by the following relational expression (1). Here, V is the voltage applied to the varistor body, and ■ is the current flowing through the varistor body. Further, C is a constant corresponding to the voltage when a given current is passed. α-1 is an ordinary resistor that follows Ohm's law, and the larger α is, the better the nonlinearity is.

ここではバリスタ特性をCとαで表わす代わりに電流を
1m八へcfflの電流密度で流したときの立上り電圧
V 1 mAとαで表わす。焼結体自体が電圧非直線性
をもつ代表的なものであるSiCバリスタはSiC粒子
を磁器結合剤で焼き固めたもので、その非直線性はSi
C粒子の接触抵抗の電圧依存性に起因している。バリス
タの素体厚さ1 mmの場合電流を1m^/ cM流し
たときの立上り電圧をV 1 mA/繭とするとSiC
バリスタはSiC粒子の粒径と素体厚さを制御すること
によりV 1 m八が数■のものから数千Vのものまで
製造可能であるが、非直線係数αが3〜7と小さいため
十カでない。またSiCバリスタと同様に焼結体自体が
非直線性を有するものに酸化亜鉛系バリスタがある。こ
れは酸化亜鉛を主成分とし添加物として少量の酸化ビス
マス、酸化コバルト、酸化マンガン、酸化アンチモンな
どを含むものである。酸化亜鉛系バリスタの非直線係数
は約20〜50でありSiCバリスタに比して非常に優
れた非直線性を示す。このため半導体や半導体回路の保
護に非常に適しているが、半導体や半導体回路の使用電
圧がまずます低電圧化の傾向にある。
Here, instead of expressing the varistor characteristics by C and α, it is expressed by the rising voltage V 1 mA and α when a current is passed through 1m8 at a current density of cffl. SiC varistors, which are a typical sintered body with voltage nonlinearity, are made by baking SiC particles with a ceramic binder, and the nonlinearity is due to the SiC varistor.
This is due to the voltage dependence of the contact resistance of C particles. If the thickness of the varistor body is 1 mm, the rise voltage when a current of 1 m^/cM flows is V 1 mA/cocoon, then SiC
Varistors can be manufactured from a few square meters to several thousand V by controlling the grain size and element thickness of the SiC particles, but because the nonlinear coefficient α is as small as 3 to 7, Not ten. Further, there is a zinc oxide varistor whose sintered body itself has nonlinearity like the SiC varistor. This is mainly composed of zinc oxide and contains small amounts of bismuth oxide, cobalt oxide, manganese oxide, antimony oxide, etc. as additives. The nonlinearity coefficient of the zinc oxide varistor is approximately 20 to 50, and exhibits extremely superior nonlinearity compared to the SiC varistor. For this reason, they are very suitable for protecting semiconductors and semiconductor circuits, but the voltage used by semiconductors and semiconductor circuits is becoming increasingly lower.

[背景技術の問題点] これまでの酸化亜鉛系バリスタでは、上記のような低電
圧化に対応する低電圧バリスタ(VlmAが約20■)
を製造することが非常に困難であった。この理由として
酸化亜鉛系バリスタの微細描造は第1図に示すように低
抵抗の酸化亜鉛結晶粒(1)を非直線性を発揮させる高
抵抗の粒界層(2)で取囲んだものである。図中(3)
は電極、(4)は端子である。このため焼結体厚さ11
Wn当たりの■11Il^/ mmは素体の厚み方向に
存在する粒界層(2)の数により決定される。酸化亜鉛
系バリスタでは1粒界層当たりの立上り電圧は約2.5
■程瓜である。
[Problems with the background technology] Conventional zinc oxide varistors have a low voltage varistor (VlmA of about 20μ) that supports the above-mentioned low voltage.
was extremely difficult to manufacture. The reason for this is that, as shown in Figure 1, the fine pattern of zinc oxide-based varistors consists of low-resistance zinc oxide crystal grains (1) surrounded by high-resistance grain boundary layers (2) that exhibit nonlinearity. It is. (3) in the diagram
is an electrode, and (4) is a terminal. Therefore, the thickness of the sintered body is 11
11Il^/mm per Wn is determined by the number of grain boundary layers (2) present in the thickness direction of the element body. In zinc oxide varistors, the rising voltage per grain boundary layer is approximately 2.5
■It's Cheng Gua.

酸化亜鉛に酸化ビスマス、酸化コバルト、wi化マンガ
ンなどを加えたものを1100〜1300℃の湿度で焼
結したとき、焼結体中の酸化亜鉛結晶粒(1)の粒径は
30〜40μm程度である。このためV 1 mA/ 
mmは40V以上となる。こめためVlmA−20Vの
バリスタを製造するには厚さ0,5mの素体をつくる必
要がある。この揚台微細構造は酸化亜鉛結晶粒(1)が
10個直列につながり粒子と粒子との間に8個の粒界層
(2)が存在するかたちになる。厚さ0.5mmの素体
を製造する方法として焼結体を研磨しC所定の厚さを得
る方法がある。しかし焼結体は酸化亜鉛結晶粒(1)を
主としてビスマス酸化物からなる粒界層(2)が取囲ん
でいるため機械的強度は弱い。このため研磨中に゛ 酸
化亜鉛結晶粒(1)が脱落したりマイクロクラックが発
生し局部的に電圧の低い欠陥部が生ずる。
When zinc oxide mixed with bismuth oxide, cobalt oxide, manganese oxide, etc. is sintered at a humidity of 1100 to 1300°C, the particle size of the zinc oxide crystal grains (1) in the sintered body is about 30 to 40 μm. It is. Therefore, V 1 mA/
mm is 40V or more. In order to manufacture a varistor with a voltage of VlmA-20V, it is necessary to make an element body with a thickness of 0.5 m. This platform microstructure has a form in which ten zinc oxide crystal grains (1) are connected in series and eight grain boundary layers (2) are present between the grains. As a method for manufacturing an element body with a thickness of 0.5 mm, there is a method of polishing a sintered body to obtain a predetermined thickness. However, the mechanical strength of the sintered body is weak because the zinc oxide crystal grains (1) are surrounded by grain boundary layers (2) mainly made of bismuth oxide. For this reason, during polishing, the zinc oxide crystal grains (1) fall off and microcracks occur, resulting in locally low voltage defective areas.

またもうひとつの方法として焼結体が所定の厚さになる
ように焼結後の収縮率を加味して薄い板状に成型する方
法がある。この場合は収縮率を加味して0.6〜0.7
mmの厚さに成型しなければならない。しかし成型体の
機械的強度は非常に弱いため割れや欠けなどが生じ成型
体の取扱いが非常に困難である。
Another method is to mold the sintered body into a thin plate shape, taking into consideration the shrinkage rate after sintering so that the sintered body has a predetermined thickness. In this case, considering the shrinkage rate, it is 0.6 to 0.7
It must be molded to a thickness of mm. However, the mechanical strength of the molded product is very low, and cracks and chips occur, making it extremely difficult to handle the molded product.

これらの欠点をなくすためには焼結体の酸化亜鉛結晶粒
(1)の粒径を約100μmまで成長させ、素体厚さが
約1.0a*rV 1111A=20V(7)ハjJス
タができるようにし、成型体強度を強くする必要がある
。最近酸化亜鉛系低電圧バリスタの製造方法として例え
ば特開昭54−140995号公報で提案されているよ
うに粒径が100μm程度の酸化亜鉛結晶粒(1)を使
用する方法がある。これは焼結過程で酸化亜鉛結晶粒(
1)を100μm程度の大きさまで成長させることが困
難なため主成分である酸化亜鉛の一部に最初から大きく
成長させた酸化亜鉛結晶粒(1)を使用づ−るものであ
る。
In order to eliminate these defects, the grain size of the zinc oxide crystal grains (1) of the sintered body should be grown to about 100 μm, and the element thickness should be about 1.0a*rV 1111A=20V (7) It is necessary to increase the strength of the molded body. Recently, as a method of manufacturing zinc oxide-based low voltage varistors, there is a method of using zinc oxide crystal grains (1) having a grain size of about 100 μm, as proposed in, for example, Japanese Patent Laid-Open No. 140995/1983. During the sintering process, zinc oxide crystal grains (
Since it is difficult to grow 1) to a size of about 100 μm, zinc oxide crystal grains (1) grown to a large size from the beginning are used as part of the main component, zinc oxide.

しかし大きく成長させた酸化亜鉛結晶粒(1)を得るに
は酸化亜鉛に炭酸バリウムや炭酸ストロンチウムを加え
たものを成型、焼結し、この焼結体を純水中で煮沸する
ことにより酸化亜鉛結晶粒(1)を取囲んだ13aやS
rを水に溶解させ焼結体を分解する必要がある。また酸
化亜鉛結晶粒(1)以外の原料の粒径は数μm以下であ
る。このため焼結過程で酸化亜鉛結晶粒(1)部分と他
の原料粉末部分とに収縮率の差が生じ焼結体が多孔質に
なる。
However, in order to obtain large zinc oxide crystal grains (1), a mixture of zinc oxide and barium carbonate or strontium carbonate is molded and sintered, and this sintered body is boiled in pure water. 13a and S surrounding the crystal grain (1)
It is necessary to dissolve r in water and decompose the sintered body. Further, the grain size of the raw materials other than the zinc oxide crystal grains (1) is several μm or less. Therefore, during the sintering process, a difference in shrinkage rate occurs between the zinc oxide crystal grain (1) portion and the other raw material powder portions, making the sintered body porous.

このためV 1 mA/ mmが低く緻密な素体を得る
には酸化亜鉛結晶粒(月の焼結温度2粒径、添加割合。
Therefore, in order to obtain a dense element body with a low V 1 mA/mm, zinc oxide crystal grains (sintering temperature 2 grain size, addition ratio) should be used.

結晶核以外の原料の組成などの条件の選択が複雑となる
The selection of conditions such as the composition of raw materials other than crystal nuclei becomes complicated.

また添加物に酸化ビスマスを含む酸化亜鉛系バリスタの
欠点として焼結体の熱処理条件(電極焼付工程も含む)
により寿命特性が大ぎく変わることがあげられる。これ
は非σ線性を発揮させる粒界層(2)が主として酸化ビ
スマスからなるためである。熱処理前の焼結体中の酸化
ビスマス結晶相はα相、β相、δ相のうちの少なくとも
1種類を含む。この焼結体を熱処理することにより酸化
ビスマスは全てγ相に変わる。このγ相への変化の過程
により寿命特性が大ぎく変動すると考えられる。
Another disadvantage of zinc oxide varistors that contain bismuth oxide as an additive is the heat treatment conditions for the sintered body (including the electrode baking process).
It can be said that the life characteristics change greatly depending on the condition. This is because the grain boundary layer (2) that exhibits non-σ line property is mainly composed of bismuth oxide. The bismuth oxide crystal phase in the sintered body before heat treatment includes at least one of an α phase, a β phase, and a δ phase. By heat-treating this sintered body, all bismuth oxide is converted into the γ phase. It is thought that the life characteristics change greatly due to this process of change to the γ phase.

このように酸化亜鉛を主成分として添加物に酸化ビスマ
スを含む組成系で低電圧バリスタを製造づるには工程数
が非常に多(、かつ条件の選択や管理も複雑であるとい
う欠点があった。
In this way, manufacturing low voltage varistors using a composition system containing zinc oxide as the main component and bismuth oxide as an additive had the disadvantage of requiring a very large number of steps (and the selection and management of conditions were complex). .

[発明の目的] 本発明は酸化亜鉛を主成分とし酸化亜鉛粒界偏析相が主
として酸化ビスマスに代えチタン酸ビスマス層状化合物
で構成することにより焼結体中の酸化亜鉛結晶粒子を1
00μm以上に成長させた低電圧の電圧非直線抵抗体を
提供せんとするものである。
[Object of the invention] The present invention has zinc oxide as the main component, and the zinc oxide grain boundary segregated phase is mainly composed of a bismuth titanate layered compound instead of bismuth oxide, so that the zinc oxide crystal particles in the sintered body are
It is an object of the present invention to provide a low voltage voltage nonlinear resistor grown to a thickness of 00 μm or more.

[発明の概要] 本発明の電圧非直線抵抗体は酸化亜鉛を主成分とし焼結
体自体が電圧非直線性を有する電圧非直線抵抗体1おい
て、焼結体の酸化亜鉛結晶粒界偏析相が主として 2+。
[Summary of the Invention] The voltage nonlinear resistor of the present invention is a voltage nonlinear resistor 1 whose main component is zinc oxide and whose sintered body itself has voltage nonlinearity. The phase is mainly 2+.

(B i 202) (B + 2T i 3010)
 ”−テ示すれるビスマス層状化合物からなるものであ
る。
(B i 202) (B + 2T i 3010)
It consists of a bismuth layered compound shown in the following.

[発明の実施例] 以下本発明の詳細について説明する。すなわち酸化亜鉛
粒界偏析相が主としてチタン酸ビスマス層状化合物から
なるバリスタの微細構造は従来の酸化ビスマスからなる
ものと同様であり非直線性を発揮させる粒界層がチタン
酸ビスマス層状化合物からなるものである。これにより
熱処理工程における粒界層の結晶相変化をなくすことが
可能となった。このように本発明は酸化亜鉛結晶粒界偏
析相が主として酸化ビスマスに代えチタン酸ビスマス層
状化合物で構成したことによって得られる高信頼性、低
電圧電圧非直線抵抗体である。
[Embodiments of the Invention] The details of the present invention will be described below. In other words, the fine structure of the varistor in which the zinc oxide grain boundary segregated phase is mainly composed of bismuth titanate layered compound is similar to that of conventional bismuth oxide, and the grain boundary layer that exhibits nonlinearity is composed of bismuth titanate layered compound. It is. This has made it possible to eliminate crystal phase changes in the grain boundary layer during the heat treatment process. As described above, the present invention provides a highly reliable, low-voltage nonlinear resistor obtained by having the zinc oxide crystal grain boundary segregated phase mainly composed of a bismuth titanate layered compound instead of bismuth oxide.

つぎに本発明の実施例について説明する。酸化亜鉛9、
酸化ビスマス、チタン酸ビスマス層状化合物、酸化コバ
ルト、酸化マンガン、酸化ニッケルを出発原料として第
1表に示す組成割合に秤量。
Next, embodiments of the present invention will be described. Zinc oxide 9,
Bismuth oxide, bismuth titanate layered compound, cobalt oxide, manganese oxide, and nickel oxide were weighed as starting materials to the composition ratios shown in Table 1.

混合し、乾燥、造粒、成型後1100〜1300℃の温
度で焼結し直径15#I、厚さ1.0amの焼結体を得
た。これにオーミンクな接触を示す1.0cdの電極を
形成しVIIIIA/sと非直線係数αを測定した。第
1表にその結果を示す。本発明の実施例はO印を付した
組成No、 5〜8であり、これらは1220℃の温度
で2時間焼結したものである。
After mixing, drying, granulation, and molding, the mixture was sintered at a temperature of 1100 to 1300°C to obtain a sintered body having a diameter of 15 #I and a thickness of 1.0 am. A 1.0 cd electrode showing ohmic contact was formed on this, and VIIIA/s and nonlinear coefficient α were measured. Table 1 shows the results. Examples of the present invention are composition Nos. 5 to 8 marked with O, and these were sintered at a temperature of 1220° C. for 2 hours.

(以下余白) 第1表において組成N(11〜4は酸化ビスマスの量を
変えた参考例であり、組成No、 5〜8はチタン酸ビ
スマス化合物のMを変えた実施例である。
(The following is a blank space) In Table 1, composition No. 11 to 4 are reference examples in which the amount of bismuth oxide was changed, and composition No. 5 to 8 are examples in which M in the bismuth titanate compound was changed.

第1表から実施例の組成No、 5〜8が最もV 1 
mA/履が低くなり、かつ非直線係数αも高く効果が顕
著であることがわかる。また酸化ビスマス、チタン酸ビ
スマス化合物のそれぞれの添加量に対する焼結体のVI
IIIA/mの変化を第2図に、非直線係数αの変化を
第3図に示す。第2図および第3図において曲線Aは酸
化ビスマス、曲線Bはチタン酸ビスマス化合物の場合を
示す。
From Table 1, composition Nos. 5 to 8 of Examples have the highest V 1
It can be seen that the mA/wear becomes low and the non-linear coefficient α is also high, so the effect is remarkable. Also, the VI of the sintered body for each added amount of bismuth oxide and bismuth titanate compound
FIG. 2 shows the change in IIIA/m, and FIG. 3 shows the change in the nonlinear coefficient α. In FIGS. 2 and 3, curve A shows the case of bismuth oxide, and curve B shows the case of bismuth titanate compound.

第2図および第3図からチタン酸ビスマス層状化合物を
添加した曲線Bの実施例は、酸化ビスマスを添加した曲
線Aの参考例と比較して非直線係数αをそこなうことな
く酸化亜鉛結晶粒を大きく成長させることがわかる。第
4図は熱処理温度に対する寿命特性、すなわち空気中2
5℃の雰囲気で1m^/dの電流を1000時間通電し
たときの立上り電圧V 1 mAの変化率ΔV l m
Aを示すもので、曲線A2は組成NQ2の参考例1曲線
B6は組成N06の実施例の場合を示す。第4図から酸
化亜鉛結晶粒界偏析相としてチタン酸ビスマス層状化合
物を含む曲線B6の実施例は熱処理温度に影響されない
ことがわかる。またチタン酸ヒスマス層状化合物の添加
量が0.05モル%未満では酸化亜鉛結晶粒を成長させ
るのに十分でなくV111A/mが高くなるため適当で
ない。また3、0モル%を越えると必要量以上となり焼
結体表面に析出し焼結体が融着するなどの弊害が生じ、
かつV 1 mA/ mmも高くなり、非直線係数αも
低くなりはじめるので適当でない。
From FIG. 2 and FIG. 3, the example of curve B in which bismuth titanate layered compound is added is compared with the reference example of curve A in which bismuth oxide is added. I know it will grow significantly. Figure 4 shows the life characteristics with respect to heat treatment temperature.
Rate of change in rising voltage V 1 mA when a current of 1 m^/d is applied for 1000 hours in an atmosphere of 5°C ΔV l m
Curve A2 shows the case of Reference Example 1 with composition NQ2, and curve B6 shows the case of Example with composition N06. It can be seen from FIG. 4 that the example of curve B6 containing a bismuth titanate layered compound as the zinc oxide grain boundary segregated phase is not affected by the heat treatment temperature. Further, if the amount of the hismuth titanate layered compound added is less than 0.05 mol %, it is not sufficient to grow zinc oxide crystal grains and V111A/m becomes high, which is not suitable. In addition, if the amount exceeds 3.0 mol%, it will be more than the required amount and will cause problems such as precipitation on the surface of the sintered body and fusion of the sintered body.
In addition, V 1 mA/mm also increases, and the nonlinear coefficient α also begins to decrease, which is not appropriate.

なお上記実施例で用いた添加物に加えてさらにSb、C
r’、Sn、AI、MO,8a、B、Si。
In addition to the additives used in the above examples, Sb, C
r', Sn, AI, MO, 8a, B, Si.

Pb、Fe、Srの酸化物を少量添加せしめることによ
り非直線性をいっそう改善できる。
Nonlinearity can be further improved by adding a small amount of oxides of Pb, Fe, and Sr.

[発明の効果] 以上詳述したように本発明は酸化亜鉛を主成分とし、酸
化亜鉛結晶粒界偏析相としてチタン酸ビスマス層状化合
物をB f 4 T i 3012の形にして1%!算
して0,05〜3.0モル%含むことによって酸化亜鉛
結晶粒を100μm以上に成長させることができ、かつ
熱処理工程における粒界層の結晶相変化がないため信頼
性が高く特性の安定した電圧非直線抵抗体を提供するこ
とができる。
[Effects of the Invention] As described in detail above, the present invention uses zinc oxide as the main component and contains bismuth titanate layered compound in the form of B f 4 Ti 3012 as the zinc oxide grain boundary segregated phase at 1%! By containing 0.05 to 3.0 mol% in total, zinc oxide crystal grains can be grown to 100 μm or more, and there is no crystal phase change in the grain boundary layer during the heat treatment process, resulting in high reliability and stable properties. It is possible to provide a voltage nonlinear resistor with a high voltage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は酸化亜鉛系バリスタの微りIIm造を示す拡大
断面図、第2図〜第4図は本発明の実施例と参考例との
特性比較を示すもので第2図は添加物の添加量に対する
V1fflA/Irmの変化を示す曲線図、第3図は同
様に非直線係数αの変化を示す曲線図、第4図は熱処理
温度に対するV 1 mAの変化率を示す曲線図である
。 (1)・・・・・・酸化亜鉛結晶粒 (2) ・・・・・・粒 界 層 (3)・・・・・・電 極 (4)・・・・・・端 子 特 許 出 願 人 マルコン電子株式会社 第1図 第2図 擢 力cI 畳 (モルそ) 第3図 0.030.05 0. S D、 II 3.0 η
Oノに カロ 1k (七lし%) 第4図 @恐埋4 g (−C)
Fig. 1 is an enlarged cross-sectional view showing a zinc oxide-based varistor with a fine IIm structure, and Figs. 2 to 4 show a comparison of characteristics between an example of the present invention and a reference example. FIG. 3 is a curve diagram showing the change in V1fflA/Irm with respect to the addition amount, FIG. 3 is a curve diagram similarly showing the change in the nonlinear coefficient α, and FIG. 4 is a curve diagram showing the rate of change in V 1 mA with respect to the heat treatment temperature. (1)...Zinc oxide crystal grains (2)...Grain boundary layer (3)...Electrode (4)...Terminal patent patented Applicant Marcon Electronics Co., Ltd. Figure 1 Figure 2 Power cI Tatami (Moruso) Figure 3 0.030.05 0. S D, II 3.0 η
O no Karo 1k (7l%) Figure 4 @ Buried 4g (-C)

Claims (2)

【特許請求の範囲】[Claims] (1)酸化亜鉛を主成分とし、焼結体自体が電圧非直線
性を有する電圧非直線抵抗体において、焼結体の酸化亜
鉛結晶粒界偏析相が主として2+、 2−− (B I 202 ) (B l 2T f 301o
) でボされるどスマス層状化合物からなることを特徴
どする電圧非直線抵抗体。
(1) In a voltage nonlinear resistor whose main component is zinc oxide and whose sintered body itself has voltage nonlinearity, the zinc oxide grain boundary segregation phase of the sintered body is mainly 2+, 2− (BI 202 ) (B l 2T f 301o
) A voltage nonlinear resistor characterized in that it is made of a layered compound coated with SUMAS.
(2)ビスマス層状化合物が8 ! 4 T ! 30
12の型にして0.05〜3,0モル%含まれることを
特徴とする特許請求の範囲第(1)項記載の電圧非直線
抵抗体。
(2) 8 bismuth layered compounds! 4T! 30
12. The voltage nonlinear resistor according to claim 1, wherein the voltage nonlinear resistor contains 0.05 to 3.0 mol% of type 12.
JP59088917A 1984-05-02 1984-05-02 Voltage nonlinear resistor Granted JPS60233801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59088917A JPS60233801A (en) 1984-05-02 1984-05-02 Voltage nonlinear resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59088917A JPS60233801A (en) 1984-05-02 1984-05-02 Voltage nonlinear resistor

Publications (2)

Publication Number Publication Date
JPS60233801A true JPS60233801A (en) 1985-11-20
JPH0249521B2 JPH0249521B2 (en) 1990-10-30

Family

ID=13956270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59088917A Granted JPS60233801A (en) 1984-05-02 1984-05-02 Voltage nonlinear resistor

Country Status (1)

Country Link
JP (1) JPS60233801A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5004713A (en) * 1989-07-05 1991-04-02 Corning Incorporated Frequency stable NPO ceramics
US5739742A (en) * 1995-08-31 1998-04-14 Matsushita Electric Industrial Co., Ltd. Zinc oxide ceramics and method for producing the same and zinc oxide varistors
US5770113A (en) * 1995-03-06 1998-06-23 Matsushita Electric Industrial Co., Ltd. Zinc oxide ceramics and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5004713A (en) * 1989-07-05 1991-04-02 Corning Incorporated Frequency stable NPO ceramics
US5770113A (en) * 1995-03-06 1998-06-23 Matsushita Electric Industrial Co., Ltd. Zinc oxide ceramics and method for producing the same
US6146552A (en) * 1995-03-06 2000-11-14 Matsushita Electric Industrial Co., Ltd. Zinc oxide ceramics and method for producing the same
US5739742A (en) * 1995-08-31 1998-04-14 Matsushita Electric Industrial Co., Ltd. Zinc oxide ceramics and method for producing the same and zinc oxide varistors

Also Published As

Publication number Publication date
JPH0249521B2 (en) 1990-10-30

Similar Documents

Publication Publication Date Title
JP2007173313A (en) Current-voltage nonlinear resistor
JPS5823722B2 (en) Manufacturing method of voltage nonlinear resistor porcelain
JPS644322B2 (en)
JPS60233801A (en) Voltage nonlinear resistor
US4692289A (en) Method of manufacturing voltage-dependent resistor
US4338223A (en) Method of manufacturing a voltage-nonlinear resistor
KR100441863B1 (en) Fabrication of praseodymium-based zinc oxide varistors
JPS6028203A (en) Method of producing voltage nonlinear resistor
KR100605531B1 (en) Dysprosia-doped Praseodymia-based Zinc Oxide Varistors And The Manufacturing Method
JP3323701B2 (en) Method for producing zinc oxide based porcelain composition
JP2536128B2 (en) Method for manufacturing voltage non-linear resistance element
JPH03178101A (en) Voltage non-linear resistor
JP2985559B2 (en) Varistor
JP2006245111A (en) Bismuth-based zinc oxide varistor
JPH06204006A (en) Manufacture of zinc oxide varistor
JPH038765A (en) Production of voltage-dependent nonlinear resistor porcelain composition and varistor
JPS5932043B2 (en) Manufacturing method of voltage nonlinear resistance element
JP2536128C (en)
JPH03195003A (en) Voltage-dependent nonlinear resistor
JPH01189901A (en) Voltage dependent nonlinear resistor and manufacture thereof
JPS5816603B2 (en) Manufacturing method of voltage nonlinear resistance element
JPS643326B2 (en)
JPH0128483B2 (en)
JPH05315106A (en) Barium titanate ceramic semiconductor and its manufacture
JPH08130103A (en) Nonlinear resistor and manufacture thereof