JPH08275780A - β−ガラクトシダーゼ遺伝子 - Google Patents
β−ガラクトシダーゼ遺伝子Info
- Publication number
- JPH08275780A JPH08275780A JP7107038A JP10703895A JPH08275780A JP H08275780 A JPH08275780 A JP H08275780A JP 7107038 A JP7107038 A JP 7107038A JP 10703895 A JP10703895 A JP 10703895A JP H08275780 A JPH08275780 A JP H08275780A
- Authority
- JP
- Japan
- Prior art keywords
- gly
- leu
- ser
- ala
- thr
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Enzymes And Modification Thereof (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
(57)【要約】
【目的】 A. oryzae由来のβ−ガラクトシダーゼ遺伝
子を得、当該遺伝子をベクターを介して糸状菌に導入し
て染色体に組み込ませ、β−ガラクトシダーゼを菌体外
に高発現する形質転換体を得る。 【構成】 A. oryzae由来のβ−ガラクトシダーゼ遺伝
子配列及び翻訳アミノ酸配列。
子を得、当該遺伝子をベクターを介して糸状菌に導入し
て染色体に組み込ませ、β−ガラクトシダーゼを菌体外
に高発現する形質転換体を得る。 【構成】 A. oryzae由来のβ−ガラクトシダーゼ遺伝
子配列及び翻訳アミノ酸配列。
Description
【0001】
【産業上の利用分野】本発明はβ−ガラクトシダーゼを
コードする、遺伝子に関する。さらに詳細には、本発明
は麹菌アスペルギルス属オリゼ(以下、A. oryzaeと略
す)由来のβ−ガラクトシダーゼをコードする遺伝子に
関する。
コードする、遺伝子に関する。さらに詳細には、本発明
は麹菌アスペルギルス属オリゼ(以下、A. oryzaeと略
す)由来のβ−ガラクトシダーゼをコードする遺伝子に
関する。
【0002】
【従来の技術及】β−ガラクトシダーゼ(EC 3.2.1.23)
は、β-ガラクトピラノシド結合を加水分解する酵素で
ある。β-ガラクトピラノシド結合を持つ物質の中に
は、牛乳中に多く含まれる乳糖、すなわちβ-D-ガラク
トピラノシル-1,4-D-グルコースが含まれ、β−ガラク
トシダーゼによってグルコースとガラクトースに分解さ
れる。
は、β-ガラクトピラノシド結合を加水分解する酵素で
ある。β-ガラクトピラノシド結合を持つ物質の中に
は、牛乳中に多く含まれる乳糖、すなわちβ-D-ガラク
トピラノシル-1,4-D-グルコースが含まれ、β−ガラク
トシダーゼによってグルコースとガラクトースに分解さ
れる。
【0003】β−ガラクトシダーゼは、大腸菌、乳酸菌
などの腸内細菌から高等動植物細胞まで幅広く存在が知
られており、酵素自体のタンパク質としての諸性質の解
析、さらに遺伝子の構造や発現機構に至るまで研究が進
んでいるものも多い。
などの腸内細菌から高等動植物細胞まで幅広く存在が知
られており、酵素自体のタンパク質としての諸性質の解
析、さらに遺伝子の構造や発現機構に至るまで研究が進
んでいるものも多い。
【0004】産業上、β−ガラクトシダーゼは、例え
ば、チーズやカゼイン製造の過程で生じるホエー中の主
要成分である乳糖(利用価値が低く、産業廃棄物として
処分され水質汚染の一因となっている)を利用価値の高
いグルコース、ガラクトースに変換する目的に用いられ
ている。また、牛乳を摂取した場合に下痢や腹痛の症状
を呈する乳糖不耐症の人に対する対策として、牛乳をβ
−ガラクトシダーゼで処理し、乳糖を部分分解した牛乳
を生産する目的にも使用されている。
ば、チーズやカゼイン製造の過程で生じるホエー中の主
要成分である乳糖(利用価値が低く、産業廃棄物として
処分され水質汚染の一因となっている)を利用価値の高
いグルコース、ガラクトースに変換する目的に用いられ
ている。また、牛乳を摂取した場合に下痢や腹痛の症状
を呈する乳糖不耐症の人に対する対策として、牛乳をβ
−ガラクトシダーゼで処理し、乳糖を部分分解した牛乳
を生産する目的にも使用されている。
【0005】このような目的に使用するβ−ガラクトシ
ダーゼは、粗精製品でよく、なるべく精製を行いやすい
ような生物種をその製造元とすることが必要である。そ
のため、β−ガラクトシダーゼを菌体外に分泌生産する
麹菌アスペルギルス属のカビが用いられることが多い。
大腸菌などのバクテリアはβ−ガラクトシダーゼを菌体
内に生産するのに対し、麹菌はβ−ガラクトシダーゼを
菌体外に分泌生産するため、後の精製過程が簡略化でき
大変有利である。このような麹菌として、A. oryzaeやA
spergillus niger(以下、A. nigerと略す)の変異株が
用いられているが、β−ガラクトシダーゼ遺伝子を麹菌
の染色体に安定的に組み込んだ遺伝子組換え型のβ−ガ
ラクトシダーゼ生産菌は現在まで得られていない。
ダーゼは、粗精製品でよく、なるべく精製を行いやすい
ような生物種をその製造元とすることが必要である。そ
のため、β−ガラクトシダーゼを菌体外に分泌生産する
麹菌アスペルギルス属のカビが用いられることが多い。
大腸菌などのバクテリアはβ−ガラクトシダーゼを菌体
内に生産するのに対し、麹菌はβ−ガラクトシダーゼを
菌体外に分泌生産するため、後の精製過程が簡略化でき
大変有利である。このような麹菌として、A. oryzaeやA
spergillus niger(以下、A. nigerと略す)の変異株が
用いられているが、β−ガラクトシダーゼ遺伝子を麹菌
の染色体に安定的に組み込んだ遺伝子組換え型のβ−ガ
ラクトシダーゼ生産菌は現在まで得られていない。
【0006】β−ガラクトシダーゼの遺伝子はいまだク
ローニングされておらず、それ故に本酵素の生産に遺伝
子工学的手法を利用できるに至ってないのが現状であ
る。唯一、A. nigerのβ−ガラクトシダーゼcDNAがクロ
ーニングされているのみである[Kumar, V. et al., (1
992), BIO/TECHNOLOGY, 10, 82-85.]。
ローニングされておらず、それ故に本酵素の生産に遺伝
子工学的手法を利用できるに至ってないのが現状であ
る。唯一、A. nigerのβ−ガラクトシダーゼcDNAがクロ
ーニングされているのみである[Kumar, V. et al., (1
992), BIO/TECHNOLOGY, 10, 82-85.]。
【0007】
【発明が解決しようとする課題】本発明は、A. oryzae
由来のβ−ガラクトシダーゼ遺伝子を提供することを目
的とする。また、本発明は、当該β−ガラクトシダーゼ
遺伝子を宿主糸状菌染色体に安定的に組み込み、菌体外
にβ−ガラクトシダーゼを高発現することができる形質
転換糸状菌を提供することを目的とする。さらにまた、
本発明は、当該形質転換糸状菌によるβ−ガラクトシダ
ーゼの製造方法を提供することを目的とする。
由来のβ−ガラクトシダーゼ遺伝子を提供することを目
的とする。また、本発明は、当該β−ガラクトシダーゼ
遺伝子を宿主糸状菌染色体に安定的に組み込み、菌体外
にβ−ガラクトシダーゼを高発現することができる形質
転換糸状菌を提供することを目的とする。さらにまた、
本発明は、当該形質転換糸状菌によるβ−ガラクトシダ
ーゼの製造方法を提供することを目的とする。
【0008】
【課題を解決する手段】以上のような現状に鑑み、本発
明者らは、当該β−ガラクトシダーゼの染色体遺伝子を
A. oryzaeからクローニングすることを試み、これに成
功した。
明者らは、当該β−ガラクトシダーゼの染色体遺伝子を
A. oryzaeからクローニングすることを試み、これに成
功した。
【0009】以下に本発明を詳細に説明する。
【0010】A. oryzaeの染色体DNAは、当該菌を培養
し、菌体ミセルを濾過分離して集菌し、次いでこれを破
砕、あるいは溶菌させ、得られた菌体内容物から染色体
DNAを分離精製することによって調製することができ
る。
し、菌体ミセルを濾過分離して集菌し、次いでこれを破
砕、あるいは溶菌させ、得られた菌体内容物から染色体
DNAを分離精製することによって調製することができ
る。
【0011】破砕には、例えば、菌体ミセルを液体窒素
によって凍結した後乳鉢などで擦りつぶす、あるいは菌
体ミセルをグラスビーズと共に攪拌する、などの方法が
用いられる。溶菌には、カビ細胞壁分解酵素などによる
処理方法が用いられ、必要により、プロテアーゼ、リボ
ヌクレアーゼなどの他の酵素剤や、ドデシル硫酸ナトリ
ウム等の界面活性剤が併用される。この様にして得られ
る菌体内容物から染色体DNAを分離・精製するには、常
法にしたがって、例えばフェノール抽出、除タンパク処
理、プロテアーゼ処理、リボヌクレアーゼ処理、アルコ
ール沈澱、遠心分離などの方法を適宜組み合わせること
によって行うことができる。
によって凍結した後乳鉢などで擦りつぶす、あるいは菌
体ミセルをグラスビーズと共に攪拌する、などの方法が
用いられる。溶菌には、カビ細胞壁分解酵素などによる
処理方法が用いられ、必要により、プロテアーゼ、リボ
ヌクレアーゼなどの他の酵素剤や、ドデシル硫酸ナトリ
ウム等の界面活性剤が併用される。この様にして得られ
る菌体内容物から染色体DNAを分離・精製するには、常
法にしたがって、例えばフェノール抽出、除タンパク処
理、プロテアーゼ処理、リボヌクレアーゼ処理、アルコ
ール沈澱、遠心分離などの方法を適宜組み合わせること
によって行うことができる。
【0012】遺伝子ライブラリーを作製する際に用いら
れるベクターは、λファージベクター、プラスミドベク
ターいずれでもよいが、挿入できるDNA断片の大きさを
考慮すると、本発明の場合、λgt10、λgt11或いはλgt
11を改良したλZAP(Short,J. M. et al., Nucleic Aci
ds Res., 16: 7583-7600, 1988)などを用いるのが便利
である。染色体DNAを挿入した組換えベクターを大腸菌
に導入して遺伝子ライブラリーを得る。A. nigerβ−ガ
ラクトシダーゼcDNAの塩基配列から、適当な位置の配列
を選び、センス及びアンチセンスのオリゴヌクレオチド
PCRプライマーを化学合成する。このプライマーを用い
てA. nigerの染色体DNAを鋳型としてPCR反応を行うと、
A. nigerのβ−ガラクトシダーゼ染色体遺伝子の一部、
あるいは全部を含むDNA断片を特異的に増幅することが
できる。このようにして化学合成したDNA、あるいはPCR
により特異的に増幅されたDNA断片は、A. oryzaeのβ−
ガラクトシダーゼ遺伝子と相同性が高いと考えられるた
め、A. oryzaeのβ−ガラクトシダーゼ遺伝子をクロー
ニングする際のプローブとして用いることができる。
れるベクターは、λファージベクター、プラスミドベク
ターいずれでもよいが、挿入できるDNA断片の大きさを
考慮すると、本発明の場合、λgt10、λgt11或いはλgt
11を改良したλZAP(Short,J. M. et al., Nucleic Aci
ds Res., 16: 7583-7600, 1988)などを用いるのが便利
である。染色体DNAを挿入した組換えベクターを大腸菌
に導入して遺伝子ライブラリーを得る。A. nigerβ−ガ
ラクトシダーゼcDNAの塩基配列から、適当な位置の配列
を選び、センス及びアンチセンスのオリゴヌクレオチド
PCRプライマーを化学合成する。このプライマーを用い
てA. nigerの染色体DNAを鋳型としてPCR反応を行うと、
A. nigerのβ−ガラクトシダーゼ染色体遺伝子の一部、
あるいは全部を含むDNA断片を特異的に増幅することが
できる。このようにして化学合成したDNA、あるいはPCR
により特異的に増幅されたDNA断片は、A. oryzaeのβ−
ガラクトシダーゼ遺伝子と相同性が高いと考えられるた
め、A. oryzaeのβ−ガラクトシダーゼ遺伝子をクロー
ニングする際のプローブとして用いることができる。
【0013】これらプローブを用いてコロニーまたはプ
ラークハイブリダイゼーション法を行うことによって、
A. oryzaeの全ゲノムDNAから、目的とするβ−ガラクト
シダーゼ遺伝子を含む染色体DNA断片を取得することが
できる。こうして取得したβ−ガラクトシダーゼ遺伝子
断片を宿主である糸状菌の染色体DNAに安定的に組み込
ませ、β−ガラクトシダーゼを菌体外に高率に発現分泌
させることができる。宿主としては、本発明のβ−ガラ
クトシダーゼ遺伝子の由来菌であるA. oryzaeや、その
類縁の麹菌類を用いることが望ましい。
ラークハイブリダイゼーション法を行うことによって、
A. oryzaeの全ゲノムDNAから、目的とするβ−ガラクト
シダーゼ遺伝子を含む染色体DNA断片を取得することが
できる。こうして取得したβ−ガラクトシダーゼ遺伝子
断片を宿主である糸状菌の染色体DNAに安定的に組み込
ませ、β−ガラクトシダーゼを菌体外に高率に発現分泌
させることができる。宿主としては、本発明のβ−ガラ
クトシダーゼ遺伝子の由来菌であるA. oryzaeや、その
類縁の麹菌類を用いることが望ましい。
【0014】例えば、宿主である糸状菌としてA. oryza
eを用いる場合には、β−ガラクトシダーゼ遺伝子断片
に、A. oryzaeで使用できる選択マーカー、例えば、ア
ルギニン要求性を相補する遺伝子などを結合し、ベクタ
ーを介して、宿主菌A. oryzaeに導入して形質転換体を
作製する。β−ガラクトシダーゼ遺伝子を含む外来DNA
は、宿主の染色体に全体として、或いはその一部として
安定的に組み込まれる。このようなA. oryzaeの形質転
換体は、β−ガラクトシダーゼを菌体外に高率に発現分
泌する。
eを用いる場合には、β−ガラクトシダーゼ遺伝子断片
に、A. oryzaeで使用できる選択マーカー、例えば、ア
ルギニン要求性を相補する遺伝子などを結合し、ベクタ
ーを介して、宿主菌A. oryzaeに導入して形質転換体を
作製する。β−ガラクトシダーゼ遺伝子を含む外来DNA
は、宿主の染色体に全体として、或いはその一部として
安定的に組み込まれる。このようなA. oryzaeの形質転
換体は、β−ガラクトシダーゼを菌体外に高率に発現分
泌する。
【0015】通常、選択マーカーなどは、大腸菌用のベ
クターに連結された形で作製しておき、これに目的の遺
伝子を連結する。このDNAを大腸菌を宿主として大量に
調製して、糸状菌の形質転換に使用する。この際の大腸
菌用ベクターとしては、例えば、pBR322、pUC18、pUC19
やそれらの誘導体などが使用できる。更に、例えば、大
腸菌と酵母など、二種類以上の宿主微生物で自律的増殖
可能なシャトルベクター、例えば、YEp13などを利用す
ることも可能である。
クターに連結された形で作製しておき、これに目的の遺
伝子を連結する。このDNAを大腸菌を宿主として大量に
調製して、糸状菌の形質転換に使用する。この際の大腸
菌用ベクターとしては、例えば、pBR322、pUC18、pUC19
やそれらの誘導体などが使用できる。更に、例えば、大
腸菌と酵母など、二種類以上の宿主微生物で自律的増殖
可能なシャトルベクター、例えば、YEp13などを利用す
ることも可能である。
【0016】こうして作製した組み換えプラスミドを、
宿主菌A. oryzaeに導入し形質転換するには、公知の方
法、例えば、五味らの方法[Gomi, K., et al., (198
7), Agric. Biol. Chem., 51 (9), 2549-2555.]に準じ
て行えばよい。すなわち細胞壁溶解酵素処理によってプ
ロトプラストを作成し、ポリエチレングリコールと塩化
カルシウム存在下でDNAを導入させる方法などによって
行うことができる。
宿主菌A. oryzaeに導入し形質転換するには、公知の方
法、例えば、五味らの方法[Gomi, K., et al., (198
7), Agric. Biol. Chem., 51 (9), 2549-2555.]に準じ
て行えばよい。すなわち細胞壁溶解酵素処理によってプ
ロトプラストを作成し、ポリエチレングリコールと塩化
カルシウム存在下でDNAを導入させる方法などによって
行うことができる。
【0017】目的とする形質転換体を選択するには、例
えば、アルギニン要求性を相補する遺伝子argBを用いる
場合、野生型A. oryzaeから、argB-型の形質を持つ劣性
ホモ変異株を育種、単離し、これを宿主として用いる
[五味勝也、原昌道(1990)、蛋白質核酸酵素、35(14),
2552-2566.]。この場合、Czapeck Dox培地[O'Donnel
l, K. and S. W. Peterson, (1992) Biotechnology of
Filamentous Fungi: Technology and Products, Butter
worth-Heinemann, Bothell.]などのカビ用最少栄養培
地プレート上で、上記変異株が生育できないのに対し、
形質転換した株はコロニーを形成することができるた
め、選択が可能である。
えば、アルギニン要求性を相補する遺伝子argBを用いる
場合、野生型A. oryzaeから、argB-型の形質を持つ劣性
ホモ変異株を育種、単離し、これを宿主として用いる
[五味勝也、原昌道(1990)、蛋白質核酸酵素、35(14),
2552-2566.]。この場合、Czapeck Dox培地[O'Donnel
l, K. and S. W. Peterson, (1992) Biotechnology of
Filamentous Fungi: Technology and Products, Butter
worth-Heinemann, Bothell.]などのカビ用最少栄養培
地プレート上で、上記変異株が生育できないのに対し、
形質転換した株はコロニーを形成することができるた
め、選択が可能である。
【0018】また、当該遺伝子の上流に、β−ガラクト
シダーゼ遺伝子以外のカビ遺伝子の調節配列、例えば、
マルトースやデンプンなどで強力に誘導することが可能
なA.oryzaeのグルコアミラーゼ遺伝子のプロモーター
[Tsuchiya, K., et al., (1993), Appl. Microbiol. B
iotechnol., 40, 327-332、Hata, Y., et al., (1991),
Gene, 108, 145-150.]などを結合して、導入したβ−
ガラクトシダーゼの発現を調節したり、増強したりする
ことができる。また、当該遺伝子の下流に、他の遺伝子
の転写終結配列であるターミネーターなどを結合して、
β−ガラクトシダーゼ遺伝子の転写を安定させることが
できる。
シダーゼ遺伝子以外のカビ遺伝子の調節配列、例えば、
マルトースやデンプンなどで強力に誘導することが可能
なA.oryzaeのグルコアミラーゼ遺伝子のプロモーター
[Tsuchiya, K., et al., (1993), Appl. Microbiol. B
iotechnol., 40, 327-332、Hata, Y., et al., (1991),
Gene, 108, 145-150.]などを結合して、導入したβ−
ガラクトシダーゼの発現を調節したり、増強したりする
ことができる。また、当該遺伝子の下流に、他の遺伝子
の転写終結配列であるターミネーターなどを結合して、
β−ガラクトシダーゼ遺伝子の転写を安定させることが
できる。
【0019】
【実施例】以下本発明を実施例により説明する。
【0020】実施例1(β−ガラクトシダーゼ染色体遺
伝子のクローニング) Aspergillus oryzae RIB40株(国税庁醸造試験所保有
株;以下、RIB40株)を、DP培地[O'Donnell, K. and
S. W. Peterson, (1992) Biotechnology of Filamentou
s Fungi: Technology and Products, Butterworth-Hein
emann, Bothell]にて培養し、培養液から菌体ミセル
を、グラスフィルターで濾過分離し回収した。回収した
菌体ミセルをペーパータオル上に押し付けて脱水した
後、液体窒素中で瞬時に凍結し、次いで乳鉢中で粉砕し
紛状菌体とした。
伝子のクローニング) Aspergillus oryzae RIB40株(国税庁醸造試験所保有
株;以下、RIB40株)を、DP培地[O'Donnell, K. and
S. W. Peterson, (1992) Biotechnology of Filamentou
s Fungi: Technology and Products, Butterworth-Hein
emann, Bothell]にて培養し、培養液から菌体ミセル
を、グラスフィルターで濾過分離し回収した。回収した
菌体ミセルをペーパータオル上に押し付けて脱水した
後、液体窒素中で瞬時に凍結し、次いで乳鉢中で粉砕し
紛状菌体とした。
【0021】培養液10ml分の粉状菌体を2mlのTE(10mM
トリス塩酸緩衝液pH8.0、1mM EDTA)に懸濁した後、同
量の溶菌溶液(2%ドデシル硫酸ナトリウム、10mM EDT
A、50mMトリス塩酸緩衝液pH7.0)を加えてゆっくり攪拌
後、室温にて15分間放置した。15000rpm、5分間の遠心
分離を行い、上清を回収した。これに、フェノール(0.
1MTris-HCl、pH8.0にて飽和させたもの):クロロホル
ム:イソアミルアルコール=25:24:1(v/v)を等量加
え、抽出した後、15000rpm、5分間の遠心分離を行い上
層を回収した。次いで、2.5倍量のエタノールを加えて-
80℃に10分間放置後、15000rpm、5分間の遠心により、
染色体DNAを沈澱させた。
トリス塩酸緩衝液pH8.0、1mM EDTA)に懸濁した後、同
量の溶菌溶液(2%ドデシル硫酸ナトリウム、10mM EDT
A、50mMトリス塩酸緩衝液pH7.0)を加えてゆっくり攪拌
後、室温にて15分間放置した。15000rpm、5分間の遠心
分離を行い、上清を回収した。これに、フェノール(0.
1MTris-HCl、pH8.0にて飽和させたもの):クロロホル
ム:イソアミルアルコール=25:24:1(v/v)を等量加
え、抽出した後、15000rpm、5分間の遠心分離を行い上
層を回収した。次いで、2.5倍量のエタノールを加えて-
80℃に10分間放置後、15000rpm、5分間の遠心により、
染色体DNAを沈澱させた。
【0022】このDNAを0.5mlのTEに溶解し、5μlの10mg
/mlリボヌクレアーゼA溶液を加えた後、37℃30分間放置
した。フェノール:クロロホルム:イソアミルアルコー
ル=25:24:1(v/v)による抽出を2回、クロロホル
ム:イソアミルアルコール=24:1(v/v)による抽出を
1回行った後、50μlの3M酢酸カリウムpH5.5と1mlのエタ
ノールを加えて、再度DNAを沈澱させた。得られたDNA沈
澱は、最終的に100μlのTEに溶解した。
/mlリボヌクレアーゼA溶液を加えた後、37℃30分間放置
した。フェノール:クロロホルム:イソアミルアルコー
ル=25:24:1(v/v)による抽出を2回、クロロホル
ム:イソアミルアルコール=24:1(v/v)による抽出を
1回行った後、50μlの3M酢酸カリウムpH5.5と1mlのエタ
ノールを加えて、再度DNAを沈澱させた。得られたDNA沈
澱は、最終的に100μlのTEに溶解した。
【0023】こうして得られたRIB40株の染色体DNAを制
限酵素Sau3AIで不完全消化し、TAEアガロースゲル電気
泳動を行った後、9から20kb以上の長さに相当する部分
のゲルを切り出し、GENECLEAN DNA精製キット(バイオ1
01社)を用いてDNAを回収し、分画精製した。
限酵素Sau3AIで不完全消化し、TAEアガロースゲル電気
泳動を行った後、9から20kb以上の長さに相当する部分
のゲルを切り出し、GENECLEAN DNA精製キット(バイオ1
01社)を用いてDNAを回収し、分画精製した。
【0024】得られた染色体DNA断片を、大腸菌λファ
ージベクターEMBL3(ストラタジーン社)のBamHI切断片
にライゲーションした。ライゲーション処理は、常法に
従い、T4DNAリガーゼを用いて行った。東洋紡社パッケ
ージング・キットを用いてインビトロ・パッケージング
を行った後、大腸菌Q359株[Sambrook, J. et al., (19
82) Molecular Cloning: a laboratory manual, 2nd e
d., Cold Spring Harbor Laboratory, Cold Spring Har
bor, New York.]に形質導入し、RIB40株染色体DNAの遺
伝子ライブラリーを作製した。
ージベクターEMBL3(ストラタジーン社)のBamHI切断片
にライゲーションした。ライゲーション処理は、常法に
従い、T4DNAリガーゼを用いて行った。東洋紡社パッケ
ージング・キットを用いてインビトロ・パッケージング
を行った後、大腸菌Q359株[Sambrook, J. et al., (19
82) Molecular Cloning: a laboratory manual, 2nd e
d., Cold Spring Harbor Laboratory, Cold Spring Har
bor, New York.]に形質導入し、RIB40株染色体DNAの遺
伝子ライブラリーを作製した。
【0025】A. oryzaeの近縁種Aspergillus niger VTT
-D-80144株のβ-gal cDNA遺子の塩基配列[Kumar, V. e
t al., (1992), BIO/TECHNOLOGY, 10, 82-85.]を参考
に、PCR反応用に下記の配列を有するオリゴヌクレオチ
ドプライマー、ITO87、ITO88、ITO90及びITO91を合成し
た。
-D-80144株のβ-gal cDNA遺子の塩基配列[Kumar, V. e
t al., (1992), BIO/TECHNOLOGY, 10, 82-85.]を参考
に、PCR反応用に下記の配列を有するオリゴヌクレオチ
ドプライマー、ITO87、ITO88、ITO90及びITO91を合成し
た。
【0026】ITO87: TTTCTAGAAGAGTGTCCACGTACTTCCA ITO88: GCCATTATGAACCTCTACATG ITO90: TCCTACGATGATTCTCTCTGG ITO91: TGTTGAGGAACAGTGGGACAT これらのプライマーを用い、上記A. oryzae菌体からの
染色体DNA調製法と同様な方法で調製したA. niger IFO4
066株(財団法人発酵研究所)の染色体DNAを基質とした
PCR反応を行った。PCR反応は、100mM塩化カリウム、10m
M塩化マグネシウム、20mMトリス・塩酸緩衝液pH7.2、0.
1%ゼラチン、2.5mMデオキシヌクレオチド三リン酸(dAT
P、dCTP、dGTP及びTTP)の反応液50μl中に、2.5ユニッ
トTaq DNAポリメラーゼ(シータス社)、各々100pmolの
上記オリゴヌクレオチドプライマー、0.1μg の上記基
質DNAを加え、94℃1分間、55℃1分間、72℃2分間の処理
を30サイクル繰り返して行った。
染色体DNA調製法と同様な方法で調製したA. niger IFO4
066株(財団法人発酵研究所)の染色体DNAを基質とした
PCR反応を行った。PCR反応は、100mM塩化カリウム、10m
M塩化マグネシウム、20mMトリス・塩酸緩衝液pH7.2、0.
1%ゼラチン、2.5mMデオキシヌクレオチド三リン酸(dAT
P、dCTP、dGTP及びTTP)の反応液50μl中に、2.5ユニッ
トTaq DNAポリメラーゼ(シータス社)、各々100pmolの
上記オリゴヌクレオチドプライマー、0.1μg の上記基
質DNAを加え、94℃1分間、55℃1分間、72℃2分間の処理
を30サイクル繰り返して行った。
【0027】PCRの結果、ITO87とITO88の組み合わせ、I
TO90とITO91の組み合わせでそれぞれ、A. niger β-gal
染色体遺伝子の一部に相当する2個のPCR産物(約1.1kb
と約0.6kb)を得た。これらの断片を、アガロースゲル
電気泳動にかけた後、相当するバンド部分のゲルを切り
出し、GENECLEAN DNA精製キットを用いてDNAを回収し
た。
TO90とITO91の組み合わせでそれぞれ、A. niger β-gal
染色体遺伝子の一部に相当する2個のPCR産物(約1.1kb
と約0.6kb)を得た。これらの断片を、アガロースゲル
電気泳動にかけた後、相当するバンド部分のゲルを切り
出し、GENECLEAN DNA精製キットを用いてDNAを回収し
た。
【0028】上記A. oryzae RIB40株染色体DNAライブラ
リを大腸菌LE392株[Sambrook, J.et al., (1982) Mole
cular Cloning: a laboratory manual, 2nd ed., Cold
Spring Harbor Laboratory, Cold Spring Harbor, New
York.]に感染させ、ファージ・プラーク約5000個を得
た。上記2個のPCR産物をプローブとしたプラーク・ハイ
ブリダイゼーションを行い、両方のプローブとハイブリ
ダイズするクローンを取得し#1-6と命名した。#1-6のフ
ァージ溶液から#1-6 DNAを調製し、図1に示す制限酵素
地図を作製した。
リを大腸菌LE392株[Sambrook, J.et al., (1982) Mole
cular Cloning: a laboratory manual, 2nd ed., Cold
Spring Harbor Laboratory, Cold Spring Harbor, New
York.]に感染させ、ファージ・プラーク約5000個を得
た。上記2個のPCR産物をプローブとしたプラーク・ハイ
ブリダイゼーションを行い、両方のプローブとハイブリ
ダイズするクローンを取得し#1-6と命名した。#1-6のフ
ァージ溶液から#1-6 DNAを調製し、図1に示す制限酵素
地図を作製した。
【0029】プローブとハイブリダイズし、β−ガラク
トシダーゼ遺伝子が含まれていると考えられるEcoRI 3.
0kb断片(図1の断片A)、BamHI 4.5kb断片(図1の断
片B)を、pUC118ベクター(宝酒造)の、それぞれEcoR
I、BamHI認識切断部位にサブクローニングした。以下、
この様なプラスミドを用いたクローニング、サブクロー
ニングには、大腸菌TG1(アマシャム社)、あるいはDH5
[Sambrook, J. et al.,(1982) Molecular Cloning: a
laboratory manual, 2nd ed., Cold Spring Harbor Lab
oratory, Cold Spring Harbor, New York.]のいずれか
を用いた。これら挿入断片末端のDNA塩基配列を、シー
クエネース(ver 2.0)7-deazaシークエンシング・キット
(United States Biochemical社)と、M13ユニバーサル
プライマーあるいはM13リバーサルプライマー(宝酒
造)を用いて決定した結果、上記A.nigerβ−ガラクト
シダーゼcDNA遺伝子と相同性の高い配列を含んでいるこ
とが判明し、#1-6が、A. oryzaeβ−ガラクトシダーゼ
染色体遺伝子を含むことが認められた。
トシダーゼ遺伝子が含まれていると考えられるEcoRI 3.
0kb断片(図1の断片A)、BamHI 4.5kb断片(図1の断
片B)を、pUC118ベクター(宝酒造)の、それぞれEcoR
I、BamHI認識切断部位にサブクローニングした。以下、
この様なプラスミドを用いたクローニング、サブクロー
ニングには、大腸菌TG1(アマシャム社)、あるいはDH5
[Sambrook, J. et al.,(1982) Molecular Cloning: a
laboratory manual, 2nd ed., Cold Spring Harbor Lab
oratory, Cold Spring Harbor, New York.]のいずれか
を用いた。これら挿入断片末端のDNA塩基配列を、シー
クエネース(ver 2.0)7-deazaシークエンシング・キット
(United States Biochemical社)と、M13ユニバーサル
プライマーあるいはM13リバーサルプライマー(宝酒
造)を用いて決定した結果、上記A.nigerβ−ガラクト
シダーゼcDNA遺伝子と相同性の高い配列を含んでいるこ
とが判明し、#1-6が、A. oryzaeβ−ガラクトシダーゼ
染色体遺伝子を含むことが認められた。
【0030】#1-6の挿入DNA断片から、A. oryzaeβ−ガ
ラクトシダーゼ染色体遺伝子全体をカバーしていると考
えられる2つの連続したEcoRI 2.2断片、(図1の断片
C)とEcoRI 3.0断片(図1の断片A)を分離し、pUC118
のEcoRI認識切断部位にサブクローニングした。また、
同断片を制限酵素Sau3AIで切断しBamHI切断pUC118に、
またAluI、HaeIII、AfaIでそれぞれ独立に切断しSmaI切
断pUC118に、それぞれサブクローニングを行い、複数の
サブクローンを得た。これらサブクローンの挿入断片の
塩基配列を上記と同様に配列決定した。得られた配列
を、塩基配列解析プログラムSDC-GENETYX ver. 8.0(ソ
フトウェア・デベロップメント社)を用いて統合し、Ec
oRI 2.2断片とEcoRI 3.0断片の全塩基配列、計5,319bp
を決定した。
ラクトシダーゼ染色体遺伝子全体をカバーしていると考
えられる2つの連続したEcoRI 2.2断片、(図1の断片
C)とEcoRI 3.0断片(図1の断片A)を分離し、pUC118
のEcoRI認識切断部位にサブクローニングした。また、
同断片を制限酵素Sau3AIで切断しBamHI切断pUC118に、
またAluI、HaeIII、AfaIでそれぞれ独立に切断しSmaI切
断pUC118に、それぞれサブクローニングを行い、複数の
サブクローンを得た。これらサブクローンの挿入断片の
塩基配列を上記と同様に配列決定した。得られた配列
を、塩基配列解析プログラムSDC-GENETYX ver. 8.0(ソ
フトウェア・デベロップメント社)を用いて統合し、Ec
oRI 2.2断片とEcoRI 3.0断片の全塩基配列、計5,319bp
を決定した。
【0031】この配列中には、A. nigerβ−ガラクトシ
ダーゼcDNA遺伝子[Kumar, V. et al., (1992), BIO/T
ECHNOLOGY, 10, 82-85.]と相同性のある領域が存在
し、当該領域は、A. oryzaeβ−ガラクトシダーゼ遺伝
子のコ−ディング領域と推定された。配列中には、A. n
igerβ−ガラクトシダーゼcDNAには存在しない領域も計
8ヶ所存在し、いわゆるイントロン配列と考えられた。E
coRI 2.2断片とEcoRI 3.0断片の制限酵素地図と、塩基
配列から推定されるA. oryzae RIB40株β−ガラクトシ
ダーゼ染色体遺伝子及びその周辺の制限酵素地図を図2
に示した。矢印は、β−ガラクトシダーゼコーディング
領域を示し、矢印内の網掛け枠内はエキソンを、空白枠
内はイントロンを示す。
ダーゼcDNA遺伝子[Kumar, V. et al., (1992), BIO/T
ECHNOLOGY, 10, 82-85.]と相同性のある領域が存在
し、当該領域は、A. oryzaeβ−ガラクトシダーゼ遺伝
子のコ−ディング領域と推定された。配列中には、A. n
igerβ−ガラクトシダーゼcDNAには存在しない領域も計
8ヶ所存在し、いわゆるイントロン配列と考えられた。E
coRI 2.2断片とEcoRI 3.0断片の制限酵素地図と、塩基
配列から推定されるA. oryzae RIB40株β−ガラクトシ
ダーゼ染色体遺伝子及びその周辺の制限酵素地図を図2
に示した。矢印は、β−ガラクトシダーゼコーディング
領域を示し、矢印内の網掛け枠内はエキソンを、空白枠
内はイントロンを示す。
【0032】イントロンを除いたコ−ディング領域は、
配列番号3に示した配列の、塩基番号988番目から1122
番目、1195番目から1271番目、1318番目から1620番目、
1674番目から1940番目、2012番目から2027番目、2074番
目から2169番目、2222番目から2356番目、2407番目から
3073番目、3122番目から4443番目の各配列、総計3,018b
p からなり、1,005アミノ酸をコードしていると考えら
れた。
配列番号3に示した配列の、塩基番号988番目から1122
番目、1195番目から1271番目、1318番目から1620番目、
1674番目から1940番目、2012番目から2027番目、2074番
目から2169番目、2222番目から2356番目、2407番目から
3073番目、3122番目から4443番目の各配列、総計3,018b
p からなり、1,005アミノ酸をコードしていると考えら
れた。
【0033】イントロンを除いたコーディング領域のア
ミノ酸配列を配列番号2に示した。当該アミノ酸配列
は、A. nigerβ−ガラクトシダーゼcDNAから推定される
アミノ酸配列と70.7%相同であった。また、配列番号1
に、コーディング領域の塩基配列および翻訳アミノ酸配
列を併記した。配列番号3には、得られた5319塩基の全
配列を示した。コーディング領域については翻訳アミノ
酸配列を併記した。
ミノ酸配列を配列番号2に示した。当該アミノ酸配列
は、A. nigerβ−ガラクトシダーゼcDNAから推定される
アミノ酸配列と70.7%相同であった。また、配列番号1
に、コーディング領域の塩基配列および翻訳アミノ酸配
列を併記した。配列番号3には、得られた5319塩基の全
配列を示した。コーディング領域については翻訳アミノ
酸配列を併記した。
【0034】実施例2(β−ガラクトシダーゼ高発現株
の作製) 実施例1において得られたクロ−ン#1-6のDNA断片を、P
stIで部分切断し、β−ガラクトシダーゼ遺伝子のN末端
を含む約0.2kbの断片とβ−ガラクトシダーゼ遺伝子の
ほぼ全体を含む約6kbの断片が連続している断片(図1
の断片D)をpUC119のPstI認識切断部位にサブクロ−ニ
ングして、pAOBG12(図3のA)を取得した。このpAOBG1
2プラスミドをKpnIとSphIで切断して得られたβ−ガラ
クトシダーゼ遺伝子全体を含む断片を切り出し、DNAブ
ランティングキット(宝酒造)を用いてDNA末端を平滑
化した後、SmaIで切断したA. oryzae用発現ベクターpMA
RG[図3のB、Tsuchiya, K., et al., (1993), Appl. M
icrobiol. Biotechnol., 40,327-332.、Hata, Y., et a
l., (1991), Gene, 108, 145-150.]に結合し、pAOBG26
(図3のC)を作製した。
の作製) 実施例1において得られたクロ−ン#1-6のDNA断片を、P
stIで部分切断し、β−ガラクトシダーゼ遺伝子のN末端
を含む約0.2kbの断片とβ−ガラクトシダーゼ遺伝子の
ほぼ全体を含む約6kbの断片が連続している断片(図1
の断片D)をpUC119のPstI認識切断部位にサブクロ−ニ
ングして、pAOBG12(図3のA)を取得した。このpAOBG1
2プラスミドをKpnIとSphIで切断して得られたβ−ガラ
クトシダーゼ遺伝子全体を含む断片を切り出し、DNAブ
ランティングキット(宝酒造)を用いてDNA末端を平滑
化した後、SmaIで切断したA. oryzae用発現ベクターpMA
RG[図3のB、Tsuchiya, K., et al., (1993), Appl. M
icrobiol. Biotechnol., 40,327-332.、Hata, Y., et a
l., (1991), Gene, 108, 145-150.]に結合し、pAOBG26
(図3のC)を作製した。
【0035】pAOBG26においては、β−ガラクトシダー
ゼ遺伝子は、A. oryzae由来glaA(グルコアミラーゼ遺
伝子)のプロモーター配列の下流に正方向に連結され、
さらにその遺伝子の下流にはA. oryzae amyB(α-アミ
ラーゼ遺伝子)のターミネーター配列が連結されてい
る。また、A. oryzaeで働く選択マーカーとして、A. ni
dulans由来のargB(オルニチンカルバモイルトランスフ
ェラーゼ酵素遺伝子)を持つ。
ゼ遺伝子は、A. oryzae由来glaA(グルコアミラーゼ遺
伝子)のプロモーター配列の下流に正方向に連結され、
さらにその遺伝子の下流にはA. oryzae amyB(α-アミ
ラーゼ遺伝子)のターミネーター配列が連結されてい
る。また、A. oryzaeで働く選択マーカーとして、A. ni
dulans由来のargB(オルニチンカルバモイルトランスフ
ェラーゼ酵素遺伝子)を持つ。
【0036】pAOBG26を保持する大腸菌DH5株から同プラ
スミドを調製し、A. oryzae M-2-3株[Gomi, K., et a
l., (1987), Agric. Biol. Chem., 51 (9), 2549-255
5.]の形質転換に用いた。M-2-3株は、A. oryzae RIB40
株を変異処理して得た、argB-株である。形質転換法
は、五味らの方法[Gomi, K., et al., (1987), Agric.
Biol. Chem., 51 (9), 2549-.]に準じて行った。カビ
用最小寒天培地[CzapeckDox 培地、O'Donnell, K. and
S. W. Peterson, (1992) Biotechnology of Filamento
us Fungi: Technology and Products, Butterworth-Hei
nemann, Bothell.;以下、CD培地と略す]を用いて形質
転換株を選択し、そのうちの一株をBGH26-4株と命名し
た。
スミドを調製し、A. oryzae M-2-3株[Gomi, K., et a
l., (1987), Agric. Biol. Chem., 51 (9), 2549-255
5.]の形質転換に用いた。M-2-3株は、A. oryzae RIB40
株を変異処理して得た、argB-株である。形質転換法
は、五味らの方法[Gomi, K., et al., (1987), Agric.
Biol. Chem., 51 (9), 2549-.]に準じて行った。カビ
用最小寒天培地[CzapeckDox 培地、O'Donnell, K. and
S. W. Peterson, (1992) Biotechnology of Filamento
us Fungi: Technology and Products, Butterworth-Hei
nemann, Bothell.;以下、CD培地と略す]を用いて形質
転換株を選択し、そのうちの一株をBGH26-4株と命名し
た。
【0037】BGH26-4株の染色体DNAには、pAOBG26のDNA
配列が挿入され、デンプンあるいはマルトースを含む培
地中で培養すれば、glaAプロモーターからの転写が誘導
され、その結果、導入したβ−ガラクトシダーゼが菌体
外に高率に発現分泌することが期待される。そこで、A.
oryzae BGH26-4株を、3%グルコースを含むCD液体培地
中で、30℃にて通気攪拌培養し、ついで生育した菌体を
グラスフィルターにて濾過分離後、新規な3%マルトース
を含むCD培地、あるいは3%グルコースを含むCD培地に移
し、さらに培養を行った。0.1%カザミノ酸を加えたCD培
地を用いて、M-2-3株も同様に培養した。経時的に培地
上清の一部を回収し、β−ガラクトシダーゼ活性を測定
した。活性の測定は、Nevalainenの方法[Nevalainen,
K. M. H., (1981), Appl. Environ. Microbiol., 41
(3), 593-596.]に準じて行った。すなわち、適当に希
釈した培地上清50μlに、1.7mMのo-ニトロフェニル-β-
ガラクトピラノシド(ONPG)を含む75mM酢酸ナトリウム
バッファー(pH4.5)200μlを添加し、42℃にて10分間
インキュベーションを行った後、250μlの0.1M炭酸ナト
リウムを加えて反応を停止させ、420nmにおける吸光度
を測定して遊離したニトロフェニルの量を計算した。β
−ガラクトシダーゼ活性の1ユニットを、上記反応条件
で1分間に 1μmolのニトロフェニルを遊離する酵素量と
定義し、ニトロフェニルのモル吸光係数4.51(cm2/μmo
l)を用いてβ−ガラクトシダーゼ活性を計算した。
配列が挿入され、デンプンあるいはマルトースを含む培
地中で培養すれば、glaAプロモーターからの転写が誘導
され、その結果、導入したβ−ガラクトシダーゼが菌体
外に高率に発現分泌することが期待される。そこで、A.
oryzae BGH26-4株を、3%グルコースを含むCD液体培地
中で、30℃にて通気攪拌培養し、ついで生育した菌体を
グラスフィルターにて濾過分離後、新規な3%マルトース
を含むCD培地、あるいは3%グルコースを含むCD培地に移
し、さらに培養を行った。0.1%カザミノ酸を加えたCD培
地を用いて、M-2-3株も同様に培養した。経時的に培地
上清の一部を回収し、β−ガラクトシダーゼ活性を測定
した。活性の測定は、Nevalainenの方法[Nevalainen,
K. M. H., (1981), Appl. Environ. Microbiol., 41
(3), 593-596.]に準じて行った。すなわち、適当に希
釈した培地上清50μlに、1.7mMのo-ニトロフェニル-β-
ガラクトピラノシド(ONPG)を含む75mM酢酸ナトリウム
バッファー(pH4.5)200μlを添加し、42℃にて10分間
インキュベーションを行った後、250μlの0.1M炭酸ナト
リウムを加えて反応を停止させ、420nmにおける吸光度
を測定して遊離したニトロフェニルの量を計算した。β
−ガラクトシダーゼ活性の1ユニットを、上記反応条件
で1分間に 1μmolのニトロフェニルを遊離する酵素量と
定義し、ニトロフェニルのモル吸光係数4.51(cm2/μmo
l)を用いてβ−ガラクトシダーゼ活性を計算した。
【0038】3%グルコースを含むCD培地中で、30℃138
時間通気攪拌培養後、3%マルトースあるいは3%グルコー
スを含むCD培地で68時間培養を行った場合の、M-2-3株
およびBGH26-4株培養液上清中のβ−ガラクトシダーゼ
活性を測定した結果を図4に示した。グルコースを含む
CD培地で培養した場合、形質転換株BGH26-4株は、M-2-3
株の90倍以上のβ−ガラクトシダーゼ活性を示した。さ
らにマルトースを含むCD培地に移して培養を続けること
により、700倍以上のβ−ガラクトシダーゼ活性を示し
た。このように形質転換株BGH26-4株は、β−ガラクト
シダーゼが菌体外に高効率で発現分泌することが確認で
きた。
時間通気攪拌培養後、3%マルトースあるいは3%グルコー
スを含むCD培地で68時間培養を行った場合の、M-2-3株
およびBGH26-4株培養液上清中のβ−ガラクトシダーゼ
活性を測定した結果を図4に示した。グルコースを含む
CD培地で培養した場合、形質転換株BGH26-4株は、M-2-3
株の90倍以上のβ−ガラクトシダーゼ活性を示した。さ
らにマルトースを含むCD培地に移して培養を続けること
により、700倍以上のβ−ガラクトシダーゼ活性を示し
た。このように形質転換株BGH26-4株は、β−ガラクト
シダーゼが菌体外に高効率で発現分泌することが確認で
きた。
【0039】実施例3(β−ガラクトシダーゼ発現量測
定) 実施例2において回収した、β−ガラクトシダーゼを高
発現するBGH26-4株と、親株であるM-2-3株の培養液上清
を、セントリコン30限外濾過濃縮器(アミコン社)を用
いて、10倍に濃縮した。ついで、その10μlを、常法(L
aemmli, U. K., (1970), Nature (London), 227, 680-6
85.)に従って、7.5% SDSポリアクリルアミドゲル電気
泳動によって解析した。ゲル中のタンパク質は、ブロモ
・フェノール・ブルーで染色して確認した。
定) 実施例2において回収した、β−ガラクトシダーゼを高
発現するBGH26-4株と、親株であるM-2-3株の培養液上清
を、セントリコン30限外濾過濃縮器(アミコン社)を用
いて、10倍に濃縮した。ついで、その10μlを、常法(L
aemmli, U. K., (1970), Nature (London), 227, 680-6
85.)に従って、7.5% SDSポリアクリルアミドゲル電気
泳動によって解析した。ゲル中のタンパク質は、ブロモ
・フェノール・ブルーで染色して確認した。
【0040】いずれの株の場合でも、3%グルコースを含
むCD培地で培養した培養上清では、ほとんどタンパクの
バンドが認められなかった。3%マルトースを含むCD培地
で培養した培養上清では、M-2-3株においては、約50kD
a、約60kDa、100kDa以上、にそれぞれ、α−アミラー
ゼ、糖鎖のないグルコアミラーゼ、糖鎖の付いたグルコ
アミラーゼとβ−ガラクトシダーゼがほとんど同じ位置
で重なった、と考えられるバンドが認められた。BGH26-
4株の培養上清でもこれと同じバンドが認められたが、1
00kDa以上のバンドが顕著に増大しており、β−ガラク
トシダーゼが高発現し、大量に存在していることが認め
られた。
むCD培地で培養した培養上清では、ほとんどタンパクの
バンドが認められなかった。3%マルトースを含むCD培地
で培養した培養上清では、M-2-3株においては、約50kD
a、約60kDa、100kDa以上、にそれぞれ、α−アミラー
ゼ、糖鎖のないグルコアミラーゼ、糖鎖の付いたグルコ
アミラーゼとβ−ガラクトシダーゼがほとんど同じ位置
で重なった、と考えられるバンドが認められた。BGH26-
4株の培養上清でもこれと同じバンドが認められたが、1
00kDa以上のバンドが顕著に増大しており、β−ガラク
トシダーゼが高発現し、大量に存在していることが認め
られた。
【0041】実施例4(β−ガラクトシダーゼ遺伝子の
宿主染色体への組み込みコピー数) BGH26-4株と、親株であるM-2-3株でのβ−ガラクトシダ
ーゼ遺伝子のコピー数を比較するため、両株の菌体から
染色体DNAを調製した。すなわち両株を実施例2と同様
に培養した後、培養液2ml分の菌体から、実施例1と同
様な方法を用いて染色体DNAを調製した。得られた染色
体DNAを制限酵素EcoRIあるいはBamHIで完全消化し、1.0
%アガロースゲル電気泳動を行い、次いでナイロンメン
ブレン(Hybond-N、Amersham社)に転写した。このメン
ブレンを、実施例1にて取得したA.oryzaeβ−ガラクト
シダーゼ染色体遺伝子の一部に相当するEcoRI 2.2断片
をプローブとしたサザン・ハイブリダイゼーションによ
り解析した。結果を図5に示す。
宿主染色体への組み込みコピー数) BGH26-4株と、親株であるM-2-3株でのβ−ガラクトシダ
ーゼ遺伝子のコピー数を比較するため、両株の菌体から
染色体DNAを調製した。すなわち両株を実施例2と同様
に培養した後、培養液2ml分の菌体から、実施例1と同
様な方法を用いて染色体DNAを調製した。得られた染色
体DNAを制限酵素EcoRIあるいはBamHIで完全消化し、1.0
%アガロースゲル電気泳動を行い、次いでナイロンメン
ブレン(Hybond-N、Amersham社)に転写した。このメン
ブレンを、実施例1にて取得したA.oryzaeβ−ガラクト
シダーゼ染色体遺伝子の一部に相当するEcoRI 2.2断片
をプローブとしたサザン・ハイブリダイゼーションによ
り解析した。結果を図5に示す。
【0042】M-2-3株より調製した染色体DNAでは、EcoR
I切断の場合、上記プローブは、1ヶ所にハイブリダイズ
し、2.2kbのバンド・シグナルを与えた。また、BamHI切
断の場合は、上記プローブは、2ヶ所にハイブリダイズ
し、6.5kbと4.6kbのバンド・シグナルを与えた。一方、
BGH26-4株の染色体DNAでは、EcoRI切断の場合、2ヶ所に
ハイブリダイズし、2.2kbに加え、1.7kbのバンド・シグ
ナルを与えた。また、BamHI切断の場合は、3ヶ所にハイ
ブリダイズし、6.5kbと4.6kbに加え、8.0kbのバンド・
シグナルを与えた。また、M-2-3株と比較して新たに出
現したバンドはいずれも他のバンドよりシグナル強度が
強かった。
I切断の場合、上記プローブは、1ヶ所にハイブリダイズ
し、2.2kbのバンド・シグナルを与えた。また、BamHI切
断の場合は、上記プローブは、2ヶ所にハイブリダイズ
し、6.5kbと4.6kbのバンド・シグナルを与えた。一方、
BGH26-4株の染色体DNAでは、EcoRI切断の場合、2ヶ所に
ハイブリダイズし、2.2kbに加え、1.7kbのバンド・シグ
ナルを与えた。また、BamHI切断の場合は、3ヶ所にハイ
ブリダイズし、6.5kbと4.6kbに加え、8.0kbのバンド・
シグナルを与えた。また、M-2-3株と比較して新たに出
現したバンドはいずれも他のバンドよりシグナル強度が
強かった。
【0043】これら新たに出現したバンドは、導入した
pAOBG26由来であり、pAOBG26 DNAが、BGH26-4株の染色
体DNAに組み込まれていることを示す。また、このpAOBG
26由来バンドのシグナル強度が強いということは、pAOB
G26が複数コピー組み込まれていることを示す。
pAOBG26由来であり、pAOBG26 DNAが、BGH26-4株の染色
体DNAに組み込まれていることを示す。また、このpAOBG
26由来バンドのシグナル強度が強いということは、pAOB
G26が複数コピー組み込まれていることを示す。
【0044】
【発明の効果】本発明により、A. oryzae由来のβ−ガ
ラクトシダーゼ染色体遺伝子が得られ、当該遺伝子をベ
クターを介して糸状菌に導入して、染色体中に安定に組
み込むことが可能となり、形質転換された糸状菌を培養
してその培地中にβ−ガラクトシダーゼを高率に発現分
泌させることが可能となった。
ラクトシダーゼ染色体遺伝子が得られ、当該遺伝子をベ
クターを介して糸状菌に導入して、染色体中に安定に組
み込むことが可能となり、形質転換された糸状菌を培養
してその培地中にβ−ガラクトシダーゼを高率に発現分
泌させることが可能となった。
【0045】また、本発明により、β−ガラクトシダー
ゼのコーディング領域のみならず、その発現制御領域で
ある上流、下流域についてもその構造が明らかとされた
ので、これらの領域に試験管内変異を導入し、β−ガラ
クトシダーゼの生産量を任意に調節する道が開けた。
ゼのコーディング領域のみならず、その発現制御領域で
ある上流、下流域についてもその構造が明らかとされた
ので、これらの領域に試験管内変異を導入し、β−ガラ
クトシダーゼの生産量を任意に調節する道が開けた。
【0046】
配列番号:1 配列の長さ:3015 配列の型:核酸 鎖の数:二本鎖 トポロジ−:直鎖状 配列の種類:他の核酸 起源 生物名:Aspergillus oryzae 株名:RIB40 配列 ATG AAG CTC CTC TCT GTT GCT GCT GTT GCC TTG CTG GCG GCA CAG GCA 48 Met Lys Leu Leu Ser Val Ala Ala Val Ala Leu Leu Ala Ala Gln Ala 1 5 10 15 GCG GGT GCT TCC ATC AAG CAT CGT CTC AAT GGC TTC ACG ATC CTG GAA 96 Ala Gly Ala Ser Ile Lys His Arg Leu Asn Gly Phe Thr Ile Leu Glu 20 25 30 CAT CCG GAT CCG GCG AAA AGA GAC TTG CTG CAA GAC ATT GTT ACA TGG 144 His Pro Asp Pro Ala Lys Arg Asp Leu Leu Gln Asp Ile Val Thr Trp 35 40 45 GAT GAC AAA TCT CTG TTC ATC AAT GGA GAG AGG ATT ATG TTA TTC AGC 192 Asp Asp Lys Ser Leu Phe Ile Asn Gly Glu Arg Ile Met Leu Phe Ser 50 55 60 GGA GAA GTG CAT CCT TTC AGA TTG CCA GTA CCT TCG CTT TGG CTT GAT 240 Gly Glu Val His Pro Phe Arg Leu Pro Val Pro Ser Leu Trp Leu Asp 65 70 75 80 ATC TTC CAC AAG ATC AGA GCT CTT GGT TTC AAC TGT GTA TCT TTC TAT 288 Ile Phe His Lys Ile Arg Ala Leu Gly Phe Asn Cys Val Ser Phe Tyr 85 90 95 ATT GAT TGG GCT CTT CTG GAG GGA AAG CCT GGC GAC TAC AGA GCA GAA 336 Ile Asp Trp Ala Leu Leu Glu Gly Lys Pro Gly Asp Tyr Arg Ala Glu 100 105 110 GGC ATC TTT GCT CTG GAA CCC TTC TTT GAT GCA GCC AAG GAA GCA GGC 384 Gly Ile Phe Ala Leu Glu Pro Phe Phe Asp Ala Ala Lys Glu Ala Gly 115 120 125 ATT TAT CTG ATC GCC CGC CCC GGT TCG TAC ATC AAT GCC GAG GTC TCA 432 Ile Tyr Leu Ile Ala Arg Pro Gly Ser Tyr Ile Asn Ala Glu Val Ser 130 135 140 GGC GGT GGC TTC CCT GGA TGG TTG CAG AGG GTC AAT GGC ACT CTT CGC 480 Gly Gly Gly Phe Pro Gly Trp Leu Gln Arg Val Asn Gly Thr Leu Arg 145 150 155 160 TCG TCT GAT GAG CCA TTC CTT AAA GCT ACT GAT AAC TAT ATC GCC AAT 528 Ser Ser Asp Glu Pro Phe Leu Lys Ala Thr Asp Asn Tyr Ile Ala Asn 165 170 175 GCC GCT GCT GCC GTG GCG AAG GCT CAA ATC ACG AAT GGA GGG CCA GTA 576 Ala Ala Ala Ala Val Ala Lys Ala Gln Ile Thr Asn Gly Gly Pro Val 180 185 190 ATT CTC TAC CAG CCC GAA AAC GAA TAC AGC GGT GGC TGC TGC GGT GTC 624 Ile Leu Tyr Gln Pro Glu Asn Glu Tyr Ser Gly Gly Cys Cys Gly Val 195 200 205 AAA TAC CCC GAT GCA GAC TAC ATG CAG TAT GTT ATG GAT CAG GCC CGG 672 Lys Tyr Pro Asp Ala Asp Tyr Met Gln Tyr Val Met Asp Gln Ala Arg 210 215 220 AAG GCT GAC ATT GTT GTA CCT TTC ATC AGC AAC GAT GCC TCA CCT TCT 720 Lys Ala Asp Ile Val Val Pro Phe Ile Ser Asn Asp Ala Ser Pro Ser 225 230 235 240 GGG CAC AAT GCT CCT GGA AGT GGA ACG AGC GCT GTT GAT ATT TAT GGT 768 Gly His Asn Ala Pro Gly Ser Gly Thr Ser Ala Val Asp Ile Tyr Gly 245 250 255 CAC GAT AGC TAT CCC CTC GGC TTT GAT TGC GCA AAC CCA TCC GTA TGG 816 His Asp Ser Tyr Pro Leu Gly Phe Asp Cys Ala Asn Pro Ser Val Trp 260 265 270 CCC GAG GGT AAA CTG CCC GAC AAC TTC CGC ACG CTC CAT CTT GAG CAG 864 Pro Glu Gly Lys Leu Pro Asp Asn Phe Arg Thr Leu His Leu Glu Gln 275 280 285 AGC CCA TCA ACT CCG TAT TCA CTT CTT GAG TTC CAA GCG GGT GCT TTC 912 Ser Pro Ser Thr Pro Tyr Ser Leu Leu Glu Phe Gln Ala Gly Ala Phe 290 295 300 GAC CCA TGG GGT GGA CCC GGC TTT GAA AAA TGC TAT GCC CTC GTT AAC 960 Asp Pro Trp Gly Gly Pro Gly Phe Glu Lys Cys Tyr Ala Leu Val Asn 305 310 315 320 CAC GAA TTC TCG AGA GTT TTC TAT AGG AAC GAC TTG AGT TTC GGA GTT 1008 His Glu Phe Ser Arg Val Phe Tyr Arg Asn Asp Leu Ser Phe Gly Val 325 330 335 TCT ACC TTT AAC TTA TAC ATG ACT TTC GGC GGA ACA AAC TGG GGT AAC 1056 Ser Thr Phe Asn Leu Tyr Met Thr Phe Gly Gly Thr Asn Trp Gly Asn 340 345 350 CTC GGA CAT CCC GGT GGA TAT ACA TCC TAC GAC TAC GGA TCG CCT ATA 1104 Leu Gly His Pro Gly Gly Tyr Thr Ser Tyr Asp Tyr Gly Ser Pro Ile 355 360 365 ACT GAA ACG CGA AAC GTT ACG CGG GAG AAG TAC AGC GAC ATA AAG CTC 1152 Thr Glu Thr Arg Asn Val Thr Arg Glu Lys Tyr Ser Asp Ile Lys Leu 370 375 380 CTT GCC AAC TTT GTC AAA GCA TCG CCA TCC TAT CTC ACC GCT ACT CCC 1200 Leu Ala Asn Phe Val Lys Ala Ser Pro Ser Tyr Leu Thr Ala Thr Pro 385 390 395 400 AGA AAC CTG ACT ACT GGT GTT TAC ACA GAC ACA TCT GAC CTG GCT GTC 1248 Arg Asn Leu Thr Thr Gly Val Tyr Thr Asp Thr Ser Asp Leu Ala Val 405 410 415 ACC CCG TTA ATT GGT GAT AGT CCA GGC TCA TTC TTC GTG GTC AGA CAT 1296 Thr Pro Leu Ile Gly Asp Ser Pro Gly Ser Phe Phe Val Val Arg His 420 425 430 ACG GAC TAT TCC AGC CAA GAG TCA ACC TCG TAC AAA CTT AAG CTT CCT 1344 Thr Asp Tyr Ser Ser Gln Glu Ser Thr Ser Tyr Lys Leu Lys Leu Pro 435 440 445 ACC AGT GCT GGT AAC CTG ACT ATT CCC CAG CTG GAG GGC ACT CTA AGT 1392 Thr Ser Ala Gly Asn Leu Thr Ile Pro Gln Leu Glu Gly Thr Leu Ser 450 455 460 CTC AAC GGA CGT GAC TCA AAA ATT CAT GTT GTT GAT TAT AAT GTG TCT 1440 Leu Asn Gly Arg Asp Ser Lys Ile His Val Val Asp Tyr Asn Val Ser 465 470 475 480 GGA ACG AAC ATT ATC TAT TCG ACA GCT GAA GTC TTC ACC TGG AAG AAG 1488 Gly Thr Asn Ile Ile Tyr Ser Thr Ala Glu Val Phe Thr Trp Lys Lys 485 490 495 TTT GAC GGT AAC AAG GTC CTG GTG TTA TAC GGC GGA CCG AAG GAA CAC 1536 Phe Asp Gly Asn Lys Val Leu Val Leu Tyr Gly Gly Pro Lys Glu His 500 505 510 CAT GAA TTG GCC ATT GCC TCC AAG TCA AAT GTG ACC ATC ATC GAA GGT 1584 His Glu Leu Ala Ile Ala Ser Lys Ser Asn Val Thr Ile Ile Glu Gly 515 520 525 TCG GAC TCT GGA ATT GTC TCA ACG AGG AAG GGC AGC TCT GTT ATC ATT 1632 Ser Asp Ser Gly Ile Val Ser Thr Arg Lys Gly Ser Ser Val Ile Ile 530 535 540 GGC TGG GAT GTC TCT TCT ACT CGT CGC ATC GTT CAA GTC GGT GAC TTG 1680 Gly Trp Asp Val Ser Ser Thr Arg Arg Ile Val Gln Val Gly Asp Leu 545 550 555 560 AGA GTG TTC CTG CTT GAT AGG AAC TCT GCT TAC AAC TAC TGG GTC CCC 1728 Arg Val Phe Leu Leu Asp Arg Asn Ser Ala Tyr Asn Tyr Trp Val Pro 565 570 575 GAA CTC CCC ACA GAA GGT ACT TCT CCC GGG TTC AGC ACT TCG AAG ACG 1776 Glu Leu Pro Thr Glu Gly Thr Ser Pro Gly Phe Ser Thr Ser Lys Thr 580 585 590 ACC GCC TCC TCC ATT ATT GTG AAG GCT GGC TAC CTC CTC CGA GGC GCT 1824 Thr Ala Ser Ser Ile Ile Val Lys Ala Gly Tyr Leu Leu Arg Gly Ala 595 600 605 CAC CTT GAT GGT GCT GAT CTT CAT CTT ACT GCT GAT TTC AAT GCC ACC 1872 His Leu Asp Gly Ala Asp Leu His Leu Thr Ala Asp Phe Asn Ala Thr 610 615 620 ACC CCG ATT GAA GTG ATC GGT GCT CCA ACA GGC GCT AAG AAT CTG TTC 1920 Thr Pro Ile Glu Val Ile Gly Ala Pro Thr Gly Ala Lys Asn Leu Phe 625 630 635 640 GTG AAT GGT GAA AAG GCT AGC CAC ACA GTC GAC AAG AAC GGC ATC TGG 1968 Val Asn Gly Glu Lys Ala Ser His Thr Val Asp Lys Asn Gly Ile Trp 645 650 655 AGC AGT GAG GTC AAG TAC GCG GCT CCA GAG ATC AAG CTC CCC GGT TTG 2016 Ser Ser Glu Val Lys Tyr Ala Ala Pro Glu Ile Lys Leu Pro Gly Leu 660 665 670 AAG GAT TTG GAC TGG AAG TAT CTG GAC ACG CTT CCC GAA ATT AAG TCT 2064 Lys Asp Leu Asp Trp Lys Tyr Leu Asp Thr Leu Pro Glu Ile Lys Ser 675 680 685 TCC TAT GAT GAC TCG GCC TGG GTT TCG GCA GAC CTT CCA AAG ACA AAG 2112 Ser Tyr Asp Asp Ser Ala Trp Val Ser Ala Asp Leu Pro Lys Thr Lys 690 695 700 AAC ACT CAC CGT CCT CTT GAC ACA CCA ACA TCG CTA TAC TCC TCT GAC 2160 Asn Thr His Arg Pro Leu Asp Thr Pro Thr Ser Leu Tyr Ser Ser Asp 705 710 715 720 TAT GGC TTC CAC ACT GGC TAC CTG ATC TAC AGG GGT CAC TTC GTT GCC 2208 Tyr Gly Phe His Thr Gly Tyr Leu Ile Tyr Arg Gly His Phe Val Ala 725 730 735 AAC GGC AAG GAA AGC GAA TTT TTT ATT CGC ACA CAA GGC GGT AGC GCA 2256 Asn Gly Lys Glu Ser Glu Phe Phe Ile Arg Thr Gln Gly Gly Ser Ala 740 745 750 TTC GGA AGT TCC GTA TGG CTG AAC GAG ACG TAT CTG GGC TCT TGG ACT 2304 Phe Gly Ser Ser Val Trp Leu Asn Glu Thr Tyr Leu Gly Ser Trp Thr 755 760 765 GGT GCC GAT TAT GCG ATG GAC GGT AAC TCT ACC TAC AAG CTA TCT CAG 2352 Gly Ala Asp Tyr Ala Met Asp Gly Asn Ser Thr Tyr Lys Leu Ser Gln 770 775 780 CTG GAG TCG GGC AAG AAT TAC GTC ATC ACT GTG GTT ATT GAT AAC CTG 2400 Leu Glu Ser Gly Lys Asn Tyr Val Ile Thr Val Val Ile Asp Asn Leu 785 790 795 800 GGT CTC GAC GAG AAT TGG ACG GTC GGC GAG GAA ACC ATG AAG AAT CCT 2448 Gly Leu Asp Glu Asn Trp Thr Val Gly Glu Glu Thr Met Lys Asn Pro 805 810 815 CGT GGT ATT CTT AGC TAC AAG CTG AGC GGA CAA GAC GCC AGC GCA ATC 2496 Arg Gly Ile Leu Ser Tyr Lys Leu Ser Gly Gln Asp Ala Ser Ala Ile 820 825 830 ACC TGG AAG CTC ACT GGT AAC CTC GGA GGA GAA GAC TAC CAG GAT AAG 2544 Thr Trp Lys Leu Thr Gly Asn Leu Gly Gly Glu Asp Tyr Gln Asp Lys 835 840 845 GTT AGA GGA CCT CTC AAC GAA GGT GGA CTG TAC GCA GAG CGC CAG GGC 2592 Val Arg Gly Pro Leu Asn Glu Gly Gly Leu Tyr Ala Glu Arg Gln Gly 850 855 860 TTC CAT CAG CCT CAG CCT CCA AGC GAA TCC TGG GAG TCG GGC AGT CCC 2640 Phe His Gln Pro Gln Pro Pro Ser Glu Ser Trp Glu Ser Gly Ser Pro 865 870 875 880 CTT GAA GGC CTG TCG AAG CCG GGT ATC GGA TTC TAC ACT GCC CAG TTC 2688 Leu Glu Gly Leu Ser Lys Pro Gly Ile Gly Phe Tyr Thr Ala Gln Phe 885 890 895 GAC CTT GAC CTC CCG AAG GGC TGG GAT GTG CCG CTG TAC TTC AAC TTT 2736 Asp Leu Asp Leu Pro Lys Gly Trp Asp Val Pro Leu Tyr Phe Asn Phe 900 905 910 GGC AAC AAC ACC CAG GCG GCT CGG GCC CAG CTC TAC GTC AAC GGT TAC 2784 Gly Asn Asn Thr Gln Ala Ala Arg Ala Gln Leu Tyr Val Asn Gly Tyr 915 920 925 CAG TAT GGC AAG TTC ACT GGA AAC GTT GGG CCA CAG ACC AGC TTC CCT 2832 Gln Tyr Gly Lys Phe Thr Gly Asn Val Gly Pro Gln Thr Ser Phe Pro 930 935 940 GTT CCC GAA GGT ATC CTG AAC TAC CGC GGA ACC AAC TAT GTG GCA CTG 2880 Val Pro Glu Gly Ile Leu Asn Tyr Arg Gly Thr Asn Tyr Val Ala Leu 945 950 955 960 AGT CTT TGG GCA TTG GAG TCG GAC GGT GCT AAG CTG GGT AGC TTC GAA 2928 Ser Leu Trp Ala Leu Glu Ser Asp Gly Ala Lys Leu Gly Ser Phe Glu 965 970 975 CTG TCC TAC ACC ACC CCA GTG CTG ACC GGA TAC GGG AAT GTT GAG TCA 2976 Leu Ser Tyr Thr Thr Pro Val Leu Thr Gly Tyr Gly Asn Val Glu Ser 980 985 990 CCT GAG CAG CCC AAG TAT GAG CAG CGG AAG GGA GCA TAC 3015 Pro Glu Gln Pro Lys Tyr Glu Gln Arg Lys Gly Ala Tyr 995 1000 1005
【0047】配列番号 :2 配列の長さ:1005 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:蛋白質 起源 生物名:Aspergillus oryzae 株名:RIB40 配列 Met Lys Leu Leu Ser Val Ala Ala Val Ala Leu Leu Ala Ala Gln Ala 1 5 10 15 Ala Gly Ala Ser Ile Lys His Arg Leu Asn Gly Phe Thr Ile Leu Glu 20 25 30 His Pro Asp Pro Ala Lys Arg Asp Leu Leu Gln Asp Ile Val Thr Trp 35 40 45 Asp Asp Lys Ser Leu Phe Ile Asn Gly Glu Arg Ile Met Leu Phe Ser 50 55 60 Gly Glu Val His Pro Phe Arg Leu Pro Val Pro Ser Leu Trp Leu Asp 65 70 75 80 Ile Phe His Lys Ile Arg Ala Leu Gly Phe Asn Cys Val Ser Phe Tyr 85 90 95 Ile Asp Trp Ala Leu Leu Glu Gly Lys Pro Gly Asp Tyr Arg Ala Glu 100 105 110 Gly Ile Phe Ala Leu Glu Pro Phe Phe Asp Ala Ala Lys Glu Ala Gly 115 120 125 Ile Tyr Leu Ile Ala Arg Pro Gly Ser Tyr Ile Asn Ala Glu Val Ser 130 135 140 Gly Gly Gly Phe Pro Gly Trp Leu Gln Arg Val Asn Gly Thr Leu Arg 145 150 155 160 Ser Ser Asp Glu Pro Phe Leu Lys Ala Thr Asp Asn Tyr Ile Ala Asn 165 170 175 Ala Ala Ala Ala Val Ala Lys Ala Gln Ile Thr Asn Gly Gly Pro Val 180 185 190 Ile Leu Tyr Gln Pro Glu Asn Glu Tyr Ser Gly Gly Cys Cys Gly Val 195 200 205 Lys Tyr Pro Asp Ala Asp Tyr Met Gln Tyr Val Met Asp Gln Ala Arg 210 215 220 Lys Ala Asp Ile Val Val Pro Phe Ile Ser Asn Asp Ala Ser Pro Ser 225 230 235 240 Gly His Asn Ala Pro Gly Ser Gly Thr Ser Ala Val Asp Ile Tyr Gly 245 250 255 His Asp Ser Tyr Pro Leu Gly Phe Asp Cys Ala Asn Pro Ser Val Trp 260 265 270 Pro Glu Gly Lys Leu Pro Asp Asn Phe Arg Thr Leu His Leu Glu Gln 275 280 285 Ser Pro Ser Thr Pro Tyr Ser Leu Leu Glu Phe Gln Ala Gly Ala Phe 290 295 300 Asp Pro Trp Gly Gly Pro Gly Phe Glu Lys Cys Tyr Ala Leu Val Asn 305 310 315 320 His Glu Phe Ser Arg Val Phe Tyr Arg Asn Asp Leu Ser Phe Gly Val 325 330 335 Ser Thr Phe Asn Leu Tyr Met Thr Phe Gly Gly Thr Asn Trp Gly Asn 340 345 350 Leu Gly His Pro Gly Gly Tyr Thr Ser Tyr Asp Tyr Gly Ser Pro Ile 355 360 365 Thr Glu Thr Arg Asn Val Thr Arg Glu Lys Tyr Ser Asp Ile Lys Leu 370 375 380 Leu Ala Asn Phe Val Lys Ala Ser Pro Ser Tyr Leu Thr Ala Thr Pro 385 390 395 400 Arg Asn Leu Thr Thr Gly Val Tyr Thr Asp Thr Ser Asp Leu Ala Val 405 410 415 Thr Pro Leu Ile Gly Asp Ser Pro Gly Ser Phe Phe Val Val Arg His 420 425 430 Thr Asp Tyr Ser Ser Gln Glu Ser Thr Ser Tyr Lys Leu Lys Leu Pro 435 440 445 Thr Ser Ala Gly Asn Leu Thr Ile Pro Gln Leu Glu Gly Thr Leu Ser 450 455 460 Leu Asn Gly Arg Asp Ser Lys Ile His Val Val Asp Tyr Asn Val Ser 465 470 475 480 Gly Thr Asn Ile Ile Tyr Ser Thr Ala Glu Val Phe Thr Trp Lys Lys 485 490 495 Phe Asp Gly Asn Lys Val Leu Val Leu Tyr Gly Gly Pro Lys Glu His 500 505 510 His Glu Leu Ala Ile Ala Ser Lys Ser Asn Val Thr Ile Ile Glu Gly 515 520 525 Ser Asp Ser Gly Ile Val Ser Thr Arg Lys Gly Ser Ser Val Ile Ile 530 535 540 Gly Trp Asp Val Ser Ser Thr Arg Arg Ile Val Gln Val Gly Asp Leu 545 550 555 560 Arg Val Phe Leu Leu Asp Arg Asn Ser Ala Tyr Asn Tyr Trp Val Pro 565 570 575 Glu Leu Pro Thr Glu Gly Thr Ser Pro Gly Phe Ser Thr Ser Lys Thr 580 585 590 Thr Ala Ser Ser Ile Ile Val Lys Ala Gly Tyr Leu Leu Arg Gly Ala 595 600 605 His Leu Asp Gly Ala Asp Leu His Leu Thr Ala Asp Phe Asn Ala Thr 610 615 620 Thr Pro Ile Glu Val Ile Gly Ala Pro Thr Gly Ala Lys Asn Leu Phe 625 630 635 640 Val Asn Gly Glu Lys Ala Ser His Thr Val Asp Lys Asn Gly Ile Trp 645 650 655 Ser Ser Glu Val Lys Tyr Ala Ala Pro Glu Ile Lys Leu Pro Gly Leu 660 665 670 Lys Asp Leu Asp Trp Lys Tyr Leu Asp Thr Leu Pro Glu Ile Lys Ser 675 680 685 Ser Tyr Asp Asp Ser Ala Trp Val Ser Ala Asp Leu Pro Lys Thr Lys 690 695 700 Asn Thr His Arg Pro Leu Asp Thr Pro Thr Ser Leu Tyr Ser Ser Asp 705 710 715 720 Tyr Gly Phe His Thr Gly Tyr Leu Ile Tyr Arg Gly His Phe Val Ala 725 730 735 Asn Gly Lys Glu Ser Glu Phe Phe Ile Arg Thr Gln Gly Gly Ser Ala 740 745 750 Phe Gly Ser Ser Val Trp Leu Asn Glu Thr Tyr Leu Gly Ser Trp Thr 755 760 765 Gly Ala Asp Tyr Ala Met Asp Gly Asn Ser Thr Tyr Lys Leu Ser Gln 770 775 780 Leu Glu Ser Gly Lys Asn Tyr Val Ile Thr Val Val Ile Asp Asn Leu 785 790 795 800 Gly Leu Asp Glu Asn Trp Thr Val Gly Glu Glu Thr Met Lys Asn Pro 805 810 815 Arg Gly Ile Leu Ser Tyr Lys Leu Ser Gly Gln Asp Ala Ser Ala Ile 820 825 830 Thr Trp Lys Leu Thr Gly Asn Leu Gly Gly Glu Asp Tyr Gln Asp Lys 835 840 845 Val Arg Gly Pro Leu Asn Glu Gly Gly Leu Tyr Ala Glu Arg Gln Gly 850 855 860 Phe His Gln Pro Gln Pro Pro Ser Glu Ser Trp Glu Ser Gly Ser Pro 865 870 875 880 Leu Glu Gly Leu Ser Lys Pro Gly Ile Gly Phe Tyr Thr Ala Gln Phe 885 890 895 Asp Leu Asp Leu Pro Lys Gly Trp Asp Val Pro Leu Tyr Phe Asn Phe 900 905 910 Gly Asn Asn Thr Gln Ala Ala Arg Ala Gln Leu Tyr Val Asn Gly Tyr 915 920 925 Gln Tyr Gly Lys Phe Thr Gly Asn Val Gly Pro Gln Thr Ser Phe Pro 930 935 940 Val Pro Glu Gly Ile Leu Asn Tyr Arg Gly Thr Asn Tyr Val Ala Leu 945 950 955 960 Ser Leu Trp Ala Leu Glu Ser Asp Gly Ala Lys Leu Gly Ser Phe Glu 965 970 975 Leu Ser Tyr Thr Thr Pro Val Leu Thr Gly Tyr Gly Asn Val Glu Ser 980 985 990 Pro Glu Gln Pro Lys Tyr Glu Gln Arg Lys Gly Ala Tyr 995 1000 1005
【0048】配列番号 :3 配列の長さ:5319 配列の型:核酸 配列の種類:Genomic DNA トポロジー:直鎖状 起源 生物名:Aspergillus oryzae 株名:RIB40 配列の特徴 1123-1194 S intron 1272-1317 S intron 1621-1673 S intron 1941-2011 S intron 2028-2073 S intron 2170-2221 S intron 2357-2406 S intron 3074-3121 S intron 配列 GAATTCTTCA TTATCCCCCA AGGTTCAAGG TACATGGAAC CTTCACAATT CAGTCTTAAC 60 GTGCATCCCG CATTGGACGG GGGAGAAAAT GCACCGGTTC CCGGTCGGAG GAAGCCGACT 120 CTGACGTGGT TAATGTTCAA CGGCTAAATT TCGGCGAAAC AGGGGTTATG TTTTTTTGAA 180 CTCCGAAATA GCCTGGTTTG CACTGAAGGC TTATTGAATG ACCTTGGCGG ATAATAACCG 240 TCTTGTCCCG CTCGATGATG TGCATAGTAG CTTCACCGGT GGCCTGATGG TGCCATAAAA 300 TCATTAGGTA TGCTTTCTTA GCTTATCTTA TCATGTCGGA CTCTCATTTG TTAGGGTTGG 360 CATATGCTTA AATGCCTATC TTATCTGATA TTCAGGCACT CGACATGGAT ATAGCCTCCA 420 CATGCTCCTC TATATCCCTG AACTGACATG TTCATATAAC ACGGTCCATC TCTGGGTGGT 480 GAAGCTGGTT ATGAATGGGT AAATGCTCCT TCCTGATATG CGGAGAAATA CTCCCGTGAT 540 CGTCAACCGA TGGGGTCCTT TGCTCCGTGT GGGGGACTTC ACCAATATTT TCCTTCTACG 600 TTGCGTTGCA TTGGCCCAGT CTTACAACAT TCCTGCACCA CCAGCTCCCT CGAAGTACCT 660 TCGGGCGTTC TGGCCCCCAT CTGATTTGGT CGTTAATGGT GCTTTGACCA GCCGTGGTCA 720 TTGTGGCTGG TTTGTTTGTA TACAGCTCCA CGACCTCTAC ATGATGTTAA GATGAAATCG 780 TACGGGACTC CACTTTCGGC TAAGGACTCT ATTGGACCAT TCCCTCCTCT ATACATCATC 840 AACGCAAGGT GTCGGACATT TTAATTAACG AAGTCGGTTA TTTTTGACTA TTTATCCTTT 900 CAATCTTACT TATATTCGTG CAATTGCCCC CGAAACATGG GAAATCTGCT GTAAGCTCTC 960 ACTGGGGTTC TTCTGCAGCA CGGCACC ATG AAG CTC CTC TCT GTT GCT GCT GTT 1014 Met Lys Leu Leu Ser Val Ala Ala Val 1 5 GCC TTG CTG GCG GCA CAG GCA GCG GGT GCT TCC ATC AAG CAT CGT CTC 1062 Ala Leu Leu Ala Ala Gln Ala Ala Gly Ala Ser Ile Lys His Arg Leu 10 15 20 25 AAT GGC TTC ACG ATC CTG GAA CAT CCG GAT CCG GCG AAA AGA GAC TTG 1110 Asn Gly Phe Thr Ile Leu Glu His Pro Asp Pro Ala Lys Arg Asp Leu 30 35 40 CTG CAA GAC ATT GTATGTCGTC ATCAAATCTG AATCACTAGC TATGCTCCAT 1162 Leu Gln Asp Ile 45 AGTGATTATG TAAACATACT GACCCTCTGC AG GTT ACA TGG GAT GAC AAA TCT 1215 Val Thr Trp Asp Asp Lys Ser 50 CTG TTC ATC AAT GGA GAG AGG ATT ATG TTA TTC AGC GGA GAA GTG CAT 1263 Leu Phe Ile Asn Gly Glu Arg Ile Met Leu Phe Ser Gly Glu Val His 55 60 65 CCT TTC AG GTACACTAGC CCCGCGTACT TTATGGTTTA ATTCTGATGA AAACAG A 1318 Pro Phe Arg 70 TTG CCA GTA CCT TCG CTT TGG CTT GAT ATC TTC CAC AAG ATC AGA GCT 1366 Leu Pro Val Pro Ser Leu Trp Leu Asp Ile Phe His Lys Ile Arg Ala 75 80 85 CTT GGT TTC AAC TGT GTA TCT TTC TAT ATT GAT TGG GCT CTT CTG GAG 1414 Leu Gly Phe Asn Cys Val Ser Phe Tyr Ile Asp Trp Ala Leu Leu Glu 90 95 100 GGA AAG CCT GGC GAC TAC AGA GCA GAA GGC ATC TTT GCT CTG GAA CCC 1462 Gly Lys Pro Gly Asp Tyr Arg Ala Glu Gly Ile Phe Ala Leu Glu Pro 105 110 115 TTC TTT GAT GCA GCC AAG GAA GCA GGC ATT TAT CTG ATC GCC CGC CCC 1510 Phe Phe Asp Ala Ala Lys Glu Ala Gly Ile Tyr Leu Ile Ala Arg Pro 120 125 130 135 GGT TCG TAC ATC AAT GCC GAG GTC TCA GGC GGT GGC TTC CCT GGA TGG 1558 Gly Ser Tyr Ile Asn Ala Glu Val Ser Gly Gly Gly Phe Pro Gly Trp 140 145 150 TTG CAG AGG GTC AAT GGC ACT CTT CGC TCG TCT GAT GAG CCA TTC CTT 1606 Leu Gln Arg Val Asn Gly Thr Leu Arg Ser Ser Asp Glu Pro Phe Leu 155 160 165 AAA GCT ACT GAT AA GTATGGGCTC ATTGATGAGC TACTTCAGAC ACTTGCTTAC 1660 Lys Ala Thr Asp Asn 170 AGTGTGATTT TAG C TAT ATC GCC AAT GCC GCT GCT GCC GTG GCG AAG GCT 1710 Tyr Ile Ala Asn Ala Ala Ala Ala Val Ala Lys Ala 175 180 CAA ATC ACG AAT GGA GGG CCA GTA ATT CTC TAC CAG CCC GAA AAC GAA 1758 Gln Ile Thr Asn Gly Gly Pro Val Ile Leu Tyr Gln Pro Glu Asn Glu 185 190 195 200 TAC AGC GGT GGC TGC TGC GGT GTC AAA TAC CCC GAT GCA GAC TAC ATG 1806 Tyr Ser Gly Gly Cys Cys Gly Val Lys Tyr Pro Asp Ala Asp Tyr Met 205 210 215 CAG TAT GTT ATG GAT CAG GCC CGG AAG GCT GAC ATT GTT GTA CCT TTC 1854 Gln Tyr Val Met Asp Gln Ala Arg Lys Ala Asp Ile Val Val Pro Phe 220 225 230 ATC AGC AAC GAT GCC TCA CCT TCT GGG CAC AAT GCT CCT GGA AGT GGA 1902 Ile Ser Asn Asp Ala Ser Pro Ser Gly His Asn Ala Pro Gly Ser Gly 235 240 245 ACG AGC GCT GTT GAT ATT TAT GGT CAC GAT AGC TAT CC GTAAGTTATT 1950 Thr Ser Ala Val Asp Ile Tyr Gly His Asp Ser Tyr Pro 250 255 260 CTGCATATGA GCTCCTTTCT TTTAGAGATT TTCCGTTTGA CGGCAACTGA CATTTCCCTA 2010 G C CTC GGC TTT GAT TGC GTATGTCTAT CCTGCGAGCG AGATTGAATA 2057 Leu Gly Phe Asp Cys 265 CTTCTGACGT ATATAG GCA AAC CCA TCC GTA TGG CCC GAG GGT AAA CTG CCC 2109 Ala Asn Pro Ser Val Trp Pro Glu Gly Lys Leu Pro 270 275 GAC AAC TTC CGC ACG CTC CAT CTT GAG CAG AGC CCA TCA ACT CCG TAT 2157 Asp Asn Phe Arg Thr Leu His Leu Glu Gln Ser Pro Ser Thr Pro Tyr 280 285 290 TCA CTT CTT GAG GTAAGTTACT ACTCAGCCTC GAGGACTAGT AATGTGTCTC 2209 Ser Leu Leu Glu 295 ACTGTTTTCT AG TTC CAA GCG GGT GCT TTC GAC CCA TGG GGT GGA CCC GGC 2260 Phe Gln Ala Gly Ala Phe Asp Pro Trp Gly Gly Pro Gly 300 305 310 TTT GAA AAA TGC TAT GCC CTC GTT AAC CAC GAA TTC TCG AGA GTT TTC 2308 Phe Glu Lys Cys Tyr Ala Leu Val Asn His Glu Phe Ser Arg Val Phe 315 320 325 TAT AGG AAC GAC TTG AGT TTC GGA GTT TCT ACC TTT AAC TTA TAC ATG 2356 Tyr Arg Asn Asp Leu Ser Phe Gly Val Ser Thr Phe Asn Leu Tyr Met 330 335 340 GTATGGTCTA TTCATATCTC TGGAACATAC ATCGCGCTGA CAATATATAG ACT TTC 2412 Thr Phe 345 GGC GGA ACA AAC TGG GGT AAC CTC GGA CAT CCC GGT GGA TAT ACA TCC 2460 Gly Gly Thr Asn Trp Gly Asn Leu Gly His Pro Gly Gly Tyr Thr Ser 350 355 360 TAC GAC TAC GGA TCG CCT ATA ACT GAA ACG CGA AAC GTT ACG CGG GAG 2508 Tyr Asp Tyr Gly Ser Pro Ile Thr Glu Thr Arg Asn Val Thr Arg Glu 365 370 375 AAG TAC AGC GAC ATA AAG CTC CTT GCC AAC TTT GTC AAA GCA TCG CCA 2556 Lys Tyr Ser Asp Ile Lys Leu Leu Ala Asn Phe Val Lys Ala Ser Pro 380 385 390 TCC TAT CTC ACC GCT ACT CCC AGA AAC CTG ACT ACT GGT GTT TAC ACA 2604 Ser Tyr Leu Thr Ala Thr Pro Arg Asn Leu Thr Thr Gly Val Tyr Thr 395 400 405 GAC ACA TCT GAC CTG GCT GTC ACC CCG TTA ATT GGT GAT AGT CCA GGC 2652 Asp Thr Ser Asp Leu Ala Val Thr Pro Leu Ile Gly Asp Ser Pro Gly 410 415 420 425 TCA TTC TTC GTG GTC AGA CAT ACG GAC TAT TCC AGC CAA GAG TCA ACC 2700 Ser Phe Phe Val Val Arg His Thr Asp Tyr Ser Ser Gln Glu Ser Thr 430 435 440 TCG TAC AAA CTT AAG CTT CCT ACC AGT GCT GGT AAC CTG ACT ATT CCC 2748 Ser Tyr Lys Leu Lys Leu Pro Thr Ser Ala Gly Asn Leu Thr Ile Pro 445 450 455 CAG CTG GAG GGC ACT CTA AGT CTC AAC GGA CGT GAC TCA AAA ATT CAT 2796 Gln Leu Glu Gly Thr Leu Ser Leu Asn Gly Arg Asp Ser Lys Ile His 460 465 470 GTT GTT GAT TAT AAT GTG TCT GGA ACG AAC ATT ATC TAT TCG ACA GCT 2844 Val Val Asp Tyr Asn Val Ser Gly Thr Asn Ile Ile Tyr Ser Thr Ala 475 480 485 GAA GTC TTC ACC TGG AAG AAG TTT GAC GGT AAC AAG GTC CTG GTG TTA 2892 Glu Val Phe Thr Trp Lys Lys Phe Asp Gly Asn Lys Val Leu Val Leu 490 495 500 505 TAC GGC GGA CCG AAG GAA CAC CAT GAA TTG GCC ATT GCC TCC AAG TCA 2940 Tyr Gly Gly Pro Lys Glu His His Glu Leu Ala Ile Ala Ser Lys Ser 510 515 520 AAT GTG ACC ATC ATC GAA GGT TCG GAC TCT GGA ATT GTC TCA ACG AGG 2988 Asn Val Thr Ile Ile Glu Gly Ser Asp Ser Gly Ile Val Ser Thr Arg 525 530 535 AAG GGC AGC TCT GTT ATC ATT GGC TGG GAT GTC TCT TCT ACT CGT CGC 3036 Lys Gly Ser Ser Val Ile Ile Gly Trp Asp Val Ser Ser Thr Arg Arg 540 545 550 ATC GTT CAA GTC GGT GAC TTG AGA GTG TTC CTG CTT G GTAAGTAAAT 3083 Ile Val Gln Val Gly Asp Leu Arg Val Phe Leu Leu Asp 555 560 565 TCACAAGAAA CTCGCGTTCA CGACTAATGA ATCCACAG AT AGG AAC TCT GCT TAC 3138 Arg Asn Ser Ala Tyr 570 AAC TAC TGG GTC CCC GAA CTC CCC ACA GAA GGT ACT TCT CCC GGG TTC 3186 Asn Tyr Trp Val Pro Glu Leu Pro Thr Glu Gly Thr Ser Pro Gly Phe 575 580 585 AGC ACT TCG AAG ACG ACC GCC TCC TCC ATT ATT GTG AAG GCT GGC TAC 3234 Ser Thr Ser Lys Thr Thr Ala Ser Ser Ile Ile Val Lys Ala Gly Tyr 590 595 600 CTC CTC CGA GGC GCT CAC CTT GAT GGT GCT GAT CTT CAT CTT ACT GCT 3282 Leu Leu Arg Gly Ala His Leu Asp Gly Ala Asp Leu His Leu Thr Ala 605 610 615 GAT TTC AAT GCC ACC ACC CCG ATT GAA GTG ATC GGT GCT CCA ACA GGC 3330 Asp Phe Asn Ala Thr Thr Pro Ile Glu Val Ile Gly Ala Pro Thr Gly 620 625 630 635 GCT AAG AAT CTG TTC GTG AAT GGT GAA AAG GCT AGC CAC ACA GTC GAC 3378 Ala Lys Asn Leu Phe Val Asn Gly Glu Lys Ala Ser His Thr Val Asp 640 645 650 AAG AAC GGC ATC TGG AGC AGT GAG GTC AAG TAC GCG GCT CCA GAG ATC 3426 Lys Asn Gly Ile Trp Ser Ser Glu Val Lys Tyr Ala Ala Pro Glu Ile 655 660 665 AAG CTC CCC GGT TTG AAG GAT TTG GAC TGG AAG TAT CTG GAC ACG CTT 3474 Lys Leu Pro Gly Leu Lys Asp Leu Asp Trp Lys Tyr Leu Asp Thr Leu 670 675 680 CCC GAA ATT AAG TCT TCC TAT GAT GAC TCG GCC TGG GTT TCG GCA GAC 3522 Pro Glu Ile Lys Ser Ser Tyr Asp Asp Ser Ala Trp Val Ser Ala Asp 685 690 695 CTT CCA AAG ACA AAG AAC ACT CAC CGT CCT CTT GAC ACA CCA ACA TCG 3570 Leu Pro Lys Thr Lys Asn Thr His Arg Pro Leu Asp Thr Pro Thr Ser 700 705 710 715 CTA TAC TCC TCT GAC TAT GGC TTC CAC ACT GGC TAC CTG ATC TAC AGG 3618 Leu Tyr Ser Ser Asp Tyr Gly Phe His Thr Gly Tyr Leu Ile Tyr Arg 720 725 730 GGT CAC TTC GTT GCC AAC GGC AAG GAA AGC GAA TTT TTT ATT CGC ACA 3666 Gly His Phe Val Ala Asn Gly Lys Glu Ser Glu Phe Phe Ile Arg Thr 735 740 745 CAA GGC GGT AGC GCA TTC GGA AGT TCC GTA TGG CTG AAC GAG ACG TAT 3714 Gln Gly Gly Ser Ala Phe Gly Ser Ser Val Trp Leu Asn Glu Thr Tyr 750 755 760 CTG GGC TCT TGG ACT GGT GCC GAT TAT GCG ATG GAC GGT AAC TCT ACC 3762 Leu Gly Ser Trp Thr Gly Ala Asp Tyr Ala Met Asp Gly Asn Ser Thr 765 770 775 TAC AAG CTA TCT CAG CTG GAG TCG GGC AAG AAT TAC GTC ATC ACT GTG 3810 Tyr Lys Leu Ser Gln Leu Glu Ser Gly Lys Asn Tyr Val Ile Thr Val 780 785 790 795 GTT ATT GAT AAC CTG GGT CTC GAC GAG AAT TGG ACG GTC GGC GAG GAA 3858 Val Ile Asp Asn Leu Gly Leu Asp Glu Asn Trp Thr Val Gly Glu Glu 800 805 810 ACC ATG AAG AAT CCT CGT GGT ATT CTT AGC TAC AAG CTG AGC GGA CAA 3906 Thr Met Lys Asn Pro Arg Gly Ile Leu Ser Tyr Lys Leu Ser Gly Gln 815 820 825 GAC GCC AGC GCA ATC ACC TGG AAG CTC ACT GGT AAC CTC GGA GGA GAA 3954 Asp Ala Ser Ala Ile Thr Trp Lys Leu Thr Gly Asn Leu Gly Gly Glu 830 835 840 GAC TAC CAG GAT AAG GTT AGA GGA CCT CTC AAC GAA GGT GGA CTG TAC 4002 Asp Tyr Gln Asp Lys Val Arg Gly Pro Leu Asn Glu Gly Gly Leu Tyr 845 850 855 GCA GAG CGC CAG GGC TTC CAT CAG CCT CAG CCT CCA AGC GAA TCC TGG 4050 Ala Glu Arg Gln Gly Phe His Gln Pro Gln Pro Pro Ser Glu Ser Trp 860 865 870 875 GAG TCG GGC AGT CCC CTT GAA GGC CTG TCG AAG CCG GGT ATC GGA TTC 4098 Glu Ser Gly Ser Pro Leu Glu Gly Leu Ser Lys Pro Gly Ile Gly Phe 880 885 890 TAC ACT GCC CAG TTC GAC CTT GAC CTC CCG AAG GGC TGG GAT GTG CCG 4146 Tyr Thr Ala Gln Phe Asp Leu Asp Leu Pro Lys Gly Trp Asp Val Pro 895 900 905 CTG TAC TTC AAC TTT GGC AAC AAC ACC CAG GCG GCT CGG GCC CAG CTC 4194 Leu Tyr Phe Asn Phe Gly Asn Asn Thr Gln Ala Ala Arg Ala Gln Leu 910 915 920 TAC GTC AAC GGT TAC CAG TAT GGC AAG TTC ACT GGA AAC GTT GGG CCA 4242 Tyr Val Asn Gly Tyr Gln Tyr Gly Lys Phe Thr Gly Asn Val Gly Pro 925 930 935 CAG ACC AGC TTC CCT GTT CCC GAA GGT ATC CTG AAC TAC CGC GGA ACC 4290 Gln Thr Ser Phe Pro Val Pro Glu Gly Ile Leu Asn Tyr Arg Gly Thr 940 945 950 955 AAC TAT GTG GCA CTG AGT CTT TGG GCA TTG GAG TCG GAC GGT GCT AAG 4338 Asn Tyr Val Ala Leu Ser Leu Trp Ala Leu Glu Ser Asp Gly Ala Lys 960 965 970 CTG GGT AGC TTC GAA CTG TCC TAC ACC ACC CCA GTG CTG ACC GGA TAC 4386 Leu Gly Ser Phe Glu Leu Ser Tyr Thr Thr Pro Val Leu Thr Gly Tyr 975 980 985 GGG AAT GTT GAG TCA CCT GAG CAG CCC AAG TAT GAG CAG CGG AAG GGA 4434 Gly Asn Val Glu Ser Pro Glu Gln Pro Lys Tyr Glu Gln Arg Lys Gly 990 995 1000 GCA TAC TAATCTTAGT TTCAAGGTAG TGACTATGAG CGGTTGAAGG GCAGCCTTTA 4490 Ala Tyr 1005 GTTATGCAGC CTGCCTATAT GGCTGTAATT GCAATGAAAT ACTATACTCC TTGATAAAGT 4550 CTTTGGGGTC ACAATCTTAA GTGATAAAAG ACTCGTAAAT TTCCTGAGAT ACTGAAGTTC 4610 ACTGAGGCTG TGACTATAGG AGCTGCATGA ATCAGGTGTA GGACTCGTCC ATAGCCTCAG 4670 GTGATCAATT ATGTACCATT GAACCTGGGA CTTTGAGCTG TAGCACCTAG GAATAAATGA 4730 TTCTCAATCA TTGAAAATCT TGTTTCGTTG TGATATGTAT AGACTACGAC CAGTGCTATA 4790 CATAAAGCCA ACATACCTAC AGTCAATAAA GCATCACCAA CTCTATTAGC TAAGAATACC 4850 GATGGAAAAG GTTTGGCTTG AATCTACCGA GAAACATGAA CAAACACGCA ACACCTTATC 4910 ATCGAAGATG TGATTACATA GGGAAACTGT GGAGAGACTT GAAACGAGTG TTGACGAACG 4970 GGGGTTAGAG AACACTATGG TATAGTGCCG TGTTTCTATA CGTTGGGAGG ACCTAATTAT 5030 ACCATTACCT TCCTGTCCAT TAATATCACC CGGATAAGAG GTATGAAGGC TGTATCCCAG 5090 ATCCTAAGAA CTAGTGCAGG GTTCCAATTA TGGTTAAACA ATCATATTTA AAAACCAAAT 5150 ATATCAATTC TTCTCATCAA AAATAACTCC CAAAAACTTA ATAAACCTGC TATCCCACGG 5210 TAAAATCCAT AACCTCCGAC TAGAATGGTA ACTATAGTTG TATACGTGGA CCCAGCCCTA 5270 ACCCGTCCGT CTCCTGCATG AACGTTTTCT TCCCAGCCAC CAAGAATTC 5319
【図1】 Aspergillus oryzae RIB40株のβ−ガラクト
シダーゼ遺伝子を含むλクローン#1-6の、β−ガラクト
シダーゼ遺伝子周辺の制限酵素地図を示す。矢印は、推
定されるβ−ガラクトシダーゼ遺伝子を、白抜き枠内は
実施例に使用したDNA断片を示す。
シダーゼ遺伝子を含むλクローン#1-6の、β−ガラクト
シダーゼ遺伝子周辺の制限酵素地図を示す。矢印は、推
定されるβ−ガラクトシダーゼ遺伝子を、白抜き枠内は
実施例に使用したDNA断片を示す。
【図2】 β−ガラクトシダーゼ遺伝子周辺の制限酵素
地図を示す。矢印は、β−ガラクトシダーゼ遺伝子のコ
ーディング領域を、網掛け枠内はエキソンを、白抜き枠
内は推定されるイントロンを示す。
地図を示す。矢印は、β−ガラクトシダーゼ遺伝子のコ
ーディング領域を、網掛け枠内はエキソンを、白抜き枠
内は推定されるイントロンを示す。
【図3】 発現ベクターpAOBG26の構築図を示す。
【図4】 BGH26-4株及びM-2-3株の培地上清中のβ−ガ
ラクトシダーゼ活性を示し、□は、M-2-3株を3%グルコ
ースを含むCzapeck Dox培地で培養したもの、○は、M-2
-3株を138時間の時点で、3%マルトースを含む同培地に
移し、誘導をかけたもの、■は、BGH26-4株を3%グルコ
ースを含む同培地で培養したもの、●は、BGH26-4株を1
38時間の時点で、3%マルトースを含む同培地に移し、誘
導をかけたものを示す。
ラクトシダーゼ活性を示し、□は、M-2-3株を3%グルコ
ースを含むCzapeck Dox培地で培養したもの、○は、M-2
-3株を138時間の時点で、3%マルトースを含む同培地に
移し、誘導をかけたもの、■は、BGH26-4株を3%グルコ
ースを含む同培地で培養したもの、●は、BGH26-4株を1
38時間の時点で、3%マルトースを含む同培地に移し、誘
導をかけたものを示す。
【図5】 β−ガラクトシダーゼ高発現株BGH26-4株の
染色体DNAのサザン法による解析結果を示す。
染色体DNAのサザン法による解析結果を示す。
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 (C12N 9/38 C12R 1:69) (72)発明者 五味 勝也 東京都北区滝野川2丁目6番30号 国税庁 醸造試験場内 (72)発明者 北本 勝ひこ 東京都北区滝野川2丁目6番30号 国税庁 醸造試験場内 (72)発明者 高橋 康次郎 東京都北区滝野川2丁目6番30号 国税庁 醸造試験場内 (72)発明者 熊谷 知栄子 東京都北区滝野川2丁目6番30号 国税庁 醸造試験場内 (72)発明者 田村 學造 東京都北区滝野川2丁目6番30号 財団法 人醸造資源研究所内
Claims (7)
- 【請求項1】 アスペルギルス・オリゼ(Aspergillus
oryzae)由来のβ−ガラクトシダーゼをコードするDN
A。 - 【請求項2】 配列番号2に記載のアミノ酸配列をコー
ドするDNA。 - 【請求項3】 配列番号1に記載の塩基配列を含むDN
A。 - 【請求項4】 請求項1〜3のいずれかの遺伝子を含
み、該遺伝子の上流にプロモーターを配置した、糸状菌
用発現ベクター。 - 【請求項5】 プロモーターが誘導可能である、請求項
4記載の発現ベクター。 - 【請求項6】 請求項4または5記載の発現ベクターの
全部またはその一部を染色体上に安定に保持し、アスペ
ルギルス・オリゼ由来のβ−ガラクトシダーゼを菌体外
に分泌することができる、形質転換糸状菌。 - 【請求項7】 請求項6記載の形質転換糸状菌を培養
し、培養上清からアスペルギルス・オリゼ由来のβ−ガ
ラクトシダーゼを回収することを特徴とする、アスペル
ギルス・オリゼ由来のβ−ガラクトシダーゼの製造方
法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7107038A JPH08275780A (ja) | 1995-04-07 | 1995-04-07 | β−ガラクトシダーゼ遺伝子 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7107038A JPH08275780A (ja) | 1995-04-07 | 1995-04-07 | β−ガラクトシダーゼ遺伝子 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08275780A true JPH08275780A (ja) | 1996-10-22 |
Family
ID=14448953
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7107038A Pending JPH08275780A (ja) | 1995-04-07 | 1995-04-07 | β−ガラクトシダーゼ遺伝子 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08275780A (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001049878A1 (en) * | 1999-12-30 | 2001-07-12 | Novozymes A/S | FUNGAL EXTRACELLULAR Fam35 BETA-GALACTOSIDASES |
JP2002528076A (ja) * | 1998-10-26 | 2002-09-03 | ノボザイムス アクティーゼルスカブ | 糸状面細胞内の問題のdnaライブラリーの作製及びスクリーニング |
JP2010004760A (ja) * | 2008-06-24 | 2010-01-14 | Gekkeikan Sake Co Ltd | 糸状菌プロテアーゼの生産方法 |
WO2019172400A1 (ja) * | 2018-03-08 | 2019-09-12 | 有限会社アルティザイム・インターナショナル | フラビンアデニンジヌクレオチドグルコース脱水素酵素とシトクロム分子との融合タンパク質 |
US12123046B2 (en) | 2018-03-08 | 2024-10-22 | Ultizyme International Ltd. | Fusion protein of flavin adenine dinucleotide-glucose dehydrogenase and cytochrome molecule |
-
1995
- 1995-04-07 JP JP7107038A patent/JPH08275780A/ja active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002528076A (ja) * | 1998-10-26 | 2002-09-03 | ノボザイムス アクティーゼルスカブ | 糸状面細胞内の問題のdnaライブラリーの作製及びスクリーニング |
WO2001049878A1 (en) * | 1999-12-30 | 2001-07-12 | Novozymes A/S | FUNGAL EXTRACELLULAR Fam35 BETA-GALACTOSIDASES |
JP2010004760A (ja) * | 2008-06-24 | 2010-01-14 | Gekkeikan Sake Co Ltd | 糸状菌プロテアーゼの生産方法 |
WO2019172400A1 (ja) * | 2018-03-08 | 2019-09-12 | 有限会社アルティザイム・インターナショナル | フラビンアデニンジヌクレオチドグルコース脱水素酵素とシトクロム分子との融合タンパク質 |
US12123046B2 (en) | 2018-03-08 | 2024-10-22 | Ultizyme International Ltd. | Fusion protein of flavin adenine dinucleotide-glucose dehydrogenase and cytochrome molecule |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU686574B2 (en) | Pullulanase, microorganisms which produce it, processes for the preparation of this pullulanase and the uses thereof | |
EP1032654B1 (en) | Thermostable glucoamylase | |
US6620924B2 (en) | Thermostable glucoamylase | |
AU718990B2 (en) | Lysophospholipase produced from Aspergillus by recombinant methods | |
JP2866739B2 (ja) | アスペルギルスエンドキシラナーゼ▲ii▼遺伝子に由来する発現/分泌調節領域を用い、形質転換したカビでタンパク質を産生して分泌させるための方法 | |
JPH10508475A (ja) | トリペプチジルアミノペプチダーゼ | |
US5529926A (en) | Cloning and expression of DNA encoding a ripening form of a polypeptide having sulfhydryl oxidase activity | |
JPH06500022A (ja) | 真菌類由来のアラビナン分解酵素をコードするdna分子のクローニングおよび発現 | |
JPH0884586A (ja) | 還元性澱粉糖から末端にトレハロース構造を有する非還元性糖質を生成する組換え型耐熱性酵素 | |
JPH08275780A (ja) | β−ガラクトシダーゼ遺伝子 | |
US5821350A (en) | Aspergillus niger beta-galactosidase gene | |
JPH11502113A (ja) | アスペルギルスのアラビノフラノシダーゼ | |
JPH099968A (ja) | 糸状菌のエンハンサーdna塩基配列およびその用途 | |
DE19536506B4 (de) | Neues Creatin-Amidinohydrolase-Gen, neue rekombinante DNA und Verfahren zur Herstellung von Creatin-Amidinohydrolase | |
JP2995289B2 (ja) | セロビオースフォスフォリラーゼ遺伝子、該遺伝子を含むベクター及び形質転換体 | |
DE60034575T2 (de) | Enzym- oder Zellzubereitung mit Inulinaseaktivität | |
JP2997800B2 (ja) | 細胞壁溶解酵素遺伝子、該遺伝子を含むベクター及び形質転換体 | |
US6534286B1 (en) | Protein production in Aureobasidium pullulans | |
JPH09505989A (ja) | 菌類からのα‐1,4‐グルカンリアーゼ、その精製、遺伝子クローニングおよび微生物での発現 | |
JPH0947289A (ja) | 担子菌コリオラス属由来プロモーター活性を有するdna断片 | |
JP2001275669A (ja) | 新規カタラーゼ遺伝子及び該遺伝子を用いた新規カタラーゼの製造方法 | |
DE69813185T2 (de) | Klonierung und Expression eines neuen Glukoamylasegens aus endomyces fibuliger | |
JP2002218986A (ja) | 新規グルタミナーゼ及びその製造方法 | |
JP2001513637A (ja) | 発現エレメント | |
JPH11318454A (ja) | プロリンジペプチダーゼをコードする遺伝子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040830 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041028 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041028 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20041210 |