JPH08226718A - Cold storage material for cryogenic use and cold storage apparatus for cryogenic use using the same - Google Patents

Cold storage material for cryogenic use and cold storage apparatus for cryogenic use using the same

Info

Publication number
JPH08226718A
JPH08226718A JP7035234A JP3523495A JPH08226718A JP H08226718 A JPH08226718 A JP H08226718A JP 7035234 A JP7035234 A JP 7035234A JP 3523495 A JP3523495 A JP 3523495A JP H08226718 A JPH08226718 A JP H08226718A
Authority
JP
Japan
Prior art keywords
cold storage
particles
regenerator
storage material
cryogenic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7035234A
Other languages
Japanese (ja)
Other versions
JP3561023B2 (en
Inventor
Masami Okamura
正己 岡村
Naoyuki Sori
尚行 蘓理
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP03523495A priority Critical patent/JP3561023B2/en
Publication of JPH08226718A publication Critical patent/JPH08226718A/en
Application granted granted Critical
Publication of JP3561023B2 publication Critical patent/JP3561023B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/003Gas cycle refrigeration machines characterised by construction or composition of the regenerator

Landscapes

  • Separation By Low-Temperature Treatments (AREA)

Abstract

PURPOSE: To provide a cold storage material for cryogenic use inexpensive industrially and a cold storage apparatus using the same which enable the setting and maintenance of a gap between particles of a cold storage substance stably and easily and also maintenance of the performance of the cold storage apparatus for a long time. CONSTITUTION: This cold storage material for cryogenic use comprises a particulate body of a cold storage substance having a specific heat exceeding 0.1J/cm<3> K at the temperature of below 30K. When the circumferential length of a projection image of individual particle of the cold storage substance particulate body is represented by L and an actual area of the projection image by A, the particles exceeding 60% of those of the cold storage substance particulate body have a shape with a geometrical factor R expressed by L<2> /4πA meeting 1.1<R<2.0. The cold storage apparatus for cryogenic use employs a sintered cold storage material as cold storage material for cryogenic use.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷凍機等に使用される
極低温用蓄冷材およびそれを用いた極低温用蓄冷器に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cryogenic regenerator material used in refrigerators and the like, and a cryogenic regenerator using the same.

【0002】[0002]

【従来の技術】近年、超電導技術の発展は著しく、その
応用分野が拡大するに伴って、小型で高性能の冷凍機の
開発が不可欠になってきている。このような冷凍機に
は、軽量・小型で熱効率の高いことが要求されている。
2. Description of the Related Art In recent years, the development of superconducting technology has been remarkable, and with the expansion of its application fields, it has become essential to develop a small-sized and high-performance refrigerator. Such refrigerators are required to be lightweight, compact and have high thermal efficiency.

【0003】例えば、超電導MRI装置やクライオポン
プ等においては、ギフォード・マクマホン方式(GM方
式)やスターリング方式等の冷凍サイクルによる冷凍機
が用いられている。また、磁気浮上列車にも高性能の冷
凍機は必須とされている。このような冷凍機において
は、蓄冷材が充填された蓄冷器内を圧縮されたHeガス等
の作動媒質が一方向に流れて、その熱エネルギーを充填
物質(蓄冷材)に供給し、ここで膨張した作動媒質が反
対方向に流れ、蓄冷材から熱エネルギーを受けとる。こ
うした過程で復熱効果が良好になるに伴って、作動媒質
サイクルの熱効率が向上し、一層低い温度を実現するこ
とが可能となる。
For example, in a superconducting MRI apparatus, a cryopump, etc., a refrigerator having a refrigeration cycle such as Gifford-McMahon method (GM method) or Stirling method is used. High-performance refrigerators are also essential for magnetic levitation trains. In such a refrigerator, the working medium such as compressed He gas flows in one direction in the regenerator filled with the regenerator material, and supplies the thermal energy to the filling material (regenerator material). The expanded working medium flows in the opposite direction and receives heat energy from the regenerator material. As the recuperation effect becomes better in such a process, the thermal efficiency of the working medium cycle is improved, and it becomes possible to realize a lower temperature.

【0004】上述したような冷凍機に使用される極低温
用蓄冷材としては、従来、Cu、Pb等が主に用いられてき
た。しかし、これらの蓄冷材は 20K以下の極低温で比熱
が著しく小さくなるため、上述した復熱効果が十分に機
能せず、 20K以下というような極低温を実現することが
困難であった。
Conventionally, Cu, Pb and the like have been mainly used as the cryogenic regenerator material used in the refrigerator as described above. However, since the specific heat of these regenerator materials becomes extremely small at cryogenic temperatures of 20K or less, the above-mentioned recuperative effect does not function sufficiently, and it was difficult to achieve cryogenic temperatures of 20K or less.

【0005】そこで、最近では、より絶対零度に近い温
度を実現するために、極低温域において大きな体積比熱
を示す、Er3 Ni、ErNi、ErNi2 等の Er-Ni系金属間化合
物(特開平1-310269号公報参照)や、ErRhのような ARh
系金属間化合物(A:Sm,Gd,Tb,Dy,Ho, Er,Tm,Yb)(特開昭
51-52378号公報参照)等の磁性蓄冷物質を用いることが
検討されている。
Therefore, recently, in order to realize a temperature closer to absolute zero, an Er-Ni-based intermetallic compound such as Er 3 Ni, ErNi, ErNi 2 which exhibits a large volume specific heat in an extremely low temperature region (see Japanese Patent Laid-Open No. H11 (1999) -135242). 1-310269) or ARh such as ErRh
Intermetallic compounds (A: Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb)
The use of a magnetic cold storage material such as JP-A-51-52378) has been studied.

【0006】上述したような磁性蓄冷物質を蓄冷器に充
填する場合、その充填率を高めるために、球状に近い粒
子状とすることが提案されている(例えば特開平3-1744
86号公報等参照)。そして、上記したような磁性蓄冷物
質の球状粒体を蓄冷筒に充填し、粒子が動かぬように適
当な蓋をして蓄冷器を構成している。このような蓄冷器
においては、磁性蓄冷物質粒子間に残る空隙を通してHe
等のガスが流れ、蓄冷材とガスとの間の温度差によって
熱交換が行われる。
When the regenerator is filled with the magnetic regenerator material as described above, it has been proposed that the regenerator has a particle shape close to a sphere (for example, Japanese Patent Laid-Open No. 3-1744).
(See Publication No. 86, etc.) Then, the spherical granules of the magnetic regenerator material as described above are filled in a regenerator and an appropriate lid is provided so that the particles do not move to form a regenerator. In such regenerators, the He
Gas flows, and heat exchange is performed due to the temperature difference between the regenerator material and the gas.

【0007】[0007]

【発明が解決しようとする課題】ところで、上述したよ
うな蓄冷器の作動状態においては、Heガス等の作動媒質
が高圧かつ高速でその流れの向きが頻繁に変わるよう
に、蓄冷器内に充填された磁性蓄冷物質粒体間の空隙を
通過するため、その粒子には機械的振動をはじめとする
種々な力が加わる。
In the operating state of the regenerator described above, the working medium such as He gas is charged into the regenerator such that the flow direction thereof frequently changes at high pressure and high speed. Since the particles pass through the voids between the magnetic regenerator particles, various particles such as mechanical vibration are applied to the particles.

【0008】このように、磁性蓄冷物質粒体には種々の
力が作用するため、充填当初においては最密状態で充填
されていても、作動時間の経過と共に磁性蓄冷物質粒子
間にすきまが発生し、ガス流に変化を生じさせて、蓄冷
器の性能に影響を及ぼすという問題があった。また、Er
3 NiやErRh等の磁性蓄冷物質は、一般に材質的に脆弱で
あるため、上記した蓄冷器作動中の機械的振動等が原因
となって蓄冷物質が微粉化しやすく、この微粉がガスシ
ールを阻害する等して、蓄冷器の性能に悪影響を及ぼす
というような問題をも招いていた。
Since various forces act on the magnetic regenerator material particles in this manner, a gap is generated between the magnetic regenerator material particles as the operating time elapses even when the magnetic regenerator material particles are packed in the closest packed state at the beginning of filling. However, there is a problem that the gas flow is changed to affect the performance of the regenerator. Also, Er
3 Magnetic regenerator materials such as Ni and ErRh are generally fragile in material, so it is easy for the regenerator material to become fine powder due to mechanical vibration etc. during operation of the above-mentioned regenerator, and this fine powder obstructs the gas seal. As a result, there has been a problem that the performance of the regenerator is adversely affected.

【0009】一方、上述したような磁性蓄冷物質粒体の
振動やそれに伴う移動等を防ぐために、磁性蓄冷物質の
球状粒体等を焼結させて、球状粒子間を固着させること
が提案されている(特開平5-203272号公報参照)。しか
しながら、Er3 NiやErRh等の磁性蓄冷物質の球状粒体
は、一般に、回転ディスク法、回転電極法、ガスアトマ
イズ法、水アトマイズ法等の急冷凝固法を用いて作製さ
れるため、球状粒体は工業的見地からは高価となると共
に、焼結時における粒子間の接触面積が大となるため
に、要求される空隙の設定が比較的難しいという難点を
有していた。
On the other hand, it has been proposed to sinter the spherical particles or the like of the magnetic regenerator material so as to fix them between the spherical particles in order to prevent the magnetic regenerator material particles from vibrating or moving with the above. (See Japanese Patent Laid-Open No. 5-203272). However, spherical particles of a magnetic regenerator material such as Er 3 Ni and ErRh are generally produced using a rapid solidification method such as a rotating disk method, a rotating electrode method, a gas atomizing method, and a water atomizing method. In addition to being expensive from an industrial point of view, the contact area between particles during sintering is large, which makes it difficult to set the required voids.

【0010】本発明は、このような課題に対処するため
になされたもので、蓄冷物質粒子間の空隙を安定かつ容
易に設定および維持することができ、蓄冷器の性能を長
期間にわたって維持することが可能であると共に、工業
的に安価な極低温用蓄冷材およびそれを用いた蓄冷器を
提供することを目的としている。
The present invention has been made in order to solve such a problem, and it is possible to stably and easily set and maintain the voids between the regenerator material particles and maintain the performance of the regenerator for a long period of time. It is an object of the present invention to provide an industrially inexpensive regenerator material for cryogenic temperatures and a regenerator using the same.

【0011】[0011]

【課題を解決するための手段と作用】本発明の極低温用
蓄冷材は、 30K以下の温度で 0.1J/cm3 K 以上の比熱を
有する蓄冷物質の粒体からなる極低温用蓄冷材におい
て、前記蓄冷物質粒体の個々の粒子の投影像の周囲長を
L、前記投影像の実面積をAとしたとき、前記蓄冷物質
粒体中の 60%以上の粒子はL2 /4πAで表される形状因
子Rが 1.1<R<2.0 である形状を有し、かつ前記蓄冷
物質粒子間は焼結により固着されていることを特徴とし
ている。
[Means and Actions for Solving the Problem] The cryogenic regenerator material of the present invention is a cryogenic regenerator material comprising particles of a regenerator material having a specific heat of 0.1 J / cm 3 K or more at a temperature of 30 K or less. , L is the perimeter of the projected image of individual particles of the cold storage material granules, and A is the actual area of the projected image, and 60% or more of the particles in the cold storage material granules are represented by L 2 / 4πA. The shape factor R is 1.1 <R <2.0, and the cold storage material particles are fixed by sintering.

【0012】また、本発明の極低温用蓄冷器は、 30K以
下の温度で 0.1J/cm3 K 以上の比熱を有する蓄冷物質の
粒体が充填された蓄冷器において、前記蓄冷物質粒体の
個々の粒子の投影像の周囲長をL、前記投影像の実面積
をAとしたとき、前記蓄冷物質粒体中の 60%以上の粒子
はL2 /4πAで表される形状因子Rが 1.1<R<2.0で
ある形状を有し、かつ前記蓄冷物質粒子間は焼結により
固着されていることを特徴としている。
Further, the cryogenic regenerator of the present invention is a regenerator filled with granules of a regenerator material having a specific heat of 0.1 J / cm 3 K or more at a temperature of 30 K or less. Assuming that the perimeter of the projected image of each particle is L and the actual area of the projected image is A, 60% or more of the particles in the regenerator material have a shape factor R represented by L 2 / 4πA of 1.1. It is characterized in that it has a shape of <R <2.0 and that the particles of the regenerator material are fixed by sintering.

【0013】本発明に用いられる蓄冷物質としては、 3
0K以下の温度において 0.1J/cm3 K以上の比熱を有する
物質であれば各種のものを用いることが可能であり、例
えばPbやPb合金、あるいは希土類元素を含有する磁性金
属間化合物が挙げられる。希土類元素系磁性金属間化合
物としては、RMz (Rは Y、La、Ce、Pr、Nd、Pm、Sm、E
u、Gd、Tb、Dy、Ho、Er、TmおよびYbから選ばれた少な
くとも 1種の希土類元素を、 MはNi、CoおよびCuから選
ばれた少なくとも 1種の金属元素を示し、 zは0.001〜
9.0の範囲の数を示す)で表される金属間化合物、RMz
に C等を加えた金属間化合物、 R・Rh系金属間化合物等
が例示される。これらの希土類元素系磁性蓄冷物質は、
20K以下に比熱の最大値を有し、かつその値が単位体積
当りの比熱(体積比熱)として十分に大きいため、より
極低温の到達が可能となることから、本発明に好適な蓄
冷物質である。
As the cold storage material used in the present invention, 3
Various substances can be used as long as they have a specific heat of 0.1 J / cm 3 K or more at a temperature of 0 K or less, and examples thereof include Pb and Pb alloys, or magnetic intermetallic compounds containing a rare earth element. . Rare earth element magnetic intermetallic compounds include RM z (R is Y, La, Ce, Pr, Nd, Pm, Sm, E
u, Gd, Tb, Dy, Ho, Er, Tm and at least one rare earth element selected from Yb, M is at least one metal element selected from Ni, Co and Cu, z is 0.001 ~
Intermetallic compounds represented by numbers in the range 9.0), RM z
Examples include intermetallic compounds in which C and the like are added to R, R / Rh-based intermetallic compounds, and the like. These rare earth element magnetic cold storage materials are
It has a maximum value of specific heat of 20K or less, and since the value is sufficiently large as the specific heat per unit volume (volume specific heat), it becomes possible to reach an extremely low temperature, and therefore, it is a cool storage material suitable for the present invention. is there.

【0014】本発明の極低温用蓄冷材は、上述したよう
な蓄冷物質の粒体を焼結により固着させたものであっ
て、焼結前の蓄冷物質粒体の個々の粒子の投影像の周囲
長をL、その投影像の実面積をAとしたとき、L2 /4π
Aで表される形状因子Rが 1.1<R<2.0 である形状を
有する蓄冷物質粒子の存在比率を 60%以上としたもので
ある。上記形状因子Rは、粒子形状が完全に球である場
合には 1となる値であり、形状因子Rが 1.1<R<2.0
の範囲であるということは、比較的不規則な形状を有す
る粒子である。
The cryogenic regenerator material of the present invention is one in which the particles of the regenerator material as described above are fixed by sintering, and the projected image of individual particles of the regenerator material before sintering is obtained. When the perimeter is L and the real area of the projected image is A, L 2 / 4π
The abundance ratio of cool storage material particles having a shape factor R represented by A of 1.1 <R <2.0 is 60% or more. The shape factor R is a value of 1 when the particle shape is completely spherical, and the shape factor R is 1.1 <R <2.0.
The range is a particle having a relatively irregular shape.

【0015】すなわち、本発明の極低温用蓄冷材は、不
規則形状の粒子を主とする蓄冷物質粒体を用いることに
よって、焼結後の粒子間空隙の設定を容易にしたもので
ある。蓄冷物質粒子の形状が球に近似するほど粒子間の
接触面積が大きくなり、所望の粒子間空隙を得るための
焼結条件の設定等が比較的難しい。これに対して、形状
因子Rが 1.1<R<2.0 である不規則形状を有する蓄冷
物質粒子の存在比率を60% 以上とすることによって、粒
子間の接触面積を比較的小さくすることができることか
ら、焼結条件等が多少ばらついても、比較的おおきな所
望の粒子間空隙を容易に得ることができる。
That is, the cryogenic regenerator material of the present invention uses the regenerator material granules mainly composed of irregularly shaped particles to facilitate the setting of interparticle voids after sintering. As the shape of the particles of the cold storage material approximates to a sphere, the contact area between the particles increases, and it is relatively difficult to set the sintering conditions for obtaining the desired interparticle voids. On the other hand, the contact area between particles can be made relatively small by setting the abundance ratio of the cool storage material particles having an irregular shape with the shape factor R of 1.1 <R <2.0 to be 60% or more. Even if the sintering conditions and the like vary to some extent, relatively large desired interparticle voids can be easily obtained.

【0016】また、特に磁性蓄冷物質の球状粒体は、回
転ディスク法、回転電極法、ガスアトマイズ法、水アト
マイズ法等の急冷凝固法により作製する必要があるのに
対し、本発明で規定する不規則形状の蓄冷物質粒体は、
予め作製した母合金をスタンプミル、ジェットミル、ボ
ールミル等を用いて粉砕することによって、容易にかつ
工業的に安価に得ることができる。
Further, in particular, the spherical particles of the magnetic regenerator material need to be produced by a rapid solidification method such as a rotating disk method, a rotating electrode method, a gas atomizing method and a water atomizing method, whereas the spherical particles of the present invention are not specified. Regular shape cold storage material granules,
By crushing the pre-produced mother alloy using a stamp mill, a jet mill, a ball mill or the like, it can be easily and industrially obtained at low cost.

【0017】本発明の極低温用蓄冷材において、蓄冷物
質粒子の形状因子Rを 1.1<R<2.0の範囲に規定した
理由は以下の通りである。すなわち、形状因子Rが 1.1
以下であると、上述したような粒子間空隙を容易に得る
ことができず、また形状因子Rが 2.0以上となると、逆
に粒子間の接触面積が小さくなりすぎて焼結性が低下す
る。そして、このような不規則形状の蓄冷物質粒子の存
在比率が 60%未満であると、上述したように所望の粒子
間空隙を容易に得ることができなくなる。不規則形状の
蓄冷物質粒子のより好ましい存在比率は 70%以上であ
り、さらに好ましくは 80%以上である。
In the cryogenic regenerator material of the present invention, the shape factor R of the regenerator material particles is defined in the range of 1.1 <R <2.0 for the following reasons. That is, the form factor R is 1.1
When it is below, interparticle voids as described above cannot be easily obtained, and when the shape factor R is 2.0 or more, conversely, the contact area between particles becomes too small and the sinterability deteriorates. If the abundance ratio of such irregularly shaped cool storage substance particles is less than 60%, it becomes impossible to easily obtain the desired interparticle voids as described above. A more preferable abundance ratio of the irregularly shaped cool storage material particles is 70% or more, and further preferably 80% or more.

【0018】また、蓄冷物質粒体の粒径は、伝熱特性等
に大きな影響を及ぼすものであるため、本発明において
は全粒体の70重量% 以上を粒径が0.01〜 0.3mmの蓄冷物
質粒子で構成することが好ましい。ここで、本発明でい
う粒径とは、粒子を内包することができる最小球の直径
を意味する。蓄冷物質粒子の粒径が0.01mm未満である
と、充填密度が高くなりすぎることから圧力損失の増大
等を招くおそれがあり、また粒径が 3.0mmを超えると、
伝熱面積が小さくなることから熱伝達効率の低下を招き
やすくなる。よって、このような粒子が全粒体の30重量
% を超えると、蓄冷性能の低下を招くおそれがある。よ
り好ましい粒径は、 0.1〜 2mmの範囲である。粒径が0.
01〜 3.0mmの範囲の粒子の全粒体中における比率は、80
重量% 以上とすることがより好ましく、さらに好ましく
は90重量% 以上である。
Further, since the particle size of the cold storage substance particles has a great influence on the heat transfer characteristics and the like, in the present invention, 70% by weight or more of the total particles are stored in the cold storage material having a particle size of 0.01 to 0.3 mm. It is preferably composed of material particles. Here, the particle size as referred to in the present invention means the diameter of the smallest sphere capable of encapsulating the particles. If the particle size of the cool storage substance particles is less than 0.01 mm, the packing density becomes too high, which may lead to an increase in pressure loss, and if the particle size exceeds 3.0 mm,
Since the heat transfer area becomes small, the heat transfer efficiency is likely to decrease. Therefore, such particles are 30 weight of the whole particle.
If it exceeds%, the cold storage performance may be deteriorated. A more preferable particle size is in the range of 0.1 to 2 mm. Particle size is 0.
The ratio of particles in the range 01 to 3.0 mm in the whole particle is 80
The content is more preferably at least wt%, further preferably at least 90 wt%.

【0019】本発明の極低温用蓄冷材は、上述したよう
な不規則形状の粒子を主とする蓄冷物質粒体をその融点
未満の温度で焼結させることにより、粒子間を固着させ
た焼結蓄冷材である。このように、蓄冷物質粒体を焼結
させて粒子間を固着することにより、所望の粒子間空隙
が容易に得られると共に、ガス流等による力や熱衝撃が
加わっても、蓄冷物質粒子の振動や移動を防止すること
が可能となる。従って、蓄冷物質粒子間の空隙が安定に
保たれ、ガス流の変化や微粉の発生を効果的に抑制する
ことができる。焼結の度合は、あくまでも粒子間が固定
される程度でよく、空隙率が15〜 80%程度となるように
焼結条件を設定することが好ましい。焼結後の空隙率が
15%未満ではガス流が阻害され、蓄冷性能の低下を招く
おそれがあり、また 80%を超えると構造的に不安定とな
る。
The cryogenic regenerator material of the present invention is obtained by sintering the particles of the regenerator material mainly composed of irregularly shaped particles as described above at a temperature lower than the melting point thereof so as to fix the particles to each other. It is a cold storage material. In this way, by sintering the regenerator material particles and fixing the particles, the desired interparticle voids can be easily obtained, and even if a force or thermal shock due to a gas flow is applied, the regenerator material particles It is possible to prevent vibration and movement. Therefore, the voids between the particles of the cold storage material are kept stable, and the change of the gas flow and the generation of fine powder can be effectively suppressed. The degree of sintering may be such that particles are fixed to each other, and it is preferable to set the sintering conditions so that the porosity is about 15 to 80%. Porosity after sintering
If it is less than 15%, the gas flow may be obstructed and the cold storage performance may be deteriorated. If it exceeds 80%, the structure becomes unstable.

【0020】また、蓄冷物質粒体の焼結による固着は、
蓄冷物質粒子間で直接行ってもよく、また蓄冷物質粒子
の表面を予め蓄冷物質の融点より低温で液化、軟化また
は自己融着する物質で覆った後、このような物質を介し
て液相焼結させることにより行ってもよい。このような
介在物質としては、例えば鉛、銀、スズ、インジウム、
亜鉛等からなる低融点合金類等が例示される。上述した
ような物質を介して液相焼結させることによって、より
低温で蓄冷物質粒子間を固着させることができると共
に、固着強度の向上を図ることができる。
Further, the fixation due to the sintering of the cold storage material granules is
It may be carried out directly between the particles of the cold storage material, or the surface of the particles of the cold storage material may be previously covered with a material that liquefies, softens or self-melts at a temperature lower than the melting point of the cold storage material, and then liquid phase baking is performed through such a material. You may carry out by binding. Examples of such intervening substances include lead, silver, tin, indium,
Examples are low melting point alloys made of zinc or the like. By performing liquid phase sintering through the above-mentioned substances, it is possible to fix the cold-storage substance particles at a lower temperature and to improve the fixing strength.

【0021】本発明の極低温用蓄冷材、すなわち焼結蓄
冷材は、例えば以下のようにして製造される。すなわ
ち、まず上述したような不規則形状の粒子を主とする蓄
冷物質粒体を、この蓄冷物質と反応しにくい材料で構成
された焼結容器内に収容し、蓄冷物質粒子間が適度に接
触する程度の圧力で、蓋等により上記粒体を押え、この
状態で熱処理を施すことにより焼結させる。上記焼結容
器としては、この容器と蓄冷物質粒子とが融着しないよ
うに、酸化物の微粒子を吹き付けたり、またNi、Co等で
メッキを施したり、あるいは酸化物の容器を用いること
も有効な方法である。焼成雰囲気は、蓄冷物質が酸化し
ないように、真空中または不活性ガス中で行うことが好
ましい。
The cryogenic regenerator material of the present invention, that is, the sintered regenerator material is manufactured, for example, as follows. That is, first, the regenerator substance granules mainly composed of irregularly shaped particles as described above are housed in a sintering container made of a material that does not easily react with the regenerator substance, and the regenerator substance particles are appropriately contacted. The above-mentioned granules are pressed by a lid or the like with a pressure to such an extent that they are heat-treated in this state to be sintered. As the above-mentioned sintering container, spraying fine particles of oxide, plating with Ni, Co, or the like, or using an oxide container is also effective so that the container and the regenerator material particles are not fused. That's the method. The firing atmosphere is preferably performed in vacuum or in an inert gas so that the cold storage material is not oxidized.

【0022】上記焼結温度および時間は、使用した蓄冷
物質および介在物の有無に応じて、上述したような空隙
率が得られるように適宜設定する。ただし、蓄冷物質の
球状粒体を用いた場合に比べて粒子間の接触面積が少な
くなるため、若干焼結温度を高く、あるいは若干焼結時
間を長く設定する。なお、上記焼結工程は、蓄冷物質特
に希土類元素系磁性蓄冷物質の安定化処理としても機能
する。
The above sintering temperature and time are appropriately set depending on the presence or absence of the cold accumulating substance and inclusions used so that the porosity as described above can be obtained. However, since the contact area between particles is smaller than that in the case of using spherical particles of the cold storage substance, the sintering temperature is set slightly higher or the sintering time is set slightly longer. The above-mentioned sintering step also functions as a stabilization treatment for the cool storage material, particularly the rare earth element-based magnetic cool storage material.

【0023】本発明の極低温用蓄冷器は、上述した焼結
により粒子間を固着した焼結蓄冷材を蓄冷筒に充填した
ものであるが、例えば複数の焼結蓄冷材を充填すること
により、極低温用蓄冷器を構成することも可能である
等、種々の形態を採用することができる。また、充填す
る蓄冷材の全てを上記焼結蓄冷材で構成しなければなら
ないものではなく、焼結蓄冷材と粒体との混合物として
充填することも可能である。そして、上述したような焼
結蓄冷材を用いることによって、蓄冷器の初期性能の再
現性および冷凍性能の安定性を大幅に向上させることが
可能となる。すなわち、優れた初期性能が再現性よく得
られると共に、冷凍温度の時間変化が安定し、運転条件
を最適に調整したあとは、無調整で常に安定条件、最大
出力条件を満足して運転することが可能となる。
The cryogenic regenerator of the present invention is obtained by filling the regenerator cylinder with the sintered regenerator material whose particles are fixed by the above-mentioned sintering. For example, by filling a plurality of sintered regenerator materials. Various forms can be adopted, such as a regenerator for cryogenic temperature can be configured. Further, not all of the regenerator material to be filled must be composed of the above-mentioned sintered regenerator material, but it is also possible to fill it as a mixture of the sintered regenerator material and granules. Then, by using the above-described sintered regenerator material, it becomes possible to greatly improve the reproducibility of the initial performance of the regenerator and the stability of the refrigerating performance. That is, excellent initial performance can be obtained with good reproducibility, the change in refrigeration temperature with time is stable, and after optimally adjusting the operating conditions, always operate without adjusting the stable conditions and maximum output conditions. Is possible.

【0024】[0024]

【実施例】以下、本発明の実施例について説明する。Embodiments of the present invention will be described below.

【0025】実施例1 まず、高周波溶解によりEr3 Ni母合金(融点1123K)を作
製した。このEr3 Ni母合金をスタンプミルにより粒径
0.2〜 0.3mmに粉砕した後、傾斜振動板による形状分級
を行った。得られたEr3 Ni粒体の個々の粒子の投影像の
周囲長Lと投影像の実面積Aを画像処理により測定し、
2 /4πAで表される形状因子Rを評価したところ、
1.1<R<2.0 の範囲内に入る粒子の存在比率は 91%で
あった。
Example 1 First, an Er 3 Ni mother alloy (melting point: 1123K) was produced by high frequency melting. Particle size of this Er 3 Ni mother alloy was measured by a stamp mill.
After crushing to 0.2 to 0.3 mm, shape classification was performed using an inclined vibrating plate. The perimeter L of the projected image of each particle of the obtained Er 3 Ni particles and the actual area A of the projected image are measured by image processing,
When the form factor R represented by L 2 / 4πA is evaluated,
The abundance ratio of particles falling within the range of 1.1 <R <2.0 was 91%.

【0026】次に、上述したEr3 Ni粒体をグラファイト
製の型に振動を加えながら充填し、その上にグラファイ
ト製の蓋を軽く押える力が働くように載せ、この状態で
焼成炉内に配置した。なお、粒体充填時の充填率は約 6
2%とした。次いで、炉内を十分に真空排気した後にArガ
スを導入し、このAr雰囲気中にて 1023Kの温度で 1時間
焼成し、常温まで冷却した後に型より取り出して、外径
20.0mm、高さ50.0mmのフィルター状の焼結Er3 Ni蓄冷材
を得た。また、得られた焼結Er3 Ni蓄冷材は約32%の空
隙率を有していた。
Next, the Er 3 Ni granules described above were filled in a graphite mold while vibrating, and a graphite cap was placed on the mold so as to exert a force to lightly press it. I placed it. The filling rate when filling granules is about 6
It was set to 2%. Then, the furnace was evacuated sufficiently and Ar gas was introduced, followed by firing in this Ar atmosphere at a temperature of 1023K for 1 hour, cooling to room temperature, and then taking it out of the mold to obtain an outer diameter.
A sintered Er 3 Ni regenerator material having a filter shape of 20.0 mm and a height of 50.0 mm was obtained. The obtained sintered Er 3 Ni regenerator material had a porosity of about 32%.

【0027】次に、上記焼結Er3 Ni蓄冷材を用いて極低
温用蓄冷器を構成し、その安定性および冷凍能力を以下
のようにして評価した。まず、上記焼結Er3 Ni蓄冷材の
外径を蓄冷筒の内径に合せて研摩し、超音波により微粉
を完全に落とした後、おおよそ1kg/cm2 の圧力をかけて
蓄冷筒内に圧入した。これをGM冷凍機に組込み、冷凍
試験を行った。その結果、4.2Kにおける初期冷凍能力と
して 250mWが得られ、また2000時間連続運転している
間、安定した出力を得ることができた。
Next, a cryogenic regenerator was constructed using the above sintered Er 3 Ni regenerator material, and its stability and refrigerating capacity were evaluated as follows. First, the outer diameter of the sintered Er 3 Ni regenerator material is ground to the inner diameter of the regenerator, and fine powder is completely removed by ultrasonic waves, and then a pressure of approximately 1 kg / cm 2 is applied to the regenerator. did. This was incorporated into a GM refrigerator and a freezing test was conducted. As a result, 250 mW was obtained as the initial refrigeration capacity at 4.2 K, and stable output could be obtained during continuous operation for 2000 hours.

【0028】実施例2 上記実施例1と同様にして、 5種類のEr3 Ni粒体を作製
した後、表1に示す焼結条件でフィルター状の焼結Er3
Ni蓄冷材をそれぞれ作製した。上記各Er3 Ni粒体の形状
因子Rが 1.1<R<2.0 の範囲内に入る粒子の存在比率
と、焼結後の空隙率を併せて示す。
Example 2 Five types of Er 3 Ni particles were produced in the same manner as in Example 1 above, and then sintered Er 3 having a filter shape under the sintering conditions shown in Table 1.
Each Ni cold storage material was produced. The abundance ratio of particles in which the shape factor R of each Er 3 Ni particle falls within the range of 1.1 <R <2.0 is shown together with the porosity after sintering.

【0029】次に、上記フィルター状の焼結Er3 Ni蓄冷
材をそれぞれ用いて、上記実施例1と同様にして冷凍試
験を行った。その結果として初期冷凍能力と2000時間連
続運転後の冷凍能力を表1に示す。
Next, a freezing test was conducted in the same manner as in Example 1 using each of the filter-like sintered Er 3 Ni regenerator materials. As a result, Table 1 shows the initial cooling capacity and the cooling capacity after 2000 hours of continuous operation.

【0030】[0030]

【表1】 表1から明らかなように、不規則形状の粒子を主とする
蓄冷物質粒体を用いることによって、焼結蓄冷材の粒子
間空隙を安定して設定することができ、またそのような
焼結蓄冷材を用いることによって、優れた初期冷凍能力
を再現性よく得ることが可能となると共に、そのような
性能を長期間にわたって維持することが可能となる。
[Table 1] As is clear from Table 1, by using the regenerator material granules mainly composed of irregularly shaped particles, the inter-particle voids of the sintered regenerator material can be stably set, and such sintering By using the regenerator material, it is possible to obtain an excellent initial refrigerating capacity with good reproducibility, and it is possible to maintain such performance for a long period of time.

【0031】比較例1 上記実施例1で作製したEr3 Ni粒体を焼結させることな
く、そのまま蓄冷材として用いる以外は、実施例1と同
様に極低温用蓄冷器を作製した。なお、Er3 Ni粒体の蓄
冷筒への充填率は 65%とした。この極低温用蓄冷器をG
M冷凍機に組込み、上記実施例1と同様にして冷凍試験
を行った。その結果、初期冷凍能力はおおよそ 250mWで
あり、2000時間連続運転後の冷凍能力は20mWであった。
Comparative Example 1 An extremely low temperature regenerator was produced in the same manner as in Example 1 except that the Er 3 Ni particles produced in Example 1 above were used as they were as a regenerator material without being sintered. The filling rate of Er 3 Ni particles in the cold storage cylinder was set to 65%. This cryogenic regenerator is G
It was incorporated into an M refrigerator and a freezing test was conducted in the same manner as in Example 1 above. As a result, the initial refrigeration capacity was about 250 mW, and the refrigeration capacity after continuous operation for 2000 hours was 20 mW.

【0032】比較例2 上記実施例1同様のEr3 Ni母合金を 1373Kで溶融し、こ
の溶湯をAr雰囲気中で回転円板上に滴下、噴霧して急冷
凝固させた。得られた粒体を篩分け並びに形状分級し、
粒径 0.2〜 0.3mmの球状Er3 Ni粒体を得た。この球状Er
3 Ni粒体を実施例1と同一条件で焼成して、フィルター
状の焼結Er3 Ni蓄冷材を作製した。この焼結Er3 Ni蓄冷
材の空隙率は 28%であった。
Comparative Example 2 The same Er 3 Ni mother alloy as in Example 1 above was melted at 1373 K, and this molten metal was dropped and sprayed onto a rotating disk in an Ar atmosphere to rapidly solidify. The obtained granules are sieved and classified by shape,
Spherical Er 3 Ni particles having a particle size of 0.2 to 0.3 mm were obtained. This spherical Er
The 3 Ni particles were fired under the same conditions as in Example 1 to prepare a filter-like sintered Er 3 Ni regenerator material. The porosity of this sintered Er 3 Ni regenerator material was 28%.

【0033】また、上記フィルター状の焼結Er3 Ni蓄冷
材を用いて、実施例1と同様に極低温用蓄冷器を作製し
て、同様に冷凍試験を行ったところ、初期冷凍能力は 2
50mWで、2000時間の連続運転の間安定した出力を得るこ
とができた。ただし、極低温用蓄冷器の製造コストは実
施例1の約 2倍であった。
A cryogenic regenerator was prepared in the same manner as in Example 1 using the above-mentioned filter-like sintered Er 3 Ni regenerator material, and a freezing test was conducted in the same manner.
At 50mW, stable output could be obtained during 2000 hours of continuous operation. However, the manufacturing cost of the cryogenic regenerator was about twice that of Example 1.

【0034】実施例3 まず、実施例1と同様にして作製したEr3 Ni粒体の表面
に、予めSnを 5〜10μm の厚さでメッキを施した。そし
て、このSnメッキ膜を有するEr3 Ni粒体を、グラファイ
ト製の型に振動を加えながら充填し、その上にグラファ
イト製の蓋を軽く押える力が働くように載せ、この状態
で焼成炉内に配置した。なお、粒体充填時の充填率は約
65%とした。次いで、炉内を真空排気した後、約573Kの
温度で0.5時間焼成し、常温まで冷却した後に型から取
り出して、目的とするSnメッキ層を有する焼結Er3 Ni蓄
冷材を得た。
Example 3 First, the surface of an Er 3 Ni grain produced in the same manner as in Example 1 was preliminarily plated with Sn to a thickness of 5 to 10 μm. Then, the Er 3 Ni granules having this Sn plating film were filled into a graphite mold while applying vibration, and the graphite lid was placed on top of it so that the force of pressing it lightly acted, and in this state, in the firing furnace. Placed in. The filling rate when filling granules is approx.
It was set to 65%. Then, after evacuation of the furnace, it was fired at a temperature of about 573 K for 0.5 hour, cooled to room temperature, and then taken out of the mold to obtain a sintered Er 3 Ni regenerator material having a target Sn plating layer.

【0035】このようにして得たSnメッキ層を有する焼
結Er3 Ni蓄冷材は、約 31%の空隙率を有していた。ま
た、この焼結Er3 Ni蓄冷材を、実施例1と同様にして蓄
冷筒に圧入して極低温用蓄冷器を構成し、この極低温用
蓄冷器をGM冷凍機に組込んで、実施例1と同様にして
冷凍試験を行った。その結果、初期冷凍能力は 230mWで
あり、2000時間の連続運転の間安定した出力を得ること
ができた。
The sintered Er 3 Ni regenerator material having the Sn plating layer thus obtained had a porosity of about 31%. Further, this sintered Er 3 Ni regenerator material was press-fitted into a regenerator cylinder in the same manner as in Example 1 to form a cryogenic regenerator, and this cryogenic regenerator was incorporated into a GM refrigerator. A freezing test was conducted in the same manner as in Example 1. As a result, the initial refrigeration capacity was 230 mW, and stable output could be obtained during 2000 hours of continuous operation.

【0036】[0036]

【発明の効果】以上説明したように、本発明によれば、
蓄冷物質粒子間の空隙を安定かつ容易に設定および維持
することが可能な極低温用蓄冷材を安価に提供すること
が可能となる。よって、ガス流の変化や微粉の発生を効
果的に抑制することができるため、初期性能およびその
連続安定性に優れた蓄冷器を提供することができる。
As described above, according to the present invention,
It becomes possible to provide a low temperature cryogenic regenerator material that can stably and easily set and maintain the voids between the regenerator material particles at low cost. Therefore, it is possible to effectively suppress the change in gas flow and the generation of fine powder, and thus it is possible to provide a regenerator excellent in initial performance and its continuous stability.

【0037】[0037]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 30K以下の温度で 0.1J/cm3 K 以上の比
熱を有する蓄冷物質の粒体からなる極低温用蓄冷材にお
いて、 前記蓄冷物質粒体の個々の粒子の投影像の周囲長をL、
前記投影像の実面積をAとしたとき、前記蓄冷物質粒体
中の 60%以上の粒子はL2 /4πAで表される形状因子R
が 1.1<R<2.0 である形状を有し、かつ前記蓄冷物質
粒子間は焼結により固着されていることを特徴とする極
低温用蓄冷材。
1. A cryogenic regenerator material comprising particles of a cold storage material having a specific heat of 0.1 J / cm 3 K or more at a temperature of 30 K or less, wherein a perimeter of a projected image of individual particles of the cold storage material particles L,
Assuming that the real area of the projected image is A, 60% or more of the particles in the regenerator material have a shape factor R represented by L 2 / 4πA.
Has a shape of 1.1 <R <2.0, and the particles of the cold storage material are firmly fixed by sintering.
【請求項2】 30K以下の温度で 0.1J/cm3 K 以上の比
熱を有する蓄冷物質の粒体が充填された蓄冷器におい
て、 前記蓄冷物質粒体の個々の粒子の投影像の周囲長をL、
前記投影像の実面積をAとしたとき、前記蓄冷物質粒体
中の 60%以上の粒子はL2 /4πAで表される形状因子R
が 1.1<R<2.0 である形状を有し、かつ前記蓄冷物質
粒子間は焼結により固着されていることを特徴とする極
低温用蓄冷器。
2. A regenerator filled with particles of a cool storage material having a specific heat of 0.1 J / cm 3 K or higher at a temperature of 30 K or lower, wherein a perimeter of a projected image of each particle of the cool storage material particles is L,
Assuming that the real area of the projected image is A, 60% or more of the particles in the regenerator material have a shape factor R represented by L 2 / 4πA.
Has a shape of 1.1 <R <2.0, and the regenerator material particles are firmly fixed by sintering.
JP03523495A 1995-02-23 1995-02-23 Cryogenic cool storage material and cryogenic cool storage device using the same Expired - Lifetime JP3561023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03523495A JP3561023B2 (en) 1995-02-23 1995-02-23 Cryogenic cool storage material and cryogenic cool storage device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03523495A JP3561023B2 (en) 1995-02-23 1995-02-23 Cryogenic cool storage material and cryogenic cool storage device using the same

Publications (2)

Publication Number Publication Date
JPH08226718A true JPH08226718A (en) 1996-09-03
JP3561023B2 JP3561023B2 (en) 2004-09-02

Family

ID=12436159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03523495A Expired - Lifetime JP3561023B2 (en) 1995-02-23 1995-02-23 Cryogenic cool storage material and cryogenic cool storage device using the same

Country Status (1)

Country Link
JP (1) JP3561023B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000199650A (en) * 1998-12-28 2000-07-18 Toshiba Corp Cold storage material and cold storage type refrigerator
JP2002188866A (en) * 2000-12-18 2002-07-05 Toshiba Corp Cold stage material and refrigeration machine using the same
JP2010077447A (en) * 2009-12-24 2010-04-08 Toshiba Corp Cold accumulating material and method for manufacturing the same
JP2015025648A (en) * 2013-06-20 2015-02-05 住友重機械工業株式会社 Cold storage material and cold storage type refrigerator
WO2018117258A1 (en) * 2016-12-22 2018-06-28 株式会社三徳 Cooling storage material and method for producing same, cooling storage device, and refrigerating machine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000199650A (en) * 1998-12-28 2000-07-18 Toshiba Corp Cold storage material and cold storage type refrigerator
JP2002188866A (en) * 2000-12-18 2002-07-05 Toshiba Corp Cold stage material and refrigeration machine using the same
JP4564161B2 (en) * 2000-12-18 2010-10-20 株式会社東芝 refrigerator
JP2010077447A (en) * 2009-12-24 2010-04-08 Toshiba Corp Cold accumulating material and method for manufacturing the same
JP2015025648A (en) * 2013-06-20 2015-02-05 住友重機械工業株式会社 Cold storage material and cold storage type refrigerator
WO2018117258A1 (en) * 2016-12-22 2018-06-28 株式会社三徳 Cooling storage material and method for producing same, cooling storage device, and refrigerating machine
JP6382470B1 (en) * 2016-12-22 2018-08-29 株式会社三徳 Cold storage material and manufacturing method thereof, cold storage and refrigerator

Also Published As

Publication number Publication date
JP3561023B2 (en) 2004-09-02

Similar Documents

Publication Publication Date Title
JP4551509B2 (en) Cold storage material and cold storage type refrigerator
EP0411591B2 (en) Cold accumulating material
US5593517A (en) Regenerating material and refrigerator using the same
JPH07101134B2 (en) Heat storage material and low temperature heat storage
JP3769024B2 (en) Cryogenic regenerator material, cryogenic regenerator using the same, and refrigerator
JP4237791B2 (en) Manufacturing method of regenerator material
JP3015571B2 (en) Cryogenic regenerator material and cryogenic regenerator and refrigerator using the same
JP3561023B2 (en) Cryogenic cool storage material and cryogenic cool storage device using the same
JP5468380B2 (en) Cold storage material and manufacturing method thereof
JPH10185339A (en) Cryogenic cold storage material, refrigerating machine employing the same and heat shielding material
JP3980158B2 (en) Cold storage material and cold storage type refrigerator
JP4564161B2 (en) refrigerator
JPH06240241A (en) Cold-reserving agent for cryogenic temperature and cold-reserving apparatus for cryogenic temperature using the same
JP2585240B2 (en) Manufacturing method of cold storage material
JP4170703B2 (en) Rare earth oxysulfide ceramic regenerator material and method for producing the same, and cryogenic regenerator using the regenerator material
JP3381953B2 (en) Heat storage and refrigerator
JP3751646B2 (en) Cold storage material and refrigerator using the same
JP2836813B2 (en) Cool storage material and cool storage device
JP3055674B2 (en) Heat storage materials and low-temperature heat storage
JP2941865B2 (en) Low temperature storage
JP4568170B2 (en) Method for producing cryogenic regenerator material and method for producing cryogenic regenerator
JP2004161839A (en) Cooling storage material using rare earth element vanadium oxide ceramic and production method therefor and cooling storage apparatus
JP2957294B2 (en) Cryogenic heat storage material and cryogenic heat storage
JP2004099822A (en) Cold storage material and regenerative refrigerator using the same
JPH07234028A (en) Cold accumulating material for cryogenic temperature and cold accumulator for cryogenic temperature

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040527

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 9

EXPY Cancellation because of completion of term