JPH0821260B2 - Dielectric porcelain composition - Google Patents

Dielectric porcelain composition

Info

Publication number
JPH0821260B2
JPH0821260B2 JP62074629A JP7462987A JPH0821260B2 JP H0821260 B2 JPH0821260 B2 JP H0821260B2 JP 62074629 A JP62074629 A JP 62074629A JP 7462987 A JP7462987 A JP 7462987A JP H0821260 B2 JPH0821260 B2 JP H0821260B2
Authority
JP
Japan
Prior art keywords
composition
temperature
dielectric
firing
partial pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62074629A
Other languages
Japanese (ja)
Other versions
JPS63239708A (en
Inventor
洋一郎 横谷
博司 加賀田
洋 丹羽
純一 加藤
敏弘 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62074629A priority Critical patent/JPH0821260B2/en
Publication of JPS63239708A publication Critical patent/JPS63239708A/en
Publication of JPH0821260B2 publication Critical patent/JPH0821260B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、1100℃以下で焼成される高誘電率系誘電体
磁器組成物に関し、特に低酸素分圧雰囲気で焼成でき高
い抵抗率の得られる組成物に関する。
TECHNICAL FIELD The present invention relates to a high dielectric constant dielectric ceramic composition that is fired at 1100 ° C. or less, and in particular, a composition that can be fired in a low oxygen partial pressure atmosphere to obtain high resistivity. Regarding things.

従来の技術 近年セラミックコンデンサにおいては素子の小型化、
大容量化への要求から積層型セラミックコンデンサが急
速に普及しつつある。積層型セラミックコンデンサは内
部電極とセラミックを一体焼成する工程によって通常製
造される。従来より高誘電率系のセラミックコンデンサ
材料にはチタン酸バリウム系の材料が用いられてきた
が、焼成温度が1300℃程度と高いため、内部電極材料と
してはPt、Pdなどの高価な金属を用いる必要があった。
2. Description of the Related Art In recent years, in ceramic capacitors, miniaturization of elements,
Due to the demand for larger capacity, multilayer ceramic capacitors are rapidly becoming popular. Multilayer ceramic capacitors are usually manufactured by a process of integrally firing internal electrodes and ceramics. Conventionally, barium titanate-based materials have been used for high-dielectric-constant ceramic capacitor materials, but since the firing temperature is as high as 1300 ° C, expensive metals such as Pt and Pd are used as internal electrode materials. There was a need.

これに対し発明者らは、低酸素分圧雰囲気中1100℃以
下で焼成でき銅を主成分とする卑金属材料を内部電極と
して使用できるPba(Mg1/3Nb2/3)xTiy(Ni1/2W1/2)zO2+a
で表される誘電体磁器組成物を提案している。この組成
物は低温度で焼成でき低酸素分圧下で焼成した際高い抵
抗率を有する特性をもち、銅もしくは銅を主成分とする
内部電極をもちいた積層コンデンサ素子にもちいること
ができる優れた誘電体磁器組成物である。いっぽう上に
述べたセラミック積層コンデンサ素子の製造工程におい
ては、焼成時に内部電極である銅もしくは銅を主成分と
する合金が酸化せず、誘電体セラミックが還元して低抵
抗化しない酸素分圧下での焼成が必要とされる。この酸
素分圧の制御においては、焼成温度が高いほど最適条件
を得るためのガス混合比の制御が困難になる。このた
め、誘電体セラミックにたいしては、より低い温度で焼
成できかつ高い抵抗率を有する組成物が求められてい
た。
On the other hand, the inventors have found that Pba (Mg 1/3 Nb 2/3 ) xTiy (Ni 1 / that can be fired at 1100 ° C. or lower in a low oxygen partial pressure atmosphere and can use a base metal material containing copper as a main component as an internal electrode 2 W 1/2 ) zO 2 + a
The dielectric porcelain composition represented by is proposed. This composition has a characteristic that it can be fired at a low temperature and has a high resistivity when fired under a low oxygen partial pressure, and it can also be used as a laminated capacitor element using copper or an internal electrode containing copper as a main component. It is a dielectric ceramic composition. On the other hand, in the manufacturing process of the ceramic multilayer capacitor element described above, the internal electrode copper or the alloy containing copper as a main component is not oxidized during firing, and the dielectric ceramic is reduced under oxygen partial pressure that does not reduce the resistance. Firing is required. In controlling the oxygen partial pressure, the higher the firing temperature, the more difficult it becomes to control the gas mixture ratio to obtain the optimum conditions. Therefore, there has been a demand for a dielectric ceramic that can be fired at a lower temperature and has a high resistivity.

発明が解決しようとする問題点 Pba(Mg1/3Nb2/3)xTiy(Ni1/2W1/2)zO2+aで表される組成
物を主成分とする誘電体磁器組成物において、誘電特性
を損なわず焼成温度をより低くし抵抗率の高い誘電体磁
器組成物を提供することを目的としている。
Problems to be Solved by the Invention Pb a (Mg 1/3 Nb 2/3 ) xTiy (Ni 1/2 W 1/2 ) zO 2 + a A dielectric ceramic composition whose main component is a composition It is an object of the present invention to provide a dielectric ceramic composition having a low firing temperature and a high resistivity without impairing dielectric properties.

問題点を解決するための手段 Pba(Mg1/3Nb2/3)xTiy(Ni1/2W1/2)zO2+aで表される磁
器組成物(ただしx+y+z=1)に対し、副成分とし
て銅酸化物をCu2O換算で0.03〜0.65重量%含有する組成
物とする。
Means for Solving Problems For a porcelain composition represented by Pb a (Mg 1/3 Nb 2/3 ) xTiy (Ni 1/2 W 1/2 ) zO 2 + a (where x + y + z = 1) The composition contains copper oxide as an accessory component in an amount of 0.03 to 0.65% by weight in terms of Cu 2 O.

作用 本発明の誘電体磁器組成物の系において、副成分を含
まない組成物に対し、副成分を含む組成物が低い温度で
焼結し誘電率の低下は少なく、誘電損失の増大も小さ
く、かつ抵抗率は同等ないし向上する。
Action In the system of the dielectric porcelain composition of the present invention, with respect to the composition containing no subcomponent, the composition containing the subcomponent is sintered at a low temperature, the decrease in the dielectric constant is small, and the increase in the dielectric loss is small, And the resistivity is equal to or improved.

実施例 出発原料には化学的に高純度なPbO,MgO,Nb2O5,TiO2,Ni
O,WO3,Cu2Oを用いた。これらを純度補正をおこなったう
えで所定量を秤量し、ジルコニア製玉石を用い純水を溶
媒としボールミルで17時間湿式混合した。これを吸引ろ
過して水分の大半を分離した後乾燥し、その後ライカイ
機で充分解砕した後粉体量の5wt%の水分を加え、直径6
0mm高さ約50mmの円柱状に成形圧力500kg/cm2で成形し
た。これをアルミナルツボ中に入れ同質のフタをし、68
0℃〜760℃で2時間仮焼した。次に仮焼物をアルミナ乳
鉢で粗砕し、さらにジルコニア製玉石を用い純水を溶媒
としてボールミルで17時間粉砕し、これを吸引ろ過し水
分の大半を分離した後乾燥した。以上の仮焼,粉砕、乾
燥を数回くりかえした後この粉末にポリビニルアルコー
ル6wt%水溶液を粉体量の6wt%加え、32メッシュふるい
を通して造粒し、成形圧力1000kg/cm2で成形した。成形
物を空気中で700℃まで昇温し1時間保持しポリビルア
ルコール分をバーンアウトした。これを、上述の仮焼粉
を体積の1/3程度敷きつめた上に200メッシュMgO粉を約1
mm敷いたマグネシヤ磁器容器に移し、同質のフタをし、
管状電気炉の炉心管内に挿入し、炉心管内をロータリー
ポンプで脱気したのち、N2-H2-H2O混合ガスで置換し、
焼成温度での酸素分圧(Po2)が1.0x10-8atmになるようN2
とH2ガスの混合比を調節しながら混合ガスを流し所定温
度まで400℃/hrで昇温し、2時間保持後400℃/hrで降温
した。炉心管内のPo2は挿入した安定化ジルコニア酸素
センサーにより測定した。第2図に焼成時のマグネシヤ
磁器容器の構造を、第3図に炉心管内部をそれぞれ断面
図で示す。
Example The starting materials were chemically high purity PbO, MgO, Nb 2 O 5 , TiO 2 and Ni.
O, WO 3 and Cu 2 O were used. These were subjected to purity correction, then weighed a predetermined amount, and wet mixed with a zirconia cobblestone using pure water as a solvent in a ball mill for 17 hours. This is suction-filtered to separate most of the water content, then dried, then charged and decomposed with a Lykai machine, and then added with 5 wt% of the powder amount of water to obtain a diameter of 6
It was molded into a cylinder with a height of 0 mm and a height of about 50 mm at a molding pressure of 500 kg / cm 2 . Put this in an alumina crucible and cover with the same material.
It was calcined at 0 ° C to 760 ° C for 2 hours. Next, the calcined product was roughly crushed in an alumina mortar and further crushed for 17 hours in a ball mill using pure water as a solvent using zirconia cobblestone, which was suction filtered to separate most of the water content, and then dried. After repeating the above calcination, pulverization and drying several times, a 6 wt% aqueous solution of polyvinyl alcohol (6 wt%) was added to this powder, and the mixture was granulated through a 32 mesh sieve and molded at a molding pressure of 1000 kg / cm 2 . The molded product was heated to 700 ° C. in the air and held for 1 hour to burn out the polyvinyl alcohol content. Approximately 1/3 of the volume of the above calcined powder is spread and 200 mesh MgO powder is applied to about 1/3.
Move to a magnesia porcelain container laid with mm, cover with the same quality,
Inserted in the core tube of the tubular electric furnace, and after degassing the inside of the core tube with a rotary pump, replace with N 2 -H 2 -H 2 O mixed gas,
N 2 so that the oxygen partial pressure (Po 2 ) at the firing temperature is 1.0x10 -8 atm
The mixed gas was flowed while adjusting the mixing ratio of the H 2 gas and H 2 gas, the temperature was raised to a predetermined temperature at 400 ° C./hr, the temperature was held for 2 hours, and then the temperature was lowered at 400 ° C./hr. Po 2 in the core tube was measured by a stabilized zirconia oxygen sensor inserted. FIG. 2 shows the structure of the magnesium porcelain container at the time of firing, and FIG. 3 shows a cross-sectional view of the inside of the core tube.

第2図において1はマグネシア容器であり、その上部
はマグネシア容器蓋2で封じた。マグネシア容器1の下
部には仮焼粉3を配置し、その上にマグネシア粉24を配
置した。さらにその上に試料5を配置した。
In FIG. 2, reference numeral 1 is a magnesia container, and the upper part thereof is sealed with a magnesia container lid 2. A calcined powder 3 was placed in the lower part of the magnesia container 1, and a magnesia powder 24 was placed thereon. Furthermore, the sample 5 was arranged on it.

第2図のように準備されたマグネシア容器1を第3図
のように炉心管6内に配置した。7は安定化ジルコニア
酸素センサーである。
The magnesia container 1 prepared as shown in FIG. 2 was placed in the core tube 6 as shown in FIG. 7 is a stabilized zirconia oxygen sensor.

焼成物は厚さ1mmの板状に切断し、両面にCr-Auを蒸着
し、誘電率、tanδを1kHz、1V/mmの電界下で測定した。
また抵抗率は1kV/mmの電圧を印加後1分値から求めた。
The fired product was cut into a plate having a thickness of 1 mm, Cr-Au was vapor-deposited on both surfaces, and the dielectric constant and tan δ were measured under an electric field of 1 kHz and 1 V / mm.
The resistivity was calculated from the value of 1 minute after applying a voltage of 1 kV / mm.

なお焼成温度は焼成物の密度がもっとも大きくなる温
度とした。
The firing temperature was the temperature at which the density of the fired product was the highest.

表1に,本発明の組成範囲および周辺組成の成分[a,
x,y,zは、Pb(Mg1/3Nb2/3)xTiy(Ni1/2W1/2)zO2+aと表し
たときの値]、低酸素分圧雰囲気で焼成したときの焼成
温度、誘電率、誘電率の温度変化率(20℃に対する)、
tanδ、抵抗率、密度を示した。
Table 1 shows the components of the composition range and peripheral composition of the present invention [a,
x, y, z are values expressed as Pb (Mg 1/3 Nb 2/3 ) xTiy (Ni 1/2 W 1/2 ) zO 2 + a ], when fired in a low oxygen partial pressure atmosphere Firing temperature, dielectric constant, temperature change rate of dielectric constant (for 20 ℃),
Tan δ, resistivity and density are shown.

第1図は表1に示した各試料を、PbTiO2+aPba(Mg1/3N
b2/3)O2+a-Pba(Ni1/2W1/2)O2+aを端成分とする三角組成
図中に示したもので、斜線の範囲が発明の範囲である。
Fig. 1 shows the samples shown in Table 1 for PbTiO 2 + a Pb a (Mg 1/3 N
b 2/3 ) O 2 + a -Pb a (Ni 1/2 W 1/2 ) O 2 + a is shown in the triangular composition diagram, and the range of diagonal lines is the scope of the invention. .

発明範囲外の組成物では、aが0.985より小さいと副
成分として銅酸化物を添加しても焼成温度が1100℃より
高くなるか、1100℃より焼成温度が低くなるまで銅酸化
物を添加すると誘電率が低下する、もしくは抵抗率が低
下する難点を有しており、1100より大きくなると誘電率
および抵抗率が低下する難点を有する。副成分の銅酸化
物が0.03wt%より小さいと焼成温度低下の改善効果が現
れず、0.65wt%より大きくなると誘電特性とくに誘電率
と抵抗率の低下が大きくなる。また、x,y,zが限定の範
囲外の組成物はキュリー点が室温から大きくはずれ誘電
率が低くなる、もしくは誘電率の温度変化率が大きくな
る難点を有している。特許請求の範囲内の組成物では前
記の問題がいずれも克服されている。
In the composition outside the scope of the invention, when a is smaller than 0.985, even if copper oxide is added as a subcomponent, the firing temperature is higher than 1100 ° C, or the copper oxide is added until the firing temperature is lower than 1100 ° C. There is a problem that the permittivity decreases or the resistivity decreases, and when it exceeds 1100, the permittivity and the resistivity decrease. If the copper oxide as an accessory component is less than 0.03 wt%, the effect of improving the firing temperature will not be improved, and if it is more than 0.65 wt%, the dielectric properties, particularly the dielectric constant and the resistivity will be significantly reduced. Further, a composition in which x, y, z is out of the limited range has a problem that the Curie point largely deviates from room temperature and the dielectric constant decreases, or the temperature change rate of the dielectric constant increases. Compositions within the scope of the claims overcome all of the above problems.

なお焼成雰囲気として選択した低酸素分圧雰囲気中Po
2;1.0x10-8atmは焼成温度における銅の平衡酸素分圧よ
り低く金属はほとんど酸化しないと考えられる。
In the low oxygen partial pressure atmosphere selected as the firing atmosphere, Po
2 ; 1.0x10 -8 atm is lower than the equilibrium oxygen partial pressure of copper at the firing temperature, and it is considered that the metal hardly oxidizes.

発明の効果 本発明によれば低酸素分圧雰囲気1100℃以下の焼成で
積層コンデンサ素子として高信頼性を得るためのチ密で
抵抗率の高い焼結体が得られ、とくに本発明の副成分の
添加により焼成温度が低下し焼成時の酸素分圧の制御が
容易になる。このため内部電極としてCuなどの卑金属材
料を用いた積層コンデンサ素子に本発明の組成物を用い
た場合、電気的特性を損なうことなく、より安定な製造
条件で素子が製造でき、量産性が向上する。
EFFECTS OF THE INVENTION According to the present invention, it is possible to obtain a dense and high-resistivity sintered body for obtaining high reliability as a multilayer capacitor element by firing in a low oxygen partial pressure atmosphere at 1100 ° C. or less. The addition of Al reduces the firing temperature and facilitates control of the oxygen partial pressure during firing. Therefore, when the composition of the present invention is used for a multilayer capacitor element using a base metal material such as Cu as an internal electrode, the element can be manufactured under more stable manufacturing conditions without impairing the electrical characteristics, and mass productivity is improved. To do.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る磁器組成物の成分組成を示す三角
組成図,第2図は焼成時に磁器を入れるマグネシア容器
の断面図,第3図は焼成時の炉心管内の断面図を示す。 1……マグネシア容器、2……マグネシア容器蓋、3…
…仮焼粉、4……マグネシア粉、5……試料、6……炉
心管、7……安定化ジルコニア酸素センサー。
FIG. 1 is a triangular composition diagram showing the component composition of a porcelain composition according to the present invention, FIG. 2 is a cross-sectional view of a magnesia container in which porcelain is put in during firing, and FIG. 3 is a cross-sectional view of a core tube during firing. 1 ... Magnesia container, 2 ... Magnesia container lid, 3 ...
... Calcination powder, 4 ... Magnesia powder, 5 ... Sample, 6 ... Reactor tube, 7 ... Stabilized zirconia oxygen sensor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 純一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 三原 敏弘 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (56)参考文献 特開 昭55−51758(JP,A) 特開 昭59−57953(JP,A) 特開 昭53−82000(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Junichi Kato 1006 Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Toshihiro Mihara 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. 56) References JP-A-55-51758 (JP, A) JP-A-59-57953 (JP, A) JP-A-53-82000 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】Pba(Mg1/3Nb2/3)xTiy(Ni1/2W1/2)zO2+a
表される組成を有し(ただしx+y+z=1)、aが 0.985≦a≦1.110 の範囲にあり、この範囲内の各aの値に対し、 Pba(Mg1/3Nb2/3)O2+a、PbaTiO2+a、 Pba(Ni1/2W1/2)O2+a を頂点とする三角座標において下記組成点A,B,C,D,E, A;x=0.950 y=0.025 z=0.025 B;x=0.850 y=0.125 z=0.025 C;x=0.100 y=0.060 z=0.300 D;x=0.100 y=0.400 z=0.500 E;x=0.900 y=0.250 z=0.075 を頂点とする五角形の領域内にある組成物に対し、副成
分として、銅酸化物をCu2Oの換算の重量%で0.03〜0.65
%含有することを特徴とした誘電体磁器組成物。
1. A composition represented by Pba (Mg 1/3 Nb 2/3 ) xTiy (Ni 1/2 W 1/2 ) zO 2 + a (where x + y + z = 1) and a is 0.985 ≦ a ≦ 1.110, and for each value of a within this range, Pba (Mg 1/3 Nb 2/3 ) O 2 + a , PbaTiO 2 + a , Pba (Ni 1/2 W 1/2 ) In the triangular coordinate system with O 2 + a as the apex, the following composition points A, B, C, D, E, A; x = 0.950 y = 0.025 z = 0.025 B; x = 0.850 y = 0.125 z = 0.025 C; x = 0.100 y = 0.060 z = 0.300 D; x = 0.100 y = 0.400 z = 0.500 E; x = 0.900 y = 0.250 z = 0.75 For the composition within the pentagonal region, copper is added as a sub-component. Oxide is 0.03 to 0.65 in Cu 2 O equivalent weight%.
% Dielectric ceramic composition.
JP62074629A 1987-03-27 1987-03-27 Dielectric porcelain composition Expired - Lifetime JPH0821260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62074629A JPH0821260B2 (en) 1987-03-27 1987-03-27 Dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62074629A JPH0821260B2 (en) 1987-03-27 1987-03-27 Dielectric porcelain composition

Publications (2)

Publication Number Publication Date
JPS63239708A JPS63239708A (en) 1988-10-05
JPH0821260B2 true JPH0821260B2 (en) 1996-03-04

Family

ID=13552680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62074629A Expired - Lifetime JPH0821260B2 (en) 1987-03-27 1987-03-27 Dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JPH0821260B2 (en)

Also Published As

Publication number Publication date
JPS63239708A (en) 1988-10-05

Similar Documents

Publication Publication Date Title
JPH0712973B2 (en) Dielectric porcelain composition
JPH0821260B2 (en) Dielectric porcelain composition
JPH0821263B2 (en) Dielectric porcelain composition
JP2531548B2 (en) Porcelain composition for temperature compensation
JPH0817057B2 (en) Dielectric porcelain composition
JPH0638321B2 (en) Dielectric porcelain composition
JP2513527B2 (en) Dielectric porcelain composition
JPH0712974B2 (en) Dielectric porcelain composition
JPH0821261B2 (en) Dielectric porcelain composition
JPH0644408B2 (en) Dielectric porcelain composition
JP3389947B2 (en) Dielectric ceramic composition and thick film capacitor using the same
JPH05262556A (en) Production of dielectric porcelain
JPH0676250B2 (en) Dielectric porcelain composition
JPH0829980B2 (en) Dielectric porcelain composition
JPH0712975B2 (en) Dielectric porcelain composition
JPH0712972B2 (en) Dielectric porcelain composition
JPH0676248B2 (en) Dielectric porcelain composition
JPH0324426B2 (en)
JPH0329017B2 (en)
JPH0821262B2 (en) Dielectric porcelain composition
JPH0764632B2 (en) Dielectric porcelain composition
JPH068205B2 (en) Dielectric porcelain composition
JPH0676247B2 (en) Dielectric porcelain composition
JPS63108612A (en) Dielectric ceramic composition
JPH0324427B2 (en)