JPH0676248B2 - Dielectric porcelain composition - Google Patents

Dielectric porcelain composition

Info

Publication number
JPH0676248B2
JPH0676248B2 JP61161309A JP16130986A JPH0676248B2 JP H0676248 B2 JPH0676248 B2 JP H0676248B2 JP 61161309 A JP61161309 A JP 61161309A JP 16130986 A JP16130986 A JP 16130986A JP H0676248 B2 JPH0676248 B2 JP H0676248B2
Authority
JP
Japan
Prior art keywords
composition
fired
temperature
partial pressure
oxygen partial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61161309A
Other languages
Japanese (ja)
Other versions
JPS6317253A (en
Inventor
純一 加藤
洋一郎 横谷
敏弘 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61161309A priority Critical patent/JPH0676248B2/en
Publication of JPS6317253A publication Critical patent/JPS6317253A/en
Publication of JPH0676248B2 publication Critical patent/JPH0676248B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は1100℃以下で焼成される高誘電率系誘電体磁器
組成物に関し、特に低酸素分圧雰囲気で焼成でき高い抵
抗率の得られる組成物に関する。
TECHNICAL FIELD The present invention relates to a high dielectric constant type dielectric ceramic composition which is fired at 1100 ° C. or less, and particularly, a composition which can be fired in a low oxygen partial pressure atmosphere to obtain a high resistivity. Regarding

従来の技術 近年セラミックコンデンサにおいては素子の小型化、大
容量化への要求から積層型セラミックコンデンサが急速
に普及しつつある。積層型セラミックコンデンサは内部
電極とセラミックを一体焼成する工程によって通常製造
される。従来より高誘電率系のセラミックコンデンサ材
料にはチタン酸バリウム系の材料が用いられてきたが、
焼成温度が1300℃程度と高いため、内部電極材料として
はPt,Pdなどの高価な金属を用いる必要があった。
2. Description of the Related Art In recent years, in ceramic capacitors, multilayer ceramic capacitors are rapidly becoming popular due to the demand for smaller size and larger capacity of elements. Multilayer ceramic capacitors are usually manufactured by a process of integrally firing internal electrodes and ceramics. Conventionally, barium titanate-based materials have been used for high dielectric constant ceramic capacitor materials.
Since the firing temperature is as high as about 1300 ° C, it was necessary to use expensive metals such as Pt and Pd as the internal electrode material.

これに対し空気中1000℃以下で焼成でき内部電極として
安価なAg系材料を用いることができる鉛複合ペロブスカ
イト系材料や、低酸素分圧雰囲気中で焼成できNiなどの
卑金属材料を内部電極として使用できるチタン酸バリウ
ム系材料が開発されている。前者の例としては、特開昭
61−2203号公報に、PbTiO3-Pb(Ni1/3Nb2/3)O3-Pb(Zn1/2
W1/2)O3を含む誘電体磁器組成物が記載されている。後
者については特公昭56−46641号公報に記載の材料など
が知られている。
On the other hand, lead composite perovskite-based materials that can be fired in air at 1000 ° C or lower and inexpensive Ag-based materials can be used as internal electrodes, or base metal materials such as Ni that can be fired in a low oxygen partial pressure atmosphere can be used as internal electrodes. Barium titanate-based materials have been developed. As an example of the former,
No. 61-2203, PbTiO 3 -Pb (Ni 1/3 Nb 2/3 ) O 3 -Pb (Zn 1/2
Dielectric porcelain compositions containing W 1/2 ) O 3 are described. For the latter, the materials described in JP-B-56-46641 are known.

PbTiO3-Pb(Ni1/3Nb2/3)O3-Pb(Zn1/2W1/2)O3系固溶体は
低温で焼成でき、誘電率の温度変化率が同程度のチタン
酸バリウム系材料に比べ高い誘電率が得られる。従って
この誘電体磁器組成物とAg系内部電極からなる積層コン
デンサは、素子の大容量、小型化、低コスト化が図れる
利点を有している。しかし近年さらに内部電極材料の低
コスト化が図れるCuなどの卑金属を内部電極として用い
ることが求められており、このため、同時焼成したとき
Cuなどの金属が酸化しないような低酸素分圧雰囲気で焼
成でき、高い抵抗率が得られる材料が必要とされてい
る。
PbTiO 3 -Pb (Ni 1/3 Nb 2/3 ) O 3 -Pb (Zn 1/2 W 1/2 ) O 3 -based solid solution can be fired at low temperature, and titanic acid with similar temperature change rate of dielectric constant can be obtained. Higher permittivity than that of barium materials can be obtained. Therefore, the multilayer capacitor including the dielectric ceramic composition and the Ag-based internal electrode has the advantages that the device can have a large capacity, a small size, and a low cost. However, in recent years, it has been required to use base metals such as Cu that can reduce the cost of internal electrode materials as internal electrodes.
There is a need for a material that can be fired in a low oxygen partial pressure atmosphere in which a metal such as Cu does not oxidize and that has a high resistivity.

発明が解決しようとする問題点 PbTiO3-Pb(Ni1/3Nb2/3)O3-Pb(Zn1/2W1/2)O3系固溶体
は、低酸素分圧雰囲気で焼成するとチ密に焼結せず、ま
た抵抗率が小さくなる傾向がある。
Problems to be Solved by the Invention PbTiO 3 -Pb (Ni 1/3 Nb 2/3 ) O 3 -Pb (Zn 1/2 W 1/2 ) O 3 -based solid solution is fired in a low oxygen partial pressure atmosphere. D. It does not sinter densely and the resistivity tends to decrease.

本発明は、PbTiO3-Pb(Ni1/3Nb2/3)O3-Pb(Zn1/2W1/2)O3
系のもつ高い誘電率と低温焼結性をそこなわず、低酸素
分圧雰囲気で焼成したとき抵抗値が高い誘電体磁器組成
物を提供することを目的としてる。
The present invention provides PbTiO 3 -Pb (Ni 1/3 Nb 2/3 ) O 3 -Pb (Zn 1/2 W 1/2 ) O 3
An object of the present invention is to provide a dielectric ceramic composition which does not impair the high dielectric constant and low-temperature sinterability of the system and has a high resistance value when fired in a low oxygen partial pressure atmosphere.

問題点を解決するための手段 PbaTix(Ni1/3Nb2/3)y(Zn1/2W1/2)zO2+aで表される組成
式(ただし、x+y+z=1)において、1.001≦a≦
1.110の範囲とするとともに、この範囲内の各aの値に
対し、 PbaTiO2+a、 Pba(Ni1/3Nb2/3)O2+a、及び Pba(Zn1/2W1/2)O2+a を頂点とする三角座標において、下記組成点A,B,C,Dを
頂点とする四角形の領域内の組成とする。
Means for Solving Problems PbaTix (Ni 1/3 Nb 2/3 ) y (Zn 1/2 W 1/2 ) zO 2 + a In the composition formula (where x + y + z = 1), 1.001 ≦ a ≦
1.110, and for each value of a within this range, Pb a TiO 2 + a , Pb a (Ni 1/3 Nb 2/3 ) O 2 + a , and Pb a (Zn 1/2 In triangular coordinates with W 1/2 ) O 2 + a as the apex, the composition is within a rectangular region with the following composition points A, B, C, D as apexes.

A;x=0.175 y=0.800 z=0.025 B;x=0.300 y=0.675 z=0.025 C;x=0.625 y=0.025 z=0.350 D;x=0.325 y=0.025 z=0.650 作用 本発明の組成物においては、Aサイト成分を過剰にする
ことにより、低酸素分圧雰囲気、1100℃以下でチ密な焼
成物が得られ、高い抵抗率を有する信頼性の高い素子が
えられる。
A; x = 0.175 y = 0.800 z = 0.025 B; x = 0.300 y = 0.675 z = 0.025 C; x = 0.625 y = 0.025 z = 0.350 D; x = 0.325 y = 0.025 z = 0.650 Action Composition of the present invention In the above, by making the A site component excessive, a dense fired product can be obtained at a low oxygen partial pressure atmosphere at 1100 ° C. or less, and a highly reliable device having a high resistivity can be obtained.

実施例 出発原料には化学的に高純度なPbO,NiO,Nb2O5,TiO2,Zn
O,WO3を用いた。これらを純度補正をおこなったうえで
所定量を秤量し、メノウ製玉石を用い純水を溶媒としボ
ールミルで17時間湿式混合した。これを吸引ろ過して水
分の大半を分離した後乾燥し、その後ライカイ機で充分
解砕した後粉体量の5wt%の水分を加え、直径60mm高さ5
0mmの円柱状に成形圧力500kg/cm2で成形した。これをア
ルミナルツボ中に入れ同質のフタをし、750℃〜880℃で
2時間仮焼した。次に仮焼物をアルミナ乳鉢で粗砕し、
さらにメノウ製玉石を用い純水を溶媒としてボールミル
で17時間粉砕し、これを吸引ろ過し水分の大半を分離し
た後乾燥した。以上の仮焼,粉砕,乾燥を数回くりかえ
した後、この粉末にポリビニルアルコール6wt%水溶液
を粉体量の6wt%加え、32メッシュふるいを通して造粒
し、成形圧力1000kg/cm2で直径13mm、高さ約5mmの円柱
状に成形した。
Example The starting materials were chemically pure PbO, NiO, Nb 2 O 5 , TiO 2 and Zn.
O and WO 3 were used. These were subjected to purity correction, weighed a predetermined amount, and wet-mixed in a ball mill for 17 hours using agate stones and pure water as a solvent. This is suction filtered to separate most of the water content, then dried, and then lyophilized with a Lykai machine, and then added with 5 wt% of the powder amount of water, and a diameter of 60 mm and height of 5
It was molded into a 0 mm column at a molding pressure of 500 kg / cm 2 . This was put in an alumina crucible, covered with the same material, and calcined at 750 ° C to 880 ° C for 2 hours. Next, the calcined product is crushed in an alumina mortar,
Further, agate stones were used and crushed for 17 hours in a ball mill using pure water as a solvent, and this was suction filtered to separate most of the water content and then dried. After repeating the above calcination, crushing, and drying several times, add 6 wt% of polyvinyl alcohol 6 wt% aqueous solution to this powder, granulate through a 32 mesh sieve, and 13 mm in diameter at a molding pressure of 1000 kg / cm 2 . It was molded into a cylindrical shape with a height of about 5 mm.

成形物は空気中で700℃まで昇温して1時間保持し、ポ
リビルアルコール分をバーンアウトした。これを、上述
の仮焼粉を体積の1/3程度敷きつめた上に200メッシュZr
O2粉を約1mm敷いたマグネシヤ磁器容器に移し、同質の
フタをし、管状電気炉の炉心管内に挿入し、炉心管内を
ロータリーポンプで脱気したのちN2-H2混合ガスで置換
し、酸素分圧(Po2)が1.0x10-8atmになるようN2とH2
スの混合比を調節しながら混合ガスを流し所定温度まで
400℃/hrで昇温し2時間保持後400℃/hrで降温した。炉
心管内のPo2は、挿入した安定化ジルコニア酸素センサ
ーにより測定した。第2図に焼成時のマグネシヤ磁器容
器の構造を、第3図に炉心管内部をそれぞれ断面図で示
す。
The molded product was heated to 700 ° C. in the air and held for 1 hour to burn out the polyvinyl alcohol content. 200 mesh Zr on top of 1/3 of the volume of the above calcined powder
Transfer O 2 powder to a magnesium porcelain container laid with about 1 mm, put a lid of the same quality, insert it into the core tube of the tubular electric furnace, degas the inside of the core tube with a rotary pump, and then replace with N 2 -H 2 mixed gas. , The mixed gas is flowed while adjusting the mixing ratio of N 2 and H 2 gas so that the oxygen partial pressure (Po 2 ) becomes 1.0x10 -8 atm until the temperature reaches a predetermined value.
The temperature was raised at 400 ° C / hr, the temperature was held for 2 hours, and then the temperature was lowered at 400 ° C / hr. Po 2 in the core tube was measured by the inserted stabilized zirconia oxygen sensor. FIG. 2 shows the structure of the magnesium porcelain container at the time of firing, and FIG. 3 shows a cross-sectional view of the inside of the core tube.

第2図において1はマグネシア容器であり、その上部は
マグネシア容器蓋2で封じた。マグネシア容器1の下部
には仮焼粉3を配置し、その上にジルコニア粉4を配置
した。さらにその上に試料5を配置した。
In FIG. 2, reference numeral 1 is a magnesia container, and the upper part thereof is sealed with a magnesia container lid 2. A calcined powder 3 was placed in the lower part of the magnesia container 1, and a zirconia powder 4 was placed thereon. Furthermore, the sample 5 was arranged on it.

第2図のように準備されたマグネシア容器1を第3図の
ように炉心管6内に配置した。7は安定化ジルコニア酸
素センサーである。
The magnesia container 1 prepared as shown in FIG. 2 was placed in the core tube 6 as shown in FIG. 7 is a stabilized zirconia oxygen sensor.

焼成物は厚さ1mmの円板状に切断し、両面にCr-Auを蒸着
し、誘電率およびtanδを、1kHz、1V/mmの電界下で測定
した。また抵抗率は、1kV/mmの電圧を印加後1分値から
求めた。
The fired product was cut into a disc with a thickness of 1 mm, Cr-Au was vapor-deposited on both sides, and the dielectric constant and tan δ were measured under an electric field of 1 kHz and 1 V / mm. The resistivity was calculated from the value of 1 minute after applying a voltage of 1 kV / mm.

なお焼成温度は焼成物の密度がもっとも大きくなる温度
とした。
The firing temperature was the temperature at which the density of the fired product was the highest.

表1に、本発明の組成範囲および周辺組成の成分(a,x,
y,zは、PbaTix(Ni1/3Nb2/3)y(Zn1/2W1/2)zO2+aと表した
ときの値)、低酸素分圧雰囲気で焼成したときの焼成温
度、誘電率、誘電率の温度変化率(20℃に対する)、ta
nδ、抵抗率、密度を示した。
Table 1 shows the components (a, x,
y and z are values expressed as Pb a Tix (Ni 1/3 Nb 2/3 ) y (Zn 1/2 W 1/2 ) zO 2 + a ), when fired in a low oxygen partial pressure atmosphere Firing temperature, permittivity, rate of change of permittivity with temperature (for 20 ℃), ta
nδ, resistivity and density are shown.

第1図は表1に示した各試料をPbaTiO2+a、Pba(Ni1/3Nb
2/3)O2+a、Pba(Zn1/2W1/2)O2+aを端成分とする三角組成
図中に示したもので、斜線の範囲が発明の範囲である。
Figure 1 shows the samples shown in Table 1 with Pb a TiO 2 + a and Pb a (Ni 1/3 Nb
2/3 ) O 2 + a and Pb a (Zn 1/2 W 1/2 ) O 2 + a are shown in the triangular composition diagram, and the range of the shaded area is the scope of the invention.

発明範囲外の組成物では、aが1.001より小さいと低酸
素分圧雰囲気で焼成したときチ密な焼結物が得られな
い、もしくは抵抗率が低くなる難点を有しており、1.11
0より大きくなると誘電率および抵抗率が低下する難点
を有する。またx,y,zが限定の範囲外の組成物は、キュ
リー点が室温から大きくはずれ誘電率が低くなる、もし
くは誘電率の温度変化率が大きなる難点を有している。
特許請求の範囲内の組成物では前記の問題がいずれも克
服されている。
Compositions outside the scope of the invention have the problem that if a is less than 1.001, a dense sintered product cannot be obtained or the resistivity becomes low when fired in a low oxygen partial pressure atmosphere.
When it is larger than 0, there is a problem that the dielectric constant and the resistivity decrease. Further, a composition in which x, y, z is out of the limited range has a problem that the Curie point is largely deviated from room temperature and the dielectric constant is lowered, or the temperature change rate of the dielectric constant is large.
Compositions within the scope of the claims overcome all of the above problems.

なお焼成雰囲気として選択した低酸素分圧雰囲気Po2;1.
0x10-8atmは、焼成温度における銅の平衡酸素分圧より
低く、金属はほとんど酸化しないと考えられる。
The low oxygen partial pressure atmosphere selected as the firing atmosphere Po 2 ; 1.
0x10 -8 atm is lower than the equilibrium oxygen partial pressure of copper at the firing temperature, and it is considered that the metal is hardly oxidized.

発明の効果 本発明によれば、低酸素分圧雰囲気1100℃以下の焼成
で、積層コンデンサ素子として高信頼性を得るためのチ
密で抵抗率の高い焼結体が得られ、内部電極としてCuな
どの卑金属材料を用いることが可能になる優れた誘電体
磁器組成物を得ることができる。
EFFECTS OF THE INVENTION According to the present invention, by firing in a low oxygen partial pressure atmosphere of 1100 ° C. or less, a dense and high resistivity sintered body for obtaining high reliability as a multilayer capacitor element can be obtained, and Cu as an internal electrode can be obtained. It is possible to obtain an excellent dielectric porcelain composition that makes it possible to use base metal materials such as

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る磁器組成物の成分組成を示す三角
組成図,第2図は焼成時に磁器を入れるマグネシヤ容器
の断面図,第3図は焼成時の炉心管内の断面図を示す。 1……マグネシヤ容器、2……マグネシヤ容器蓋、3…
…仮焼粉、4……ジルコニア粉、5……試料、6……炉
心管、7……安定化ジルコニア酸素センサー。
FIG. 1 is a triangular composition diagram showing the component composition of a porcelain composition according to the present invention, FIG. 2 is a sectional view of a magnesia container in which porcelain is put in during firing, and FIG. 1 ... Magnesia container, 2 ... Magnesia container lid, 3 ...
… Calcined powder, 4 …… Zirconia powder, 5 …… Sample, 6 …… Core tube, 7 …… Stabilized zirconia oxygen sensor.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】PbaTix(Ni1/3Nb2/3)y(Zn1/2W1/2)zO2+a
表される組成式(ただし、x+y+z=1)において、
1.001≦a≦1.110の範囲にあり、この範囲内の各aの値
に対し、 PbaTiO2+a、 Pba(Ni1/3Nb2/3)O2+a、及び Pba(Zn1/2W1/2)O2+a を頂点とする三角座標において下記組成点A,B,C,Dを頂
点とする四角形の領域内の組成物からなることを特徴と
する誘電体磁器組成物。 A;x=0.175 y=0.800 z=0.025 B;x=0.300 y=0.675 z=0.025 C;x=0.625 y=0.025 z=0.350 D;x=0.325 y=0.025 z=0.650
1. A composition formula represented by PbaTix (Ni 1/3 Nb 2/3 ) y (Zn 1/2 W 1/2 ) zO 2 + a (where x + y + z = 1)
1.001 ≦ a ≦ 1.110, and for each value of a within this range, Pb a TiO 2 + a , Pb a (Ni 1/3 Nb 2/3 ) O 2 + a , and Pb a (Zn 1/2 W 1/2 ) O 2 + a in a triangular coordinate, the dielectric ceramics characterized by being composed of a composition within a rectangular region having the following composition points A, B, C, D as apexes. Composition. A; x = 0.175 y = 0.800 z = 0.0025 B; x = 0.300 y = 0.675 z = 0.025 C; x = 0.625 y = 0.025 z = 0.350 D; x = 0.325 y = 0.0025 z = 0.650
JP61161309A 1986-07-09 1986-07-09 Dielectric porcelain composition Expired - Fee Related JPH0676248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61161309A JPH0676248B2 (en) 1986-07-09 1986-07-09 Dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61161309A JPH0676248B2 (en) 1986-07-09 1986-07-09 Dielectric porcelain composition

Publications (2)

Publication Number Publication Date
JPS6317253A JPS6317253A (en) 1988-01-25
JPH0676248B2 true JPH0676248B2 (en) 1994-09-28

Family

ID=15732650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61161309A Expired - Fee Related JPH0676248B2 (en) 1986-07-09 1986-07-09 Dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JPH0676248B2 (en)

Also Published As

Publication number Publication date
JPS6317253A (en) 1988-01-25

Similar Documents

Publication Publication Date Title
JPH0712973B2 (en) Dielectric porcelain composition
JPH0676248B2 (en) Dielectric porcelain composition
JPH0676250B2 (en) Dielectric porcelain composition
JPH0712974B2 (en) Dielectric porcelain composition
JPH0676249B2 (en) Dielectric porcelain composition
JPH0676247B2 (en) Dielectric porcelain composition
JPH0329017B2 (en)
JPH0324427B2 (en)
JPH0829980B2 (en) Dielectric porcelain composition
JPH0712975B2 (en) Dielectric porcelain composition
JPH0712972B2 (en) Dielectric porcelain composition
JPH0324426B2 (en)
JPH0644408B2 (en) Dielectric porcelain composition
JPH0676246B2 (en) Dielectric porcelain composition
JPH0821262B2 (en) Dielectric porcelain composition
JPH07110782B2 (en) Dielectric porcelain composition
JPH0764632B2 (en) Dielectric porcelain composition
JPH0329018B2 (en)
JPH068205B2 (en) Dielectric porcelain composition
JPH0638321B2 (en) Dielectric porcelain composition
JPH0329019B2 (en)
JPH0821260B2 (en) Dielectric porcelain composition
JPS63108612A (en) Dielectric ceramic composition
JPS63116308A (en) Dielectric magnetic composition
JPH0821263B2 (en) Dielectric porcelain composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees