JPH0638321B2 - Dielectric porcelain composition - Google Patents

Dielectric porcelain composition

Info

Publication number
JPH0638321B2
JPH0638321B2 JP62074627A JP7462787A JPH0638321B2 JP H0638321 B2 JPH0638321 B2 JP H0638321B2 JP 62074627 A JP62074627 A JP 62074627A JP 7462787 A JP7462787 A JP 7462787A JP H0638321 B2 JPH0638321 B2 JP H0638321B2
Authority
JP
Japan
Prior art keywords
composition
dielectric constant
firing
temperature
partial pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62074627A
Other languages
Japanese (ja)
Other versions
JPS63239710A (en
Inventor
洋一郎 横谷
博司 加賀田
洋 丹羽
純一 加藤
敏弘 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62074627A priority Critical patent/JPH0638321B2/en
Publication of JPS63239710A publication Critical patent/JPS63239710A/en
Publication of JPH0638321B2 publication Critical patent/JPH0638321B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、1100℃以下で焼成される高誘電率系誘電
体磁器組成物に関し、特に低酸素分圧雰囲気で焼成でき
高い抵抗率の得られる組成物に関する。
Description: TECHNICAL FIELD The present invention relates to a high dielectric constant dielectric ceramic composition that is fired at 1100 ° C. or lower, and in particular, a composition that can be fired in a low oxygen partial pressure atmosphere to obtain high resistivity. Regarding things.

従来の技術 近年セラミックコンデンサにおいては、素子の小型化、
大容量化への要求から積層型セラミックコンデンサが急
速に普及しつつある。積層型セラミックコンデンサは内
部電極とセラミックを一体焼成する工程によって通常製
造される。従来より高誘電率系のセラミックコンデンサ
材料にはチタン酸バリウム系の材料が用いられてきた
が、焼成温度が1300℃程度と高いため、内部電極材
料としてはPt、Pdなどの高価な金属を用いる必要があ
った。
2. Description of the Related Art In recent years, in ceramic capacitors, miniaturization of elements,
Due to the demand for larger capacity, multilayer ceramic capacitors are rapidly becoming popular. Multilayer ceramic capacitors are usually manufactured by a process of integrally firing internal electrodes and ceramics. Conventionally, barium titanate-based materials have been used for high dielectric constant ceramic capacitor materials, but since the firing temperature is as high as about 1300 ° C., expensive metals such as Pt and Pd are used as internal electrode materials. There was a need.

これに対し空気中1000℃程度で焼成でき、内部電極
として安価なAg系材料を用いることができる鉛ペロブ
スカイト系材料が提案されており、本発明と類似の系と
しては特開昭60−86072号公報に記載のPbTiO
−Pb(Ni1/3 Nb2/3 )O−Pb(Ni1/2 1/2 )O
からなる組成物が知られている。この系は高い誘電率
と低い焼成温度を有する優れた特性を有している。
On the other hand, a lead perovskite material which can be fired at about 1000 ° C. in air and which can use an inexpensive Ag material as an internal electrode has been proposed. As a system similar to the present invention, JP-A-60-86072 is proposed. PbTiO described in the publication
3- Pb (Ni 1/3 Nb 2/3 ) O 3- Pb (Ni 1/2 W 1/2 ) O
A composition consisting of 3 is known. This system has excellent properties with high dielectric constant and low firing temperature.

発明が解決しようとする問題点 PbTiO−Pb(Ni1/3 Nb2/3 )O−Pb(Ni1/2
1/2 )Oからなる組成物はさらに安価な銅を主成分と
する内部電極をもちいるため、低酸素分圧雰囲気下で焼
成すると、チ密に焼結せずまた抵抗率が低下する問題点
を有していた。本発明はPbTiO−Pb(Ni1/3 Nb
2/3 )O−Pb(Ni1/2 1/2 )O系のもつ高い誘電
率を損なわずに、低酸素分圧下で焼成した際の焼成温度
を下げ抵抗率がたかい誘電体磁器組成物を提供すること
を目的としている。
INVENTION AND SUMMARY Problems PbTiO 3 -Pb (Ni 1/3 Nb 2/3 ) O 3 -Pb (Ni 1/2 W
Since the composition consisting of 1/2 ) O 3 has an even cheaper internal electrode containing copper as a main component, when fired in a low oxygen partial pressure atmosphere, it does not densely sinter and the resistivity decreases. I had a problem. The present invention uses PbTiO 3 -Pb (Ni 1/3 Nb
2/3 ) O 3 -Pb (Ni 1/2 W 1/2 ) O 3 Dielectric material with high resistivity by lowering the firing temperature when firing under low oxygen partial pressure without impairing the high dielectric constant of the system The purpose is to provide a porcelain composition.

問題点を解決するための手段 Pba(Ni1/3 Nb2/3 )xTiy(Ni1/2 1/2 )zO +a
表される磁器組成物(ただしx+y+z=1)に対し、
副成分として銅酸化物をCu2O換算で0.03〜0.6
5重量%含有する組成物とする。
Means for Solving Problems For a porcelain composition represented by Pba (Ni 1/3 Nb 2/3 ) xTiy (Ni 1/2 W 1/2 ) zO 2 + a (where x + y + z = 1),
Copper oxide as a secondary component is converted to Cu 2 O in an amount of 0.03 to 0.6.
The composition contains 5% by weight.

作用 本発明の誘導体磁器組成物の系において、副成分を含ま
ない組成物に対し副成分を含む組成物は低酸素分圧下で
焼成した際、低温度で焼結し誘電率の低下は少なく、誘
電損失の増大も小さく、かつ抵抗率は同等ないし向上す
る。
In the system of the derivative porcelain composition of the present invention, the composition containing the accessory component with respect to the composition containing no accessory component, when fired under a low oxygen partial pressure, sinters at a low temperature and the decrease in the dielectric constant is small, The increase in dielectric loss is small, and the resistivity is the same or improved.

実施例 出発原料には化学的に高純度なPbO,NiO,Nb
2,TiO,WO,Cu2Oを用いた。これらを純
度補正をおこなったうえで所定量を秤量し、ジルコニア
製玉石を用い純水を溶媒としボールミルで17時間湿式
混合した。これを取引ろ過して水分の大半を分離した後
乾燥し、その後ライカイ機で充分解砕した後粉体量の5
wt%の水分を加え、直径60mm高さ約50mmの円柱状に
成形圧力500kg/cm2 で成形した。これをアルミナル
ツボ中に入れ同質のフタをし、680℃〜760℃で2
時間仮焼した。次に仮焼物をアルミナ乳鉢で粗砕し、さ
らにジルコニア製玉石を用い純水を溶媒としてボールミ
ルで17時間粉砕し、これを吸引ろ過し水分の大半を分
離した後乾燥した。以上の仮焼,粉砕,乾燥を数回くり
かえした後この粉末にポリビニルアルコール6wt%水溶
液を粉体量の6wt%加え、32メッシュふるいを通して
造粒し、成形圧力1000kg/cm2で成形した。成形物は
空気中で700℃まで昇温し1時間保持しポリビニルア
ルコール分をバーンアウトした。これを上述の仮焼粉を
体積の1/3程度敷きつめた上に200メッシュMgO粉を
約1mm敷いたマグネシヤ磁器容器に移し、同質のフタを
し、管状電気炉の炉心管内に挿入し、炉心管内をロータ
リーポンプで脱気したのちN−H−HO混合ガス
で置換し、焼成温度での酸素分圧(Po2)が1.0x1
-8 atmになるようNとHガスの混合比を調節しな
がら混合ガスを流し所定温度まで400℃/hrで昇温
し2時間保持後400℃/hrで降温した。炉心管内の
Po2は挿入した安定化ジルコニア酸素センサーにより測
定した。第2図に焼成時のマグネシヤ磁器容器の構造
を、第3図に炉心管内部をそれぞれ断面図で示す。
Example As a starting material, chemically pure PbO, NiO, and Nb were used.
2 O 5 , TiO 2 , WO 3 and Cu 2 O were used. These were subjected to purity correction, then weighed a predetermined amount, and wet-mixed in a ball mill for 17 hours using zirconia cobblestone and pure water as a solvent. This is filtered through trading to remove most of the water content, then dried, and then lysed and crushed with a liquor machine to obtain a powder amount of 5
Moisture of wt% was added to form a column having a diameter of 60 mm and a height of about 50 mm at a forming pressure of 500 kg / cm 2 . Put this in an alumina crucible and cover with the same material.
I calcined for an hour. Next, the calcined product was roughly crushed in an alumina mortar and further crushed in a ball mill for 17 hours using pure water as a solvent using zirconia cobblestone, and this was suction filtered to separate most of the water content, and then dried. After repeating the above-mentioned calcination, pulverization and drying several times, 6 wt% of a 6 wt% aqueous solution of polyvinyl alcohol was added to this powder, and the mixture was granulated through a 32 mesh sieve and molded at a molding pressure of 1000 kg / cm 2 . The molded product was heated to 700 ° C. in air and kept for 1 hour to burn out the polyvinyl alcohol content. Transfer this to a magnesia porcelain container in which about 1/3 of the volume of the above-mentioned calcined powder is spread, and 200 mesh MgO powder is spread about 1 mm, put a lid of the same quality, and insert it into the core tube of the tubular electric furnace. After degassing the inside of the tube with a rotary pump, it was replaced with a N 2 —H 2 —H 2 O mixed gas, and the oxygen partial pressure (Po 2 ) at the firing temperature was 1.0 × 1.
The mixed gas was allowed to flow while adjusting the mixing ratio of N 2 and H 2 gas so as to be 0 −8 atm, the temperature was raised to 400 ° C./hr up to a predetermined temperature, and the temperature was kept at 400 ° C./hr for 2 hours. Po 2 in the core tube was measured by a stabilized zirconia oxygen sensor inserted. FIG. 2 shows the structure of the magnesium porcelain container at the time of firing, and FIG. 3 shows a cross-sectional view of the inside of the core tube.

第2図において1はマグネシア容器であり、その上部は
マグネシア容器蓋2で封じた。マグネシア容器1の下部
には仮焼粉3を配置し、その上にマグネシア粉24を配
置した。さらにその上に試料5を配置した。
In FIG. 2, reference numeral 1 is a magnesia container, and the upper part thereof is sealed with a magnesia container lid 2. The calcined powder 3 was placed in the lower part of the magnesia container 1, and the magnesia powder 24 was placed thereon. Furthermore, the sample 5 was arranged on it.

第2図のように準備されたマグネシア容器1を第3図の
ように炉心管6内に配置した。7は安定化ジルコニア酸
素センサーである。
The magnesia container 1 prepared as shown in FIG. 2 was placed in the core tube 6 as shown in FIG. 7 is a stabilized zirconia oxygen sensor.

焼成物は厚さ1mmの板状に切断し、両面にCr−Auを蒸
着し、誘電率、tanδを1kH z、1V/mmの電界下で
測定した。また抵抗率は1kV/mmの電圧を印加後1分
値から求めた。
The fired product was cut into a plate having a thickness of 1 mm, Cr-Au was vapor-deposited on both surfaces, and the dielectric constant and tan δ were measured under an electric field of 1 kHz and 1 V / mm. The resistivity was determined from the value of 1 minute after applying a voltage of 1 kV / mm.

なお焼成温度は焼成物の密度がもっとも大きくなる温度
とした。
The firing temperature was the temperature at which the density of the fired product was the highest.

表1に本発明の組成範囲および周辺組成の成分、(a,
x,y,zはPba(Ni1/3 Nb2/3 )xTiy(Ni1/2
1/2 )zO2+aと表したときの値)低酸素分圧雰囲気で焼
成したときの焼成温度、誘電率、誘電率の温度変化率
(20℃に対する)、tanδ、抵抗率、密度を示し
た。
Table 1 shows the components of the composition range and peripheral composition of the present invention, (a,
x, y, z is Pb a (Ni 1/3 Nb 2/3) xTiy (Ni 1/2 W
1/2 ) zO 2 + a ) The firing temperature when firing in a low oxygen partial pressure atmosphere, the dielectric constant, the temperature change rate of the dielectric constant (with respect to 20 ° C.), tan δ, the resistivity, and the density are Indicated.

第1図は表1に示した各試料をPbaTiO2+aPba(Ni
1/3 Nb2/3 )O2 +a−Pba(Ni1/2 1/2 )O2 +a
を端成分とする三角組成図中に示したもので、斜線の範
囲が発明の範囲である。
FIG. 1 shows Pb a TiO 2 + a Pb a (Ni
1/3 Nb 2/3) O 2 + a -Pb a (Ni 1/2 W 1/2) O 2 + a
Is shown in the triangular composition diagram with the end component being, and the range of the diagonal line is the range of the invention.

発明範囲外の組成物では、aが0.985より小さいと
副成分として銅酸化物を添加しても焼成温度が1100
℃より高くなるか、1100℃より焼成温度が低くなる
まで銅酸化物を添加すると誘電率が低下する、もしくは
抵抗率が低下する難点を有しており、1.110より大
きくなると誘電率および抵抗率が低下する難点を有す
る。副成分の銅酸化物が0.03wt%より小さいと焼成
温度低下の改善効果が現れず、0.65wt%より大きく
なると誘電特性とくに誘電率と抵抗率の低下が大きくな
る。またx,y,zが限定の範囲外の組成物はキュリー
点が室温から大きくはずれ誘電率が低くなる、もしくは
誘電率の温度変化率が大きなる難点を有している。特許
請求の範囲内の組成物では前記の問題がいずれも克服さ
れている。
In the composition outside the scope of the invention, when a is smaller than 0.985, the firing temperature is 1100 even if copper oxide is added as a subcomponent.
If copper oxide is added until the temperature becomes higher than ℃ or the firing temperature becomes lower than 1100 ℃, the dielectric constant or the resistivity decreases, and if it exceeds 1.110, the dielectric constant and the resistance decrease. There is a drawback that the rate decreases. If the amount of the copper oxide as an accessory component is less than 0.03 wt%, the effect of improving the firing temperature is not improved, and if it is more than 0.65 wt%, the dielectric properties, particularly the dielectric constant and the resistivity are significantly reduced. Further, a composition in which x, y, z is out of the limited range has a problem that the Curie point is largely deviated from room temperature and the dielectric constant is lowered, or the temperature change rate of the dielectric constant is large. Compositions within the scope of the claims overcome all of the above problems.

なお焼成雰囲気として選択した低酸素分圧雰囲気P
o2 ;1.0X10-8atm は焼成温度における銅の平衡
酸素分圧より低く金属はほとんど酸化しないと考えられ
る。
The low oxygen partial pressure atmosphere P selected as the firing atmosphere
o 2 ; 1.0 × 10 −8 atm is lower than the equilibrium oxygen partial pressure of copper at the firing temperature, and it is considered that the metal is hardly oxidized.

発明の効果 本発明によれば低酸素分圧雰囲気1100℃以下の焼成
で積層コンデンサ素子として高信頼性を得るためのチ密
で抵抗率の高い焼結体が得られ、とくに本発明の副成分
の添加により焼成温度が低下し焼成時の酸素分圧の制御
が容易になる。このため内部電極としてCuなどの卑金
属材料を用いた積層コンデンサ素子に本発明の組成物を
用いた場合、電気的特性を損なうことなく、より安定な
製造条件で素子が製造でき、量産性が向上する。
EFFECTS OF THE INVENTION According to the present invention, a dense and high-resistivity sintered body for obtaining high reliability as a multilayer capacitor element can be obtained by firing at a low oxygen partial pressure atmosphere of 1100 ° C. or less, and in particular, a subcomponent of the present invention. The addition of Al reduces the firing temperature and facilitates control of the oxygen partial pressure during firing. Therefore, when the composition of the present invention is used for a multilayer capacitor element using a base metal material such as Cu as an internal electrode, the element can be manufactured under more stable manufacturing conditions without impairing the electrical characteristics, and mass productivity is improved. To do.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る磁器組成物の成分組成を示す三角
組成図,第2図は焼成時に磁器を入れるマグネシヤ容器
の断面図,第3図は焼成時の炉心管内の断面図を示す。 1……マグネシヤ容器、2……マグネシヤ容器蓋、3……
仮焼粉、4……マグネシア粉、5……試料、6……炉心
管、7……安定化ジルコニア酸素センサー。
FIG. 1 is a triangular composition diagram showing the component composition of a porcelain composition according to the present invention, FIG. 2 is a sectional view of a magnesia container in which porcelain is put in during firing, and FIG. 1 …… Magnesia container, 2 …… Magnesia container lid, 3 ……
Calcined powder, 4 …… Magnesia powder, 5 …… Sample, 6 …… Core tube, 7 …… Stabilized zirconia oxygen sensor.

フロントページの続き (72)発明者 加藤 純一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 三原 敏弘 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (56)参考文献 特開 昭60−86072(JP,A) 特開 昭62−12652(JP,A)Front page continuation (72) Inventor Junichi Kato 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Toshihiro Mihara, 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. (56) Reference Documents JP-A-60-86072 (JP, A) JP-A-62-12652 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】Pba(Ni1/3 Nb2/3 )xTiy(Ni1/21/2
)zO +aで表される組成を有し(ただしx+y+z=
1)、a が 0.985 ≦ a ≦1.110 の範囲にあり、この範囲内の各aの値に対し Pb (Ni1/3 Nb2/3 )O +a′Pb TiO +a,Pb (Ni1/21/2 )O +aを頂点とする
三角座標において下記組成点A,B,C,D A;x=0.850 y=0.149 z=0.001 B;x=0.450 y=0.549 z=0.001 C;x=0.001 y=0.750 z=0.249 D;x=0.001 y=0.400 z=0.599 を頂点とする四角形の領域内にある組成物に対し、副成
分として、銅酸化物をCuO換算の重量%で0.03
〜0.65%含有することを特徴とした誘電体磁器組成
物。
1. Pba (Ni 1/3 Nb 2/3 ) xTiy (Ni 1/2 W 1/2
) zO 2 + a (where x + y + z =
1), a is in the range of 0.985 ≦ a ≦ 1.110, Pb a (Ni 1/3 Nb 2/3 to the value of each a in this range) O 2 + a 'Pb a TiO 2 + a, Pb a (Ni 1/2 W 1/2 ) O 2 + a in the triangular coordinates with the apex as the following composition points A, B, C, DA; x = 0.850 y = 0.149 z = 0.001 B; x = 0.450 y = 0.549 z = 0.001 C; x = 0.001 y = 0.750 z = 0.249 D; x = 0.001 y = 0.400 z = 0.599 For the composition within the rectangular region, copper oxide was added as a sub-component to Cu. 0.03% by weight in terms of 2 O
A dielectric porcelain composition characterized by containing ~ 0.65%.
JP62074627A 1987-03-27 1987-03-27 Dielectric porcelain composition Expired - Lifetime JPH0638321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62074627A JPH0638321B2 (en) 1987-03-27 1987-03-27 Dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62074627A JPH0638321B2 (en) 1987-03-27 1987-03-27 Dielectric porcelain composition

Publications (2)

Publication Number Publication Date
JPS63239710A JPS63239710A (en) 1988-10-05
JPH0638321B2 true JPH0638321B2 (en) 1994-05-18

Family

ID=13552621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62074627A Expired - Lifetime JPH0638321B2 (en) 1987-03-27 1987-03-27 Dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JPH0638321B2 (en)

Also Published As

Publication number Publication date
JPS63239710A (en) 1988-10-05

Similar Documents

Publication Publication Date Title
JPH0712973B2 (en) Dielectric porcelain composition
JPH0638321B2 (en) Dielectric porcelain composition
JPH0824006B2 (en) Non-reducing dielectric ceramic composition
JPH0821260B2 (en) Dielectric porcelain composition
JPH0712974B2 (en) Dielectric porcelain composition
JPH05262556A (en) Production of dielectric porcelain
JPH0644408B2 (en) Dielectric porcelain composition
JPH0676250B2 (en) Dielectric porcelain composition
JPH0324426B2 (en)
JPH0829980B2 (en) Dielectric porcelain composition
JPH0821262B2 (en) Dielectric porcelain composition
JPH0821263B2 (en) Dielectric porcelain composition
JPH0821261B2 (en) Dielectric porcelain composition
JPH0329017B2 (en)
JPH0712975B2 (en) Dielectric porcelain composition
JPH0676248B2 (en) Dielectric porcelain composition
JPH0676246B2 (en) Dielectric porcelain composition
JPH0712972B2 (en) Dielectric porcelain composition
JPH0324427B2 (en)
JPH07110782B2 (en) Dielectric porcelain composition
JPH0676249B2 (en) Dielectric porcelain composition
JPH0676247B2 (en) Dielectric porcelain composition
JPS63116308A (en) Dielectric magnetic composition
JPH0329019B2 (en)
JPH0329018B2 (en)