JPH0676247B2 - Dielectric porcelain composition - Google Patents

Dielectric porcelain composition

Info

Publication number
JPH0676247B2
JPH0676247B2 JP61161308A JP16130886A JPH0676247B2 JP H0676247 B2 JPH0676247 B2 JP H0676247B2 JP 61161308 A JP61161308 A JP 61161308A JP 16130886 A JP16130886 A JP 16130886A JP H0676247 B2 JPH0676247 B2 JP H0676247B2
Authority
JP
Japan
Prior art keywords
composition
fired
partial pressure
oxygen partial
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61161308A
Other languages
Japanese (ja)
Other versions
JPS6317252A (en
Inventor
純一 加藤
洋一郎 横谷
敏弘 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61161308A priority Critical patent/JPH0676247B2/en
Publication of JPS6317252A publication Critical patent/JPS6317252A/en
Publication of JPH0676247B2 publication Critical patent/JPH0676247B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は1100℃以下で焼成される高誘電率系誘電体磁器
組成物に関し、特に低酸素分圧雰囲気で焼成でき高い抵
抗率の得られる組成物に関する。
TECHNICAL FIELD The present invention relates to a high dielectric constant type dielectric ceramic composition which is fired at 1100 ° C. or less, and particularly, a composition which can be fired in a low oxygen partial pressure atmosphere to obtain a high resistivity. Regarding

従来の技術 近年セラミックコンデンサにおいては素子の小型化、大
容量化への要求から積層型セラミックコンデンサが急速
に普及しつつある。積層型セラミックコンデンサは内部
電極とセラミックを一体焼成する工程によって通常製造
される。従来より高誘電率系のセラミックコンデンサ材
料にはチタン酸バリウム系の材料が用いられてきたが、
焼成温度が1300℃程度と高いため、内部電極材料として
はPt,Pdなどの高価な金属を用いる必要があった。
2. Description of the Related Art In recent years, in ceramic capacitors, multilayer ceramic capacitors are rapidly becoming popular due to the demand for smaller size and larger capacity of elements. Multilayer ceramic capacitors are usually manufactured by a process of integrally firing internal electrodes and ceramics. Conventionally, barium titanate-based materials have been used for high dielectric constant ceramic capacitor materials.
Since the firing temperature is as high as about 1300 ° C, it was necessary to use expensive metals such as Pt and Pd as the internal electrode material.

これに対し空気中1000℃以下で焼成でき内部電極として
安価なAg系材料を用いることができる鉛複合ペロブスカ
イト系材料や、低酸素分圧雰囲気中で焼成できNiなどの
卑金属材料を内部電極として使用できるチタン酸バリウ
ム系材料が開発されている。前者については、例えばPb
TiO3-Pb(Mg1/3Nb2/3)O3-Pb(Mg1/2W1/2)O3が特開昭55−1
11011号公報に記載されている。後者については特公昭5
6−46641号公報に記載の材料などが知られている。PbTi
O3-Pb(Mg1/3Nb2/3)O3-Pb(Mg1/2W1/2)O3系固溶体は低温
で焼成でき、誘電率の温度変化率が同程度のチタン酸バ
リウム系材料に比べ高い誘電率が得られる。従ってこの
誘電体磁器組成物とAg系内部電極からなる積層コンデン
サは、素子の大容量、小型化、低コスト化が図れる利点
を有している。しかし近年さらに内部電極材料の低コス
ト化が図れるCuなどの卑金属を内部電極として用いるこ
とが求められており、このため、同時焼成したときCuな
どの金属が酸化しないような低酸素分圧雰囲気で焼成で
き、高い抵抗率が得られる材料が必要とされている。
On the other hand, lead composite perovskite-based materials that can be fired in air at 1000 ° C or lower and inexpensive Ag-based materials can be used as internal electrodes, or base metal materials such as Ni that can be fired in a low oxygen partial pressure atmosphere can be used as internal electrodes. Barium titanate-based materials have been developed. For the former, for example, Pb
TiO 3 -Pb (Mg 1/3 Nb 2/3 ) O 3 -Pb (Mg 1/2 W 1/2 ) O 3 is disclosed in JP-A-55-1.
It is described in Japanese Patent No. 11011. Regarding the latter, Japanese Patent Publication 5
The materials and the like described in JP-A 6-46641 are known. PbTi
O 3 -Pb (Mg 1/3 Nb 2/3 ) O 3 -Pb (Mg 1/2 W 1/2 ) O 3 -based solid solution can be fired at low temperature, and titanic acid with similar dielectric constant temperature change rate can be obtained. Higher permittivity than that of barium materials can be obtained. Therefore, the multilayer capacitor including the dielectric ceramic composition and the Ag-based internal electrode has the advantages that the device can have a large capacity, a small size, and a low cost. However, in recent years, it has been required to use a base metal such as Cu, which can further reduce the cost of the internal electrode material, as the internal electrode.Therefore, in a low oxygen partial pressure atmosphere in which the metal such as Cu does not oxidize when co-fired. There is a need for materials that can be fired and have high resistivity.

発明が解決しようとする問題点 PbTiO3-Pb(Mg1/3Nb2/3)O3-Pb(Mg1/2W1/2)O3系固溶体
は、低酸素分圧雰囲気で焼成するとチ密に焼結せず、ま
た抵抗率が小さくなる傾向がある。
Problems to be Solved by the Invention PbTiO 3 -Pb (Mg 1/3 Nb 2/3 ) O 3 -Pb (Mg 1/2 W 1/2 ) O 3 based solid solution is fired in a low oxygen partial pressure atmosphere. D. It does not sinter densely and the resistivity tends to decrease.

本発明は、PbTiO3-Pb(Mg1/3Nb2/3)O3-Pb(Mg1/2W1/2)O3
系のもつ高い誘電率と低温焼結性をそこなわず、低酸素
分圧雰囲気で焼成したとき抵抗値が高い誘電体磁器組成
物を提供することを目的としてる。
The present invention relates to PbTiO 3 -Pb (Mg 1/3 Nb 2/3 ) O 3 -Pb (Mg 1/2 W 1/2 ) O 3
An object of the present invention is to provide a dielectric ceramic composition which does not impair the high dielectric constant and low-temperature sinterability of the system and has a high resistance value when fired in a low oxygen partial pressure atmosphere.

問題点を解決するための手段 Pba(Mg1/3Nb2/3)xTiy(Mg1/2W1/2)zO2+aで表される組成
式(ただし、x+y+z=1)において、1.001≦a≦
1.110の範囲とし、この範囲内の各aの値に対し、 Pba(Mg1/3Nb2/3)O2+a、 PbaTiO2+a、および Pba(Mg1/2W1/2)O2+a を頂点とする三角座標において下記組成点A,B,C,Dを頂
点とする四角形の領域内の組成とする。
Means for Solving Problems In the composition formula represented by Pba (Mg 1/3 Nb 2/3 ) xTiy (Mg 1/2 W 1/2 ) zO 2 + a (where x + y + z = 1), 1.001 ≦ a ≦
1.110, and for each value of a within this range, Pb a (Mg 1/3 Nb 2/3 ) O 2 + a , Pb a TiO 2 + a , and Pb a (Mg 1/2 W 1 / 2 ) In triangular coordinates with O 2 + a as the apex, the composition is within the rectangular area with the following composition points A, B, C, D as apexes.

A;x=0.950 y=0.025 z=0.025 B;x=0.850 y=0.125 z=0.025 C;x=0.100 y=0.600 z=0.300 D;x=0.100 y=0.400 z=0.500 作用 本発明の組成物においてはAサイト成分を過剰にするこ
とにより、低酸素分圧雰囲気、1100℃以下でチ密な焼成
物が得られ、高い抵抗率を有する信頼性の高い素子がえ
られる。
A; x = 0.950 y = 0.025 z = 0.025 B; x = 0.850 y = 0.125 z = 0.025 C; x = 0.100 y = 0.600 z = 0.300 D; x = 0.100 y = 0.400 z = 0.500 Action Composition of the present invention In the case of (1), by making the A site component excessive, a dense fired product can be obtained at a low oxygen partial pressure atmosphere at 1100 ° C. or less, and a highly reliable device having a high resistivity can be obtained.

実施例 出発原料には化学的に高純度なPbO,MgO,Nb2O5,TiO2,WO3
を用いた。これらを純度補正をおこなったうえで所定量
を秤量し、メノウ製玉石を用い純水を溶媒としボールミ
ルで,17時間湿式混合した。これを吸引ろ過して水分の
大半を分離した後乾燥し、その後ライカイ機で充分解砕
した後粉体量の5wt%の水分を加え、直径60mm高さ50mm
の円柱状に成形圧力500kg/cm2で成形した。これをアル
ミナルツボ中に入れ同質のフタをし、750℃〜880℃で2
時間仮焼した。次に仮焼物をアルミナ乳鉢で粗砕し、さ
らにメノウ製玉石を用い純水を溶媒としてボールミルで
17時間粉砕し、これを吸引ろ過し水分の大半を分離した
後乾燥した。以上の仮焼,粉砕,乾燥を数回くりかえし
た後、この粉末にポリビニルアルコール6wt%水溶液を
粉体量の6wt%加え、32メッシュふるいを通して造粒
し、成形圧力1000kg/cm2で直径13mm高さ約5mmの円柱状
に成形した。成形物は空気中で700℃まで昇温し1時間
保持し、ポリビルアルコール分をバーンアウトした。こ
れを、上述の仮焼粉を体積の1/3程度敷きつめた上に200
メッシュZrO2粉を約1mm敷いたマグネシヤ磁器容器に移
し、同質のフタをし、管状電気炉の炉心管内に挿入し、
炉心管内をロータリーポンプで脱気したのちN2-H2混合
ガスで置換し、酸素分圧(Po2)が1.0x10-8atmになるよ
うN2とH2ガスの混合比を調節しながら混合ガスを流し、
所定温度まで400℃/hrで昇温し2時間保持後、400℃/hr
で降温した。炉心管内のPo2は挿入した安定化ジルコニ
ア酸素センサーにより測定した。第2図に焼成時のマグ
ネシヤ磁器容器の構造を、第3図に炉心管内部をそれぞ
れ断面図で示す。
Example Starting materials were chemically high-purity PbO, MgO, Nb 2 O 5 , TiO 2 , WO 3
Was used. These were corrected for purity and weighed a predetermined amount, and wet-mixed for 17 hours in a ball mill using agate stones and pure water as a solvent. This is suction-filtered to separate most of the water content, then dried, then charged and decomposed with a Lykai machine, and then added with 5 wt% of the powder amount of water, and the diameter is 60 mm and the height is 50 mm.
Was molded into a cylindrical shape with a molding pressure of 500 kg / cm 2 . Put this in an alumina crucible and cover with the same material.
I calcined for an hour. Next, the calcined product is roughly crushed in an alumina mortar, and then agate stones are used and pure water is used as a solvent in a ball mill.
It was crushed for 17 hours, suction filtered to separate most of the water content, and then dried. After repeating the above calcination, crushing, and drying several times, add 6 wt% of polyvinyl alcohol 6 wt% aqueous solution to this powder, granulate through a 32 mesh sieve, and increase the diameter 13 mm at a molding pressure of 1000 kg / cm 2. It was formed into a cylindrical shape with a size of about 5 mm. The molded product was heated to 700 ° C. in the air and held for 1 hour to burn out the polyvinyl alcohol content. Place this on top of about 1/3 of the volume of the above calcined powder and apply 200
Move the mesh ZrO 2 powder to a magnesia porcelain container laid about 1 mm, put a lid of the same quality, and insert it in the core tube of the tubular electric furnace,
After degassing the inside of the core tube with a rotary pump and replacing it with N 2 -H 2 mixed gas, while adjusting the mixing ratio of N 2 and H 2 gas so that the oxygen partial pressure (Po 2 ) becomes 1.0x10 -8 atm. Flowing mixed gas,
After raising the temperature to 400 ° C / hr to the specified temperature and holding for 2 hours, 400 ° C / hr
The temperature dropped at. Po 2 in the core tube was measured by a stabilized zirconia oxygen sensor inserted. FIG. 2 shows the structure of the magnesium porcelain container at the time of firing, and FIG. 3 shows a cross-sectional view of the inside of the core tube.

第2図において1はマグネシア容器であり、その上部は
マグネシア容器蓋2で封じた。マグネシア容器1の下部
には仮焼粉3を配置し、その上にジルコニア粉24を配置
した。さらにその上に試料5を配置した。
In FIG. 2, reference numeral 1 is a magnesia container, and the upper part thereof is sealed with a magnesia container lid 2. A calcined powder 3 was placed in the lower part of the magnesia container 1, and a zirconia powder 24 was placed thereon. Furthermore, the sample 5 was arranged on it.

第2図のように準備されたマグネシア容器1を第3図の
ように炉心管6内に配置した。7は安定化ジルコニア酸
素センサーである。
The magnesia container 1 prepared as shown in FIG. 2 was placed in the core tube 6 as shown in FIG. 7 is a stabilized zirconia oxygen sensor.

焼成物は厚さ1mmの円板状に切断し、両面にCr-Auを蒸着
し、誘電率、tanδを1kHz、1V/mmの電界下で測定した。
また抵抗率は、1kV/mmの電圧を印加後1分値から求め
た。
The fired product was cut into a disc with a thickness of 1 mm, Cr-Au was vapor-deposited on both sides, and the dielectric constant and tan δ were measured under an electric field of 1 kHz and 1 V / mm.
The resistivity was calculated from the value of 1 minute after applying a voltage of 1 kV / mm.

なお焼成温度は焼成物の密度がもっとも大きくなる温度
とした。
The firing temperature was the temperature at which the density of the fired product was the highest.

表1に、本発明の組成範囲および周辺組成の成分(a,x,
y,zは、Pba(Mg1/2Nb2/3)xTiy(Mg1/2W1/2)zO2+aと表した
ときの値)、低酸素分圧雰囲気で焼成したときの焼成温
度、誘低酸素分圧雰囲気で焼成したときの焼成温度、誘
電率、誘電率の温度変化率(20℃に対する)、tanδ、
抵抗率、密度を示した。
Table 1 shows the components (a, x,
y and z are values expressed as Pb a (Mg 1/2 Nb 2/3 ) xTiy (Mg 1/2 W 1/2 ) zO 2 + a ), and when firing in a low oxygen partial pressure atmosphere. Firing temperature, firing temperature when fired in a low oxygen partial pressure atmosphere, permittivity, temperature change rate of permittivity (relative to 20 ° C), tanδ,
The resistivity and density are shown.

第1図は表1に示した各試料をPbaTiO2+a、Pba(Mg1/3Nb
2/3)O2+a、及びPba(Mg1/2W1/2)O2+aを端成分とする三角
組成図中に示したもので、斜線の範囲が発明の範囲であ
る。
Figure 1 shows the samples shown in Table 1 for Pb a TiO 2 + a and Pb a (Mg 1/3 Nb
2/3 ) O 2 + a and Pb a (Mg 1/2 W 1/2 ) O 2 + a are shown in the triangular composition diagram, and the shaded area is the scope of the invention. .

発明範囲外の組成物では、aが1.001より小さいと低酸
素分圧雰囲気で焼成したときチ密な焼結物が得られな
い、もしくは抵抗率が低くなる難点を有しており、1.11
0より大きくなると誘電率および抵抗率が低下する難点
を有する。またx,y,zが限定の範囲外の組成物は、キュ
リー点が室温から大きくはずれ誘電率が低くなる、もし
くは誘電率の温度変化率が大きくなる難点を有してい
る。特許請求の範囲内の組成物では前記の問題がいずれ
も克服されている。
Compositions outside the scope of the invention have the problem that if a is less than 1.001, a dense sintered product cannot be obtained or the resistivity becomes low when fired in a low oxygen partial pressure atmosphere.
When it is larger than 0, there is a problem that the dielectric constant and the resistivity decrease. Further, a composition in which x, y, z is out of the limited range has a problem that the Curie point is largely deviated from room temperature and the dielectric constant is lowered, or the temperature change rate of the dielectric constant is increased. Compositions within the scope of the claims overcome all of the above problems.

なお焼成雰囲気として選択した低酸素分圧雰囲気Po2;1.
0x10-8atmは焼成温度における銅の平衡酸素分圧より低
く金属はほとんど酸化しないと考えられる。
The low oxygen partial pressure atmosphere selected as the firing atmosphere Po 2 ; 1.
0x10 -8 atm is lower than the equilibrium oxygen partial pressure of copper at the firing temperature, and it is considered that the metal is hardly oxidized.

発明の効果 本発明によれば低酸素分圧雰囲気1100℃以下の焼成で積
層コンデンサ素子として高信頼性を得るためのチ密で抵
抗率の高い焼結体が得られ、内部電極としてCuなどの卑
金属材料を用いることが可能になる優れた誘電体磁器組
成物を得ることができる。
EFFECTS OF THE INVENTION According to the present invention, a dense, high-resistivity sintered body for obtaining high reliability as a multilayer capacitor element can be obtained by firing in a low oxygen partial pressure atmosphere at 1100 ° C. or lower, and Cu etc. as internal electrodes It is possible to obtain an excellent dielectric ceramic composition that makes it possible to use a base metal material.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る磁器組成物の成分組成を示す三角
組成図,第2図は焼成時に磁器を入れるマグネシヤ容器
の断面図,第3図は焼成時の炉心管内の断面図を示す。 1……マグネシヤ容器、2……マグネシヤ容器蓋、3…
…仮焼粉、4……ジルコニア粉、5……;試料、6……
炉心管、7……安定化ジルコニア酸素センサー。
FIG. 1 is a triangular composition diagram showing the component composition of a porcelain composition according to the present invention, FIG. 2 is a sectional view of a magnesia container in which porcelain is put in during firing, and FIG. 1 ... Magnesia container, 2 ... Magnesia container lid, 3 ...
… Calcined powder, 4 …… Zirconia powder, 5 ……; Sample, 6 ……
Core tube, 7 ... Stabilized zirconia oxygen sensor.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】Pba(Mg1/3Nb2/3)xTiy(Mg1/2W1/2)zO2+a
表される組成式(ただし、x+y+z=1)において、
1.001≦a≦1.110の範囲にあり、この範囲内の各aの値
に対し、 Pba(Mg1/3Nb2/3)O2+a、 PbaTiO2+a、および Pba(Mg1/2W1/2)O2+a を頂点とする三角座標において下記組成点A,B,C,Dを頂
点とする四角形の領域内の組成物からなることを特徴と
する誘電体磁器組成物。 A;x=0.950 y=0.025 z=0.025 B;x=0.850 y=0.125 z=0.025 C;x=0.100 y=0.600 z=0.300 D;x=0.100 y=0.400 z=0.500
1. In the composition formula represented by Pba (Mg 1/3 Nb 2/3 ) xTiy (Mg 1/2 W 1/2 ) zO 2 + a (where x + y + z = 1),
1.001 ≦ a ≦ 1.110, and for each value of a within this range, Pb a (Mg 1/3 Nb 2/3 ) O 2 + a , Pb a TiO 2 + a , and Pb a (Mg 1/2 W 1/2 ) O 2 + a in a triangular coordinate, the dielectric ceramics characterized by being composed of a composition within a rectangular region having the following composition points A, B, C, D as apexes. Composition. A; x = 0.950 y = 0.025 z = 0.025 B; x = 0.850 y = 0.125 z = 0.025 C; x = 0.100 y = 0.600 z = 0.300 D; x = 0.100 y = 0.400 z = 0.500
JP61161308A 1986-07-09 1986-07-09 Dielectric porcelain composition Expired - Fee Related JPH0676247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61161308A JPH0676247B2 (en) 1986-07-09 1986-07-09 Dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61161308A JPH0676247B2 (en) 1986-07-09 1986-07-09 Dielectric porcelain composition

Publications (2)

Publication Number Publication Date
JPS6317252A JPS6317252A (en) 1988-01-25
JPH0676247B2 true JPH0676247B2 (en) 1994-09-28

Family

ID=15732632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61161308A Expired - Fee Related JPH0676247B2 (en) 1986-07-09 1986-07-09 Dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JPH0676247B2 (en)

Also Published As

Publication number Publication date
JPS6317252A (en) 1988-01-25

Similar Documents

Publication Publication Date Title
JPH0712973B2 (en) Dielectric porcelain composition
JPH0676247B2 (en) Dielectric porcelain composition
JPH0676250B2 (en) Dielectric porcelain composition
JPH0712974B2 (en) Dielectric porcelain composition
JPH0829980B2 (en) Dielectric porcelain composition
JPH0676248B2 (en) Dielectric porcelain composition
JPH0676249B2 (en) Dielectric porcelain composition
JPH0329017B2 (en)
JPH0324426B2 (en)
JPH0644408B2 (en) Dielectric porcelain composition
JPH0676246B2 (en) Dielectric porcelain composition
JPH0324427B2 (en)
JPH0712975B2 (en) Dielectric porcelain composition
JPH0712972B2 (en) Dielectric porcelain composition
JPH0821262B2 (en) Dielectric porcelain composition
JPH0764632B2 (en) Dielectric porcelain composition
JPH0329018B2 (en)
JPH07110782B2 (en) Dielectric porcelain composition
JPH0329019B2 (en)
JPH068205B2 (en) Dielectric porcelain composition
JPH0638321B2 (en) Dielectric porcelain composition
JPS63116308A (en) Dielectric magnetic composition
JPS63108612A (en) Dielectric ceramic composition
JPH0821260B2 (en) Dielectric porcelain composition
JPH0821263B2 (en) Dielectric porcelain composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees