JPH0712974B2 - Dielectric porcelain composition - Google Patents

Dielectric porcelain composition

Info

Publication number
JPH0712974B2
JPH0712974B2 JP60264067A JP26406785A JPH0712974B2 JP H0712974 B2 JPH0712974 B2 JP H0712974B2 JP 60264067 A JP60264067 A JP 60264067A JP 26406785 A JP26406785 A JP 26406785A JP H0712974 B2 JPH0712974 B2 JP H0712974B2
Authority
JP
Japan
Prior art keywords
composition
partial pressure
oxygen partial
dielectric constant
fired
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60264067A
Other languages
Japanese (ja)
Other versions
JPS62123065A (en
Inventor
洋一郎 横谷
純一 加藤
敏弘 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60264067A priority Critical patent/JPH0712974B2/en
Publication of JPS62123065A publication Critical patent/JPS62123065A/en
Publication of JPH0712974B2 publication Critical patent/JPH0712974B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は1100℃以下で焼成される高誘電率系誘電体磁器
組成物に関し、特に低酸素分圧雰囲気で焼成でき高い抵
抗率の得られる組成物に関する。
TECHNICAL FIELD The present invention relates to a high dielectric constant type dielectric ceramic composition which is fired at 1100 ° C. or less, and particularly, a composition which can be fired in a low oxygen partial pressure atmosphere to obtain a high resistivity. Regarding

従来の技術 近年セラミックコンデンサにおいては素子の小型化、大
容量化への要求から積層型セラミックコンデンサが急速
に普及しつつある。積層型セラミックコンデンサは内部
電極とセラミックを一体焼成する工程によって通常製造
される。従来より高誘電率系のセラミックコンデンサ材
料にはチタン酸バリウム系の材料が用いられてきたが、
焼成温度が1300℃程度と高いため、内部電極材料として
はPt,Pdなどの高価な金属を用いる必要があった。
2. Description of the Related Art In recent years, in ceramic capacitors, multilayer ceramic capacitors are rapidly becoming popular due to the demand for smaller size and larger capacity of elements. Multilayer ceramic capacitors are usually manufactured by a process of integrally firing internal electrodes and ceramics. Conventionally, barium titanate-based materials have been used for high dielectric constant ceramic capacitor materials.
Since the firing temperature is as high as about 1300 ° C, it was necessary to use expensive metals such as Pt and Pd as the internal electrode material.

これに対し空気中1000℃以下で焼成でき内部電極として
安価なAg系材料を用いることができる鉛複合ペロブスカ
イト系材料や、低酸素分圧雰囲気中で焼成できNiなどの
卑金属材料を内部電極として使用できるチタン酸バリウ
ム系材料が開発されている。前者については本発明と類
似の系として特開昭58−176175号公報に記載のPbTiO3
Pb(Ni1/3Nb2/3)O3−Pb(Mg1/2W1/2)O3からなる誘電体磁
器組成物が知られている。後者については特公昭56−46
641号公報に記載の材料などが知られている。
On the other hand, lead composite perovskite-based materials that can be fired in air at 1000 ° C or lower and inexpensive Ag-based materials can be used as internal electrodes, or base metal materials such as Ni that can be fired in a low oxygen partial pressure atmosphere can be used as internal electrodes. Barium titanate-based materials have been developed. Regarding the former, as a system similar to the present invention, PbTiO 3 − described in JP-A-58-176175
A dielectric ceramic composition composed of Pb (Ni 1/3 Nb 2/3 ) O 3 -Pb (Mg 1/2 W 1/2 ) O 3 is known. Regarding the latter, Japanese Patent Publication No. 56-46
The materials described in Japanese Patent No. 641 are known.

PbTiO3−Pb(Ni1/3Nb2/3)O3−Pb(Mg1/2W1/2)O3系固溶体
は低温で焼成でき、誘電率の温度変化率が同程度のチタ
ン酸バリウム系材料に比べ高い誘電率が得られる。従っ
てこの誘電体磁器組成物とAg系内部電極からなる積層コ
ンデンサは素子の大容量、小型化、低コスト化が図れる
利点を有している。しかし近年さらに内部電極材料の低
コスト化が図れるCuなどの卑金属を内部電極として用い
ることが求められており、このため、同時焼成したとき
Cuなどの金属が酸化しないような低酸素分圧雰囲気で焼
成したとき誘電体磁器の抵抗率が低下しない材料が必要
とされている。
PbTiO 3 -Pb (Ni 1/3 Nb 2/3 ) O 3 -Pb (Mg 1/2 W 1/2 ) O 3 -based solid solution can be fired at low temperature, and titanic acid with similar temperature change rate of dielectric constant can be obtained. Higher permittivity than that of barium materials can be obtained. Therefore, the multilayer capacitor composed of this dielectric ceramic composition and the Ag-based internal electrode has the advantages that the device can have a large capacity, a small size, and a low cost. However, in recent years, it has been required to use base metals such as Cu that can reduce the cost of internal electrode materials as internal electrodes.
There is a need for a material that does not reduce the resistivity of the dielectric ceramic when fired in a low oxygen partial pressure atmosphere in which a metal such as Cu does not oxidize.

発明が解決しようとする問題点 PbTiO3−Pb(Ni1/3Nb2/3)O3−Pb(Mg1/2W1/2)O3系固溶体
は低酸素分圧雰囲気で焼成するとチ密に焼結せず、また
抵抗率が小さくなる傾向がある。
Problems to be Solved by the Invention PbTiO 3 −Pb (Ni 1/3 Nb 2/3 ) O 3 −Pb (Mg 1/2 W 1/2 ) O 3 solid solution is not suitable for firing in a low oxygen partial pressure atmosphere. It does not sinter densely and tends to have a low resistivity.

本発明はPbTiO3−Pb(Ni1/3Nb2/3)O3−Pb(Mg1/2W1/2)O3
系のもつ高い誘電率と低温焼結性をそこなわず、低酸素
分圧雰囲気で焼成したとき抵抗値が高い誘電体磁器組成
物を提供することを目的としている。
The present invention is PbTiO 3 --Pb (Ni 1/3 Nb 2/3 ) O 3 --Pb (Mg 1/2 W 1/2 ) O 3
It is an object of the present invention to provide a dielectric ceramic composition which does not impair the high dielectric constant and low temperature sinterability of the system and has a high resistance value when fired in a low oxygen partial pressure atmosphere.

問題点を解決するための手段 本発明は、 (PbaMeb){(Ni1/3Nb2/3)xTiy(Mg1/2W1/2)z}O2+a+b
表わされる組成を有し(ただし、x+y+z=1)、Me
がCa,Sr,Baからなる群から選ばれた少なくとも一種であ
り、 0.001≦b≦0.250 1.001≦a+b≦1.200 の範囲にあり、この範囲内の各a,bの値に対し、 (PbaMeb)(Ni1/3Nb2/3)O2+a+b、(PbaMeb)Ti
O2+a+b、(PbaMeb)(Mg1/2W1/2)O2+a+bを頂点とする
三角座標における下記組成点A,B,C,Dを頂点とする四角
形にある領域内の組成物からなることを特徴とする誘電
体磁器組成物である。
Means for Solving the Problems The present invention provides (Pb a Me b ) {(Ni 1/3 Nb 2/3 ) x Ti y (Mg 1/2 W 1/2 ) z } O 2 + a + b Has a composition represented by (where x + y + z = 1), and Me
Is at least one selected from the group consisting of Ca, Sr, and Ba, and is in the range of 0.001 ≦ b ≦ 0.250 1.001 ≦ a + b ≦ 1.200. For each value of a and b within this range, (Pb a Me b ) (Ni 1/3 Nb 2/3 ) O 2 + a + b , (Pb a Me b ) Ti
O 2 + a + b , (Pb a Me b ) (Mg 1/2 W 1/2 ) O 2 + a + b is the vertex, and the following composition points A, B, C, D are in the triangular coordinates. It is a dielectric porcelain composition characterized in that it is composed of a composition within a rectangular region.

A;x=0.770 y=0.229 z=0.001 B;x=0.450 y=0.549 z=0.001 C;x=0.001 y=0.800 z=0.199 D;x=0.001 y=0.300 z=0.699 作 用 本発明の組成物においては、低酸素分圧雰囲気1100℃以
下の焼成温度でチ密な焼成物が得られ、高い抵抗率を有
する信頼性の高い素子がえられる。
A; x = 0.770 y = 0.229 z = 0.001 B; x = 0.450 y = 0.549 z = 0.001 C; x = 0.001 y = 0.800 z = 0.199 D; x = 0.001 y = 0.300 z = 0.699 Work composition of the present invention As for the product, a densely baked product is obtained at a low oxygen partial pressure atmosphere at a baking temperature of 1100 ° C. or less, and a highly reliable element having high resistivity can be obtained.

実施例 出発原料には化学的に高純度なPbO,NiO,MeCO3(Me:Ca,S
r,Ba),Nb2O5,TiO2,MgO,WO3を用いた。これらを純度
補正をおこなったうえで所定量を秤量し、メノウ製玉石
を用い純水を溶媒としボールミルで17時間湿式混合し
た。これを吸引ろ過して水分の大半を分離した後乾燥
し、その後ライカイ機で充分解砕した後粉体量の5wt%
の水分を加え、直径60mm高さ約50mmの円柱状に成形圧力
500kg/cm2で成形した。これをアルミナルツボ中に入れ
同質のフタをし、750℃〜880℃で2時間仮焼した。次に
仮焼物をアルミナ乳鉢で粗砕し、さらにメノウ製玉石を
用い純水を溶媒としてボールミルで17時間粉砕し、これ
を吸引ろ過し水分の大半を分離した後乾燥した。以上の
仮焼,粉砕,乾燥を数回くりかえした後、この粉末にポ
リビニルアルコール6wt%水溶液を粉体量の6wt%加え、
32メッシュふるいを通して造粒し、成形圧力1000kg/cm2
で直径13mm高さ約5mmの円柱状に成形した。成形物は空
気中で700℃まで昇温し1時間保持しポリビルアルコー
ル分をバーンアウトした。これを上述の仮焼粉を体積の
1/3程度敷きつめた上に200メッシュZrO2粉を約1mm敷い
たマグネシヤ磁器容器に移し、同質のフタをし、管状電
気炉の炉心管内に挿入した。炉心管内をロータリーポン
プで脱気したのちN2−H2混合ガスで置換し、酸素分圧
(Po2)が1.0×10-8atmになるようN2とH2ガスの混合比
を調節しながら混合ガスを流し所定温度まで400℃/hrで
昇温し2時間保持後400℃/hrで降温した。炉心管内のPo
2は挿入した安定化ジルコニア酸素センサーにより測定
した。第2図に焼成時のマグネシヤ磁器容器の構造を、
第3図に炉心管内部をそれぞれ断面図で示す。
Example As a starting material, chemically pure PbO, NiO, MeCO 3 (Me: Ca, S
r, Ba), Nb 2 O 5 , TiO 2 , MgO, and WO 3 were used. These were subjected to purity correction, weighed a predetermined amount, and wet-mixed in a ball mill for 17 hours using agate stones and pure water as a solvent. This is suction filtered to remove most of the water content, then dried and then charged and decomposed with a Lykai machine.
Add water to form a cylinder with a diameter of 60 mm and a height of about 50 mm.
It was molded at 500 kg / cm 2 . This was put in an alumina crucible, covered with the same material, and calcined at 750 ° C to 880 ° C for 2 hours. Next, the calcined product was roughly crushed in an alumina mortar, and further crushed for 17 hours in a ball mill using pure stone as a solvent with agate stones, and this was suction filtered to separate most of the water content, and then dried. After repeating the above calcination, crushing, and drying several times, add 6 wt% of the polyvinyl alcohol 6 wt% aqueous solution to this powder,
Granulate through a 32 mesh sieve, molding pressure 1000 kg / cm 2
Was molded into a cylindrical shape with a diameter of 13 mm and a height of about 5 mm. The molded product was heated to 700 ° C. in the air and kept for 1 hour to burn out the polyvinyl alcohol content. This is the volume of the above calcined powder
It was transferred to a magnesia porcelain container in which 200 mesh ZrO 2 powder was spread about 1 mm on top of about 1/3, covered with the same quality, and inserted into the core tube of a tubular electric furnace. After degassing the inside of the core tube with a rotary pump, it was replaced with N 2 -H 2 mixed gas, and the mixture ratio of N 2 and H 2 gas was adjusted so that the oxygen partial pressure (Po 2 ) became 1.0 × 10 -8 atm. While flowing the mixed gas, the temperature was raised to a predetermined temperature at 400 ° C / hr, kept for 2 hours, and then lowered at 400 ° C / hr. Po in the core tube
2 was measured by an inserted stabilized zirconia oxygen sensor. Figure 2 shows the structure of the magnesium porcelain container during firing.
FIG. 3 shows a cross-sectional view of the inside of the core tube.

第2図において1はマグネシア容器であり、その上部は
マグネシア容器蓋2で封じた。マグネシア容器1の下部
に仮焼粉3を配置し、その上にジルコニア粉4を配置し
た。さらにその上に試料5を配置した。第2図のように
準備されたマグネシア容器1を第3図のように炉心管6
内に配置した。7は安定化ジルコニア酸素センサーであ
る。
In FIG. 2, reference numeral 1 is a magnesia container, and the upper part thereof is sealed with a magnesia container lid 2. The calcined powder 3 was arranged in the lower part of the magnesia container 1, and the zirconia powder 4 was arranged on it. Furthermore, the sample 5 was arranged on it. As shown in FIG. 3, the magnesia container 1 prepared as shown in FIG.
Placed inside. 7 is a stabilized zirconia oxygen sensor.

焼成物は厚さ1mmの円板状に切断し、両面にCr−Auを蒸
着し、誘電率、tanδを1kHz1V/mmの電界下で測定した。
また抵抗率は1kV/mmの電圧を印加後1分値から求めた。
The fired product was cut into a disc with a thickness of 1 mm, Cr-Au was vapor-deposited on both sides, and the dielectric constant and tan δ were measured under an electric field of 1 kHz and 1 V / mm.
The resistivity was calculated from the value of 1 minute after applying a voltage of 1 kV / mm.

なお焼成温度は焼成物の密度がもっとも大きくなる温度
とした。
The firing temperature was the temperature at which the density of the fired product was the highest.

表1に本発明の組成範囲および周辺組成の成分[a,b,x,
y,zは(PbaMeb)(Ni1/3Nb2/3)xTiy(Mg1/2W1/2)zO2+a+b
と表したときの値]、低酸素分圧雰囲気で焼成したとき
の焼成温度、誘電率、誘電率の温度変化率(20℃に対す
る)、tanδ、抵抗率、密度を示した。第1図は表1に
示した各試料を(PbaMeb)TiO2+a+b,(PbaMeb)(Ni1/3Nb
2/3)O2+a+b,(PbaMeb)(Mg1/2W1/2)O2+a+bを端成分とす
る三角組成図中に示したもので、斜線の範囲が発明の範
囲である。
Table 1 shows the components of the composition range and peripheral composition of the present invention [a, b, x,
y, z is (Pb a Me b ) (Ni 1/3 Nb 2/3 ) x Ti y (Mg 1/2 W 1/2 ) z O 2 + a + b
The value when expressed as,], the firing temperature when firing in a low oxygen partial pressure atmosphere, the dielectric constant, the temperature change rate of the dielectric constant (with respect to 20 ° C.), tan δ, the resistivity, and the density. Figure 1 shows the samples shown in Table 1 for (Pb a Me b ) TiO 2 + a + b , (Pb a Me b ) (Ni 1/3 Nb
2/3 ) O 2 + a + b and (Pb a Me b ) (Mg 1/2 W 1/2 ) O 2 + a + b are shown in the triangular composition diagram, and the shaded The scope is the scope of the invention.

発明範囲外の組成物では、a+bが1.001より小さいと
低酸素分圧雰囲気で焼成したときチ密な焼結物が得られ
ない、もしくは抵抗率が低くなる難点を有しており、1.
200より大きくなると誘電率および抵抗率が低下する難
点を有する。またbが0.250より大きいと誘電率が低下
する。x,y,zが限定の範囲外の組成物はキュリー点が室
温から大きくはずれ誘電率が低くなる、もしくは誘電率
の温度変化率が大きくなる難点を有している。発明の範
囲内の組成物では前記の問題がいずれも克服されてい
る。
If the composition a + b is less than 1.001, the composition outside the scope of the invention has a drawback that a dense sintered product cannot be obtained or the resistivity becomes low when fired in a low oxygen partial pressure atmosphere.
If it exceeds 200, there is a problem that the dielectric constant and the resistivity decrease. If b is larger than 0.250, the dielectric constant will decrease. A composition whose x, y, z is out of the limited range has a problem that the Curie point largely deviates from room temperature and the dielectric constant decreases, or the temperature change rate of the dielectric constant increases. Compositions within the scope of the invention overcome all of the above problems.

なお焼成雰囲気として選択した低酸素分圧雰囲気Po2;1.
0×10-8atmは焼成温度における銅の平衡酸素分圧より低
く金属はほとんど酸化しないと考えられる。
The low oxygen partial pressure atmosphere selected as the firing atmosphere Po 2 ; 1.
0 × 10 -8 atm is lower than the equilibrium oxygen partial pressure of copper at the firing temperature, and it is considered that the metal is hardly oxidized.

発明の効果 本発明によれば、低酸素分圧雰囲気1100℃以下の焼成で
積層コンデンサ素子として高信頼性を得るためのチ密で
抵抗率の高い焼結体が得られ、内部電極としてCuなどの
卑金属材料を用いることが可能になる優れた誘電体磁器
組成物を得ることができる。
EFFECTS OF THE INVENTION According to the present invention, a dense, high-resistivity sintered body for obtaining high reliability as a multilayer capacitor element can be obtained by firing at a low oxygen partial pressure atmosphere of 1100 ° C. or less, and Cu etc. as an internal electrode. It is possible to obtain an excellent dielectric porcelain composition which makes it possible to use the above base metal material.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る磁器組成物の成分組成を示す三角
組成図、第2図は焼成時に磁器を入れるマグネシヤ容器
の断面図、第3図は焼成時の炉心管の概略図である。 1…マグネシヤ容器,2…マグネシヤ容器蓋,3…仮焼粉,4
…ジルコニア粉,5…試料,6…マグネシヤ容器,7…炉心
管,8…安定化ジルコニア酸素センサー。
FIG. 1 is a triangular composition diagram showing the component composition of a porcelain composition according to the present invention, FIG. 2 is a sectional view of a magnesia container in which porcelain is put in during firing, and FIG. 3 is a schematic view of a furnace tube during firing. 1 ... Magnesia container, 2 ... Magnesia container lid, 3 ... Calcined powder, 4
… Zirconia powder, 5… Sample, 6… Magnesium container, 7… Core tube, 8… Stabilized zirconia oxygen sensor.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】(PbaMeb){(Ni1/3Nb2/3)xTiy(Mg
1/2W1/2)z}O2+a+bで表わされる組成を有し(ただし、
x+y+z=1)、MeがCa,Sr,Baからなる群から選ばれ
た少なくとも一種であり、 0.001≦b≦0.250 1.001≦a+b≦1.200 の範囲にあり、この範囲内の各a,bの値に対し、 (PbaMeb)(Ni1/3Nb2/3)O2+a+b、(PbaMeb)Ti
O2+a+b、(PbaMeb)(Mg1/2W1/2)O2+a+bを頂点とする
三角座標における下記組成点A,B,C,Dを頂点とする四角
形にある領域内の組成物からなることを特徴とする誘電
体磁器組成物。 A;x=0.770 y=0.229 z=0.001 B;x=0.450 y=0.549 z=0.001 C;x=0.001 y=0.800 z=0.199 D;x=0.001 y=0.300 z=0.699
1. (Pb a Me b ) {(Ni 1/3 Nb 2/3 ) x Ti y (Mg
1/2 W 1/2 ) z } O 2 + a + b (where
x + y + z = 1), Me is at least one selected from the group consisting of Ca, Sr, Ba, and is in the range of 0.001 ≦ b ≦ 0.250 1.001 ≦ a + b ≦ 1.200. In contrast, (Pb a Me b ) (Ni 1/3 Nb 2/3 ) O 2 + a + b , (Pb a Me b ) Ti
O 2 + a + b , (Pb a Me b ) (Mg 1/2 W 1/2 ) O 2 + a + b is the vertex, and the following composition points A, B, C, D are in the triangular coordinates. A dielectric porcelain composition comprising a composition within a rectangular region. A; x = 0.770 y = 0.229 z = 0.001 B; x = 0.450 y = 0.549 z = 0.001 C; x = 0.001 y = 0.800 z = 0.199 D; x = 0.001 y = 0.300 z = 0.996
JP60264067A 1985-11-25 1985-11-25 Dielectric porcelain composition Expired - Fee Related JPH0712974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60264067A JPH0712974B2 (en) 1985-11-25 1985-11-25 Dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60264067A JPH0712974B2 (en) 1985-11-25 1985-11-25 Dielectric porcelain composition

Publications (2)

Publication Number Publication Date
JPS62123065A JPS62123065A (en) 1987-06-04
JPH0712974B2 true JPH0712974B2 (en) 1995-02-15

Family

ID=17398060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60264067A Expired - Fee Related JPH0712974B2 (en) 1985-11-25 1985-11-25 Dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JPH0712974B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05211008A (en) * 1991-11-20 1993-08-20 Nec Corp Porcelain composition

Also Published As

Publication number Publication date
JPS62123065A (en) 1987-06-04

Similar Documents

Publication Publication Date Title
JPH0712973B2 (en) Dielectric porcelain composition
JPH0712974B2 (en) Dielectric porcelain composition
JPH0676250B2 (en) Dielectric porcelain composition
JPH0712975B2 (en) Dielectric porcelain composition
JPH0712972B2 (en) Dielectric porcelain composition
JPH0644408B2 (en) Dielectric porcelain composition
JPH0676247B2 (en) Dielectric porcelain composition
JPH0829980B2 (en) Dielectric porcelain composition
JPH0676248B2 (en) Dielectric porcelain composition
JPH0676246B2 (en) Dielectric porcelain composition
JPH0329017B2 (en)
JPH0676249B2 (en) Dielectric porcelain composition
JPH0324426B2 (en)
JPH0821262B2 (en) Dielectric porcelain composition
JPH0324427B2 (en)
JPH0764632B2 (en) Dielectric porcelain composition
JPH07110782B2 (en) Dielectric porcelain composition
JPH068205B2 (en) Dielectric porcelain composition
JPH0329018B2 (en)
JPH0638321B2 (en) Dielectric porcelain composition
JPH0329019B2 (en)
JPH0821260B2 (en) Dielectric porcelain composition
JPS63116308A (en) Dielectric magnetic composition
JPH0821263B2 (en) Dielectric porcelain composition
JPH068207B2 (en) Dielectric porcelain composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees