JPH08199281A - Production of thermoelectric refrigerating material and thermoelectric transducing element - Google Patents

Production of thermoelectric refrigerating material and thermoelectric transducing element

Info

Publication number
JPH08199281A
JPH08199281A JP7006921A JP692195A JPH08199281A JP H08199281 A JPH08199281 A JP H08199281A JP 7006921 A JP7006921 A JP 7006921A JP 692195 A JP692195 A JP 692195A JP H08199281 A JPH08199281 A JP H08199281A
Authority
JP
Japan
Prior art keywords
powder
thermoelectric
group
compsn
refrigerating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7006921A
Other languages
Japanese (ja)
Inventor
Hiroyuki Yamashita
博之 山下
Hiromaro Horio
裕磨 堀尾
Toshiharu Hoshi
星  俊治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP7006921A priority Critical patent/JPH08199281A/en
Publication of JPH08199281A publication Critical patent/JPH08199281A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE: To produce a thermoelectric refrigerating material capable of increasing performance index Z by reducing specific resistance and to produce a thermoelectric transducing element. CONSTITUTION: This thermoelectric refrigerating material has Bi, Sb, Te and Se in a ratio giving the compsn. of (Bi,Sb),2 (Te,Se)3 and contains Ag dispersed on the grain boundaries. This material is produced as follows; powdery starting materials are weighed so as to obtain the compsn. of (Bi,Sb)2 (Te,Se)3 , they are mixed, melted and cooled by a liq. quenching method at 10<4> =10<6> K/sec cooling rate and the resultant solid is pulverized to obtain powder having the compsn. of (Bi,Sb)2 (Te,Se)3 . This powder is mixed with Ag powder and compacted by a powder compacting method or it is dipped in an AgNO3 soln., dried and compacted by a powder compacting method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は熱電変換による熱電冷却
等に応用される熱電冷却用材料及びその熱電変換素子の
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric cooling material applied to thermoelectric cooling by thermoelectric conversion and a method of manufacturing the thermoelectric conversion element.

【0002】[0002]

【従来の技術】種類が異なる2物質を接合させ、2箇所
の接合部を有する回路を構成し、一方の接合部を高温に
加熱し、他方の接合部を低温に冷却すると、接合部の温
度差に基づく起電力が発生する。この現象をゼーベック
効果という。
2. Description of the Related Art When two different substances are joined to form a circuit having two joints and one joint is heated to a high temperature and the other joint is cooled to a low temperature, the temperature of the joint is lowered. An electromotive force is generated based on the difference. This phenomenon is called the Seebeck effect.

【0003】また、同様に接合させた2物質に直流電流
を流すと、一方の接合部で熱を吸収し、他方の接合部で
熱を発生する。この現象をペルチェ効果という。
Similarly, when a direct current is passed through the two bonded materials, one of the bonded parts absorbs heat and the other bonded part generates heat. This phenomenon is called the Peltier effect.

【0004】更に、均質な物質に温度勾配を設け、この
温度勾配がある方向に電流を流すと、この物質内で熱の
吸収又は発生がある。この現象をトムソン効果という。
Furthermore, when a temperature gradient is provided in a homogeneous substance and an electric current is passed in the direction in which this temperature gradient is present, heat is absorbed or generated in this substance. This phenomenon is called the Thomson effect.

【0005】これらのゼーベック効果、ペルチェ効果及
びトムソン効果は熱電効果といわれる可逆反応であり、
ジュール効果及び熱伝導等の非可逆現象と対比される。
これらの可逆過程及び非可逆過程を組み合わせて、電子
冷熱に利用されている。
These Seebeck effect, Peltier effect and Thomson effect are reversible reactions called thermoelectric effects.
Contrast with irreversible phenomena such as Joule effect and heat conduction.
These reversible processes and irreversible processes are combined and used for electronic cold heat.

【0006】ところで、従来の熱電冷却用材料として
は、Bi及びSbからなる群から選択された1種又は2
種と、Te及びSeからなる群から選択された1種又は
2種とからなる合金があり、主にBi又はSbの原子数
と、Te又はSeの原子数との比が2:3となる組成
{以下、(Bi,Sb)2(Te,Se)3と記す}で用い
られている。
By the way, as a conventional thermoelectric cooling material, one or two materials selected from the group consisting of Bi and Sb are used.
There is an alloy consisting of a seed and one or two selected from the group consisting of Te and Se, and the ratio of the number of atoms of Bi or Sb to the number of atoms of Te or Se is 2: 3. It is used in the composition {hereinafter referred to as (Bi, Sb) 2 (Te, Se) 3 }.

【0007】このような熱電冷却用材料又は熱電変換素
子において、素子の性能は下記数式1にて表される性能
指数で評価される。
In such a thermoelectric cooling material or thermoelectric conversion element, the element performance is evaluated by the performance index expressed by the following mathematical formula 1.

【0008】[0008]

【数1】 Z=α2σ/κ 但し、αは熱電能(ゼーベック係数) σは電気伝導度 κは熱伝導度 である。即ち、性能指数Zが大きい方が熱電材料として
の性能が優れている。
## EQU1 ## Z = α 2 σ / κ where α is thermoelectric power (Seebeck coefficient) σ is electrical conductivity κ is thermal conductivity. That is, the larger the performance index Z, the better the performance as a thermoelectric material.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、この従
来の(Bi,Sb)2(Te,Se)3の組成を有する熱
電冷却用材料は、性能指数Zが3.3×10-3/K以下
であり、それ以上の性能指数を得ることができなかっ
た。
However, the conventional thermoelectric cooling material having the composition of (Bi, Sb) 2 (Te, Se) 3 has a figure of merit Z of 3.3 × 10 −3 / K or less. It was not possible to obtain a figure of merit higher than that.

【0010】また、この従来の熱電冷却材料は比抵抗ρ
が高く、抵抗値が高いため、使用しにくいという難点が
ある。
Further, this conventional thermoelectric cooling material has a specific resistance ρ
Has a high value and a high resistance value, so that it is difficult to use.

【0011】本発明はかかる問題点に鑑みてなされたも
のであって、比抵抗を低下させることにより性能指数Z
を向上させることができる熱電冷却材料及び熱電変換素
子の製造方法を提供することを目的とする。
The present invention has been made in view of the above problems, and the figure of merit Z is reduced by decreasing the specific resistance.
It is an object of the present invention to provide a thermoelectric cooling material and a method for manufacturing a thermoelectric conversion element that can improve the temperature.

【0012】[0012]

【課題を解決するための手段】本発明に係る熱電冷却材
料は、Bi及びSbからなる群から選択された1種又は
2種と、Te及びSeからなる群から選択された1種又
は2種とからなる合金の結晶の粒界にAgが分散してい
ることを特徴とする。
The thermoelectric cooling material according to the present invention is one or two selected from the group consisting of Bi and Sb and one or two selected from the group consisting of Te and Se. It is characterized in that Ag is dispersed in the grain boundaries of the crystal of the alloy consisting of.

【0013】本発明に係る熱電変換素子の製造方法は、
Bi及びSbからなる群から選択された1種又は2種
と、Te及びSeからなる群から選択された1種又は2
種とからなる合金の粉末と、Ag粉末とを混合した後、
粉末固化成形法により固化成形することを特徴とする。
The method of manufacturing a thermoelectric conversion element according to the present invention comprises:
1 or 2 selected from the group consisting of Bi and Sb, and 1 or 2 selected from the group consisting of Te and Se
After mixing the alloy powder consisting of the seed and the Ag powder,
It is characterized by being solidified and formed by a powder solidification forming method.

【0014】本発明に係る他の熱電変換素子の製造方法
は、Bi及びSbからなる群から選択された1種又は2
種と、Te及びSeからなる群から選択された1種又は
2種とからなる合金の粉末を、AgNo3溶液に浸漬
し、乾燥させた後、粉末固化成形法により固化成形する
ことを特徴とする。
Another method of manufacturing a thermoelectric conversion element according to the present invention is one or two selected from the group consisting of Bi and Sb.
A powder of an alloy consisting of a seed and one or two selected from the group consisting of Te and Se is immersed in an AgNo 3 solution, dried, and then solidified by a powder solidification molding method. To do.

【0015】なお、(Bi,Sb)2(Te,Se)3
組成には、Bi−Te系、Bi−Se系、Sb−Te、
Sb−Se系、Bi−Sb−Te系、Bi−Sb−Se
系、Bi−Te−Se系、Sb−Te−Se系及びBi
−Sb−Te−Se系の9種類がある。
The composition of (Bi, Sb) 2 (Te, Se) 3 includes Bi-Te system, Bi-Se system, Sb-Te,
Sb-Se system, Bi-Sb-Te system, Bi-Sb-Se
System, Bi-Te-Se system, Sb-Te-Se system and Bi
There are nine types of -Sb-Te-Se system.

【0016】[0016]

【作用】本発明によれば、Bi,Sbからなる群から選
択された1種又は2種と、Te,Seからなる群から選
択された1種又は2種とからなる合金にAgを添加して
いるので、Agが粒界に分散することにより、電気伝導
度が向上する。また、この電気伝導度の向上の結果とし
て、性能指数Zが向上する。
According to the present invention, Ag is added to an alloy consisting of one or two selected from the group consisting of Bi and Sb and one or two selected from the group consisting of Te and Se. Since Ag is dispersed in the grain boundaries, the electric conductivity is improved. In addition, as a result of this improvement in electrical conductivity, the figure of merit Z is improved.

【0017】Agの添加方法には、請求項2に記載のよ
うに、前記組成の粉末とAg粉末とを混合した後、粉末
固化成形法により固化成形する方法と、請求項3に記載
のように、前記組成の粉末をAgNO3溶液に浸漬し、
乾燥させた後、粉末固化成形する方法とがある。
As a method of adding Ag, as described in claim 2, a method of mixing the powder having the composition and the Ag powder and then solidifying by a powder solidification molding method, and claim 3 are set. Then, the powder having the above composition was immersed in an AgNO 3 solution,
After drying, there is a method of solidifying powder.

【0018】これにより、容易にBi,Sbからなる群
から選択された1種又は2種と、Te,Seからなる群
から選択された1種又は2種とからなる合金の粒界にA
gが分散した熱電冷却材料又は熱電変換素子を得ること
ができる。
As a result, A is easily formed in the grain boundaries of the alloy consisting of one or two selected from the group consisting of Bi and Sb and one or two selected from the group consisting of Te and Se.
It is possible to obtain a thermoelectric cooling material or a thermoelectric conversion element in which g is dispersed.

【0019】[0019]

【実施例】以下、本発明の実施例について、具体的に説
明する。先ず、本実施例の熱電冷却材料の製造方法につ
いて説明する。 原料粉末(Bi,Sb,Te,Se)の秤量工程 先ず、原料粉末のBi、Sb、Te、Seを所定の(B
i,Sb)2(Te,Se)3の組成になるように秤量す
る。 溶解方法又は液体急冷法による固化工程 秤量した原料粉末を混合した後、溶解する。そして、先
ず、第1の溶解方法は、必要量の原料粉末を配合し、溶
解し、通常の冷却速度で冷却して固化する。
EXAMPLES Examples of the present invention will be specifically described below. First, a method for manufacturing the thermoelectric cooling material of this example will be described. Weighing process of raw material powders (Bi, Sb, Te, Se) First, the raw material powders Bi, Sb, Te, and Se are determined to be predetermined (B
i, Sb) 2 (Te, Se) 3 is weighed so as to have a composition. Solidification process by dissolution method or liquid quenching method The measured raw material powders are mixed and then dissolved. Then, first, in the first melting method, necessary amounts of raw material powders are mixed, melted, and cooled at a normal cooling rate to be solidified.

【0020】第2の液体急冷法は、単ロール法、双ロー
ル法又はArガスを使用するガスアトマイズ法等で、1
4〜106K/秒の速度で急冷し、液体急冷薄片又は急
冷粉末を作成する。 粉砕工程 上述の如く、溶解法又は液体急冷法により固化した原料
を平均粒径300μm以下の粉体に粉砕する。 Ag添加工程 この粉末にAg微粉末を所定量添加し、混合して粉砕す
る。このAgは0〜20原子%、例えば10原子%とな
るように添加する。なお、Ag添加量が多くなると、比
抵抗の値は小さくなるが、ゼーベック係数も同時に低下
する。Ag添加量が20原子%を超えるとゼーベック係
数が急減するため性能指数が低下する。
The second liquid quenching method is a single roll method, a twin roll method, a gas atomizing method using Ar gas, or the like.
Quench at a rate of 0 4 to 10 6 K / sec to produce liquid quenched flakes or quenched powders. Crushing Step As described above, the raw material solidified by the melting method or the liquid quenching method is crushed into powder having an average particle size of 300 μm or less. Ag addition step A predetermined amount of Ag fine powder is added to this powder, mixed and pulverized. This Ag is added so as to be 0 to 20 atomic%, for example, 10 atomic%. When the amount of Ag added increases, the value of specific resistance decreases, but the Seebeck coefficient also decreases at the same time. If the amount of Ag added exceeds 20 atomic%, the Seebeck coefficient sharply decreases and the figure of merit decreases.

【0021】又は、原料粉末をAgNO3(硝酸銀)溶
液中に浸漬し、銀を原料粉末に吸着させることによりA
gを添加する。この場合のAgの添加量の一例は1原子
%である。但し、このAgNO3溶液は、その濃度及び
量を、溶液中のAg+イオンが全て化合物粉末に吸着す
るとしてその濃度が0乃至20原子%になるように決め
る。
Alternatively, by immersing the raw material powder in an AgNO 3 (silver nitrate) solution and adsorbing silver to the raw material powder, A
g is added. An example of the amount of Ag added in this case is 1 atom%. However, the concentration and amount of this AgNO 3 solution are determined so that the concentration becomes 0 to 20 atomic% assuming that all Ag + ions in the solution are adsorbed by the compound powder.

【0022】AgNO3溶液中への浸漬後、粉末を乾燥
し、次いで粉砕する。 成形工程 得られたAg添加粉末を、例えば、40kgf/mm2
の圧力を印加した状態で、450℃に10分間加熱する
ことにより成形するホットプレス法により成形するか、
又は40kgf/mm2の圧力を印加して固めた圧粉を
得た後、450℃に16時間加熱して焼結することによ
り成形する。
After immersion in the AgNO 3 solution, the powder is dried and then ground. Molding step The obtained Ag-added powder is, for example, 40 kgf / mm 2
Molding by heating at 450 ° C. for 10 minutes while applying the pressure of
Alternatively, a pressure of 40 kgf / mm 2 is applied to obtain a hardened powder compact, which is then heated at 450 ° C. for 16 hours and sintered to be molded.

【0023】次に、溶製材を粉砕した後、450℃に1
0分間加熱するホットプレス法により固化成形すること
により、熱電冷却材料を製造し、その特性を評価した結
果について説明する。下記表1はその組成及びAg添加
量と、比抵抗及び室温での性能指数とを示す。
Next, after crushing the ingot,
The thermoelectric cooling material is manufactured by solidification molding by the hot press method of heating for 0 minutes, and the results of evaluating the characteristics will be described. Table 1 below shows the composition, the amount of Ag added, the specific resistance and the figure of merit at room temperature.

【0024】[0024]

【表1】 [Table 1]

【0025】この表1から明らかなように、Bi及びS
bからなる群から選択された1種又は2種と、Te及び
Seからなる群から選択された1種又は2種とからなる
合金に電気伝導持性の良好なAgを添加することによ
り、性能指数が従来の3.3×10-3/Kよりも高く、
熱電冷却材料として優れていると共に、比抵抗が低く、
電気抵抗が低いという利点がある。
As is clear from Table 1, Bi and S
By adding Ag having good electric conductivity to an alloy consisting of one or two selected from the group consisting of b and one or two selected from the group consisting of Te and Se, the performance is improved. The index is higher than the conventional 3.3 × 10 -3 / K,
Excellent as a thermoelectric cooling material, low resistivity,
It has the advantage of low electrical resistance.

【0026】[0026]

【発明の効果】以上説明したように、本発明はBi及び
Sbからなる群から選択された1種又は2種と、Te及
びSeからなる群から選択された1種又は2種とからな
る合金にAgを添加した組成を有する熱電冷却材料であ
るので、性能指数が高く、熱電冷却材料として優れてい
る。また、本発明の製造方法によれば、この熱電変換素
子を容易に製造することができる。
As described above, the present invention is an alloy consisting of one or two selected from the group consisting of Bi and Sb and one or two selected from the group consisting of Te and Se. Since the thermoelectric cooling material has a composition in which Ag is added to, it has a high figure of merit and is excellent as a thermoelectric cooling material. Further, according to the manufacturing method of the present invention, this thermoelectric conversion element can be easily manufactured.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Bi及びSbからなる群から選択された
1種又は2種と、Te及びSeからなる群から選択され
た1種又は2種とからなる合金の結晶の粒界にAgが分
散していることを特徴とする熱電冷却用材料。
1. Ag is dispersed in a grain boundary of a crystal of an alloy consisting of one or two selected from the group consisting of Bi and Sb and one or two selected from the group consisting of Te and Se. A material for thermoelectric cooling, which is characterized by
【請求項2】 Bi及びSbからなる群から選択された
1種又は2種と、Te及びSeからなる群から選択され
た1種又は2種とからなる合金の粉末と、Ag粉末とを
混合した後、粉末固化成形法により固化成形することを
特徴とする熱電変換素子の製造方法。
2. A powder of an alloy consisting of one or two selected from the group consisting of Bi and Sb and one or two selected from the group consisting of Te and Se, and Ag powder. After that, the method for producing a thermoelectric conversion element is characterized by solidifying and molding by a powder solidifying method.
【請求項3】 Bi及びSbからなる群から選択された
1種又は2種と、Te及びSeからなる群から選択され
た1種又は2種とからなる合金の粉末を、AgNo3
液に浸漬し、乾燥させた後、粉末固化成形法により固化
成形することを特徴とする熱電変換素子の製造方法。
3. An alloy powder consisting of one or two selected from the group consisting of Bi and Sb and one or two selected from the group consisting of Te and Se is immersed in an AgNo 3 solution. A method for manufacturing a thermoelectric conversion element, which comprises drying, drying, and then solidifying and molding by a powder solidifying and molding method.
JP7006921A 1995-01-20 1995-01-20 Production of thermoelectric refrigerating material and thermoelectric transducing element Pending JPH08199281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7006921A JPH08199281A (en) 1995-01-20 1995-01-20 Production of thermoelectric refrigerating material and thermoelectric transducing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7006921A JPH08199281A (en) 1995-01-20 1995-01-20 Production of thermoelectric refrigerating material and thermoelectric transducing element

Publications (1)

Publication Number Publication Date
JPH08199281A true JPH08199281A (en) 1996-08-06

Family

ID=11651716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7006921A Pending JPH08199281A (en) 1995-01-20 1995-01-20 Production of thermoelectric refrigerating material and thermoelectric transducing element

Country Status (1)

Country Link
JP (1) JPH08199281A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013219105A (en) * 2012-04-05 2013-10-24 Toyota Motor Corp Nanocomposite thermoelectric conversion material
US8692103B2 (en) 2003-05-08 2014-04-08 Ihi Corporation Thermoelectric semiconductor material, thermoelectric semiconductor element using thermoelectric semiconductor material, thermoelectric module using thermoelectric semiconductor element and manufacturing method for same
KR101533627B1 (en) * 2012-10-09 2015-07-06 한양대학교 에리카산학협력단 Manufacturing method for thermoelectric composite, thermoelectric composite and thermoelectric material manufactured thereby

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8692103B2 (en) 2003-05-08 2014-04-08 Ihi Corporation Thermoelectric semiconductor material, thermoelectric semiconductor element using thermoelectric semiconductor material, thermoelectric module using thermoelectric semiconductor element and manufacturing method for same
US8884152B2 (en) 2003-05-08 2014-11-11 Ihi Corporation Thermoelectric semiconductor material, thermoelectric semiconductor element using thermoelectric semiconductor material, thermoelectric module using thermoelectric semiconductor element and manufacturing method for same
JP2013219105A (en) * 2012-04-05 2013-10-24 Toyota Motor Corp Nanocomposite thermoelectric conversion material
KR101533627B1 (en) * 2012-10-09 2015-07-06 한양대학교 에리카산학협력단 Manufacturing method for thermoelectric composite, thermoelectric composite and thermoelectric material manufactured thereby

Similar Documents

Publication Publication Date Title
JP3092463B2 (en) Thermoelectric material and thermoelectric conversion element
US8617918B2 (en) Thermoelectric converter and method thereof
US20060118161A1 (en) Thermoelectric material having crystal grains well oriented in certain direction and process for producing the same
KR100795194B1 (en) Method for fabricating thermoelectric material by mechanical milling-mixing and thermoelectric material fabricated thereby
US5965841A (en) Thermoelectric conversion material and a process for producing the same
KR101264311B1 (en) fabrication method of thermoelectric materials containing nano-dot made by external generation and inclusion
TW405273B (en) Manufacturing method of sintered material for thermo-electric converter elements, sintered materials for thermo-electric converter elements, and a thermoelectric converter element made by using the same
JP3607249B2 (en) Thermoelectric conversion material and thermoelectric conversion element using the same
JP3415391B2 (en) Manufacturing method of thermoelectric material
JPH08199281A (en) Production of thermoelectric refrigerating material and thermoelectric transducing element
JP3546675B2 (en) Thermoelectric material and method for producing thermoelectric material
JPH08204240A (en) Thermoelectric cooling material and production of thermoelectric conversion element
JPH01196104A (en) Manufacture of rare earth alloy magnet
JPH06144825A (en) Production of thermoelectric element
JP3528222B2 (en) P-type thermoelectric material and alloy for P-type thermoelectric material
JP3575332B2 (en) Thermoelectric material and method for manufacturing the same
JPH08186294A (en) Thermoelectric material
JP3572791B2 (en) Manufacturing method of thermoelectric cooling material
JP3422570B2 (en) CuSnS-based thermoelectric conversion semiconductor material and method of manufacturing the same
JP3572814B2 (en) Manufacturing method of thermoelectric cooling material
JPH10102160A (en) Production of cobalt triantimonide type composite material
JP2879152B2 (en) Manufacturing method of thermoelectric material
JP2000049392A (en) Manufacture of thermoelectric semiconductor material
Salvador et al. Synthesis and transport properties of M 3 Ni 3 Sb 4 (M= Zr and Hf): An intermetallic semiconductor
JPH0955542A (en) Production of thermoelectric conversion material