JPH08204240A - Thermoelectric cooling material and production of thermoelectric conversion element - Google Patents

Thermoelectric cooling material and production of thermoelectric conversion element

Info

Publication number
JPH08204240A
JPH08204240A JP7013022A JP1302295A JPH08204240A JP H08204240 A JPH08204240 A JP H08204240A JP 7013022 A JP7013022 A JP 7013022A JP 1302295 A JP1302295 A JP 1302295A JP H08204240 A JPH08204240 A JP H08204240A
Authority
JP
Japan
Prior art keywords
powder
thermoelectric
composition
conversion element
cooling material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7013022A
Other languages
Japanese (ja)
Inventor
Hiroyuki Yamashita
博之 山下
Yuuma Horio
裕磨 堀尾
Toshiharu Hoshi
星  俊治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP7013022A priority Critical patent/JPH08204240A/en
Publication of JPH08204240A publication Critical patent/JPH08204240A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE: To lower the resistivity by adding Ag to a material having a specific composition. CONSTITUTION: A material powder having composition Cu (Sn1-x Ax )S [where, A represents one or more than one kind of selected from a group of C, Si and Ge, and 0<=x<=1] is solidified by means of dissolution method or liquid quenching method and then it is crushed to produce a powder having average grain size of 300μm or less. A predetermined quantity of fine powder of Ag is then admixed and crushed. Ag is admixed by 0-20atm%, e.g. 10atm%. Thus produced powder added with Ag is then heated for 10min at 650 deg.C under a pressure of 80kgf/mm<2> , for example, or applied with a pressure of 40kgf/mm<2> to produce a green compact which is then heated at 650 deg.C for 16 hours thus sintering and compacting the powder. With such method, the figure of merit exceeds the conventional value of 0.8×10<-3> /K and the resistivity at room temperature can be lowered below 0.77×10<-5> .

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は熱電変換による熱電冷却
等に応用される熱電冷却用材料及びその熱電変換素子の
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric cooling material applied to thermoelectric cooling by thermoelectric conversion and a method of manufacturing the thermoelectric conversion element.

【0002】[0002]

【従来の技術】種類が異なる2物質を接合させ、2箇所
の接合部を有する回路を構成し、一方の接合部を高温に
加熱し、他方の接合部を低温に冷却すると、接合部の温
度差に基づく起電力が発生する。この現象をゼーベック
効果という。
2. Description of the Related Art When two different substances are joined to form a circuit having two joints and one joint is heated to a high temperature and the other joint is cooled to a low temperature, the temperature of the joint is lowered. An electromotive force is generated based on the difference. This phenomenon is called the Seebeck effect.

【0003】また、同様に接合させた2物質に直流電流
を流すと、一方の接合部で熱を吸収し、他方の接合部で
熱を発生する。この現象をペルチェ効果という。
Similarly, when a direct current is passed through the two bonded materials, one of the bonded parts absorbs heat and the other bonded part generates heat. This phenomenon is called the Peltier effect.

【0004】更に、均質な物質に温度勾配を設け、この
温度勾配がある方向に電流を流すと、この物質内で熱の
吸収又は発生がある。この現象をトムソン効果という。
Furthermore, when a temperature gradient is provided in a homogeneous substance and an electric current is passed in the direction in which this temperature gradient is present, heat is absorbed or generated in this substance. This phenomenon is called the Thomson effect.

【0005】これらのゼーベック効果、ペルチェ効果及
びトムソン効果は熱電効果といわれる可逆反応であり、
ジュール効果及び熱伝導等の非可逆現象と対比される。
これらの可逆過程及び非可逆過程を組み合わせて、電子
冷熱に利用されている。
These Seebeck effect, Peltier effect and Thomson effect are reversible reactions called thermoelectric effects.
Contrast with irreversible phenomena such as Joule effect and heat conduction.
These reversible processes and irreversible processes are combined and used for electronic cold heat.

【0006】ところで、従来の熱電冷却用材料として
は、多用されているBi−Sb−Te系の外に、Cu4
SnS4合金がある。
By the way, as a conventional thermoelectric cooling material, in addition to the Bi-Sb-Te system which is widely used, Cu 4
There is SnS 4 alloy.

【0007】このような熱電冷却用材料又は熱電変換素
子において、素子の性能は下記数式1にて表される性能
指数で評価される。
In such a thermoelectric cooling material or thermoelectric conversion element, the element performance is evaluated by the performance index expressed by the following mathematical formula 1.

【0008】[0008]

【数1】 Z=α2σ/κ 但し、αは熱電能(ゼーベック係数) σは電気伝導度 κは熱伝導度 である。即ち、性能指数Zが大きい方が熱電材料として
の性能が優れている。
## EQU1 ## Z = α 2 σ / κ where α is thermoelectric power (Seebeck coefficient) σ is electrical conductivity κ is thermal conductivity. That is, the larger the performance index Z, the better the performance as a thermoelectric material.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、この従
来のCu4SnS4の組成を有する熱電冷却用材料は、性
能指数Zが0.8×10-3/K程度であり、熱電冷却材
料として十分なものではなかった。
However, this conventional thermoelectric cooling material having a composition of Cu 4 SnS 4 has a figure of merit Z of about 0.8 × 10 −3 / K, which is a sufficient thermoelectric cooling material. It wasn't.

【0010】また、この従来の熱電冷却材料は比抵抗ρ
が高く、抵抗値が高いため、使用しにくいという難点が
ある。例えば、熱電材料として多用されているBi−S
b−Te系の材料は比抵抗ρが(1〜2)×10-5Ω・
mであるのに対し、Cu4SnS4はρが(1〜2)×1
-3Ω・mと大きい。このため、Cu4SnS4は熱電材
料として使用しにくいという難点がある。また、比抵抗
が大きいということは、熱電材料としての性能指数も低
いことになり、その性能が十分なものではなかった。
Further, this conventional thermoelectric cooling material has a specific resistance ρ
Has a high value and a high resistance value, so that it is difficult to use. For example, Bi-S widely used as a thermoelectric material
The specific resistance ρ of the b-Te type material is (1-2) × 10 −5 Ω ·
In contrast to Cu, Cu 4 SnS 4 has a ρ of (1-2) × 1
It is as large as 0 -3 Ω · m. For this reason, Cu 4 SnS 4 is difficult to use as a thermoelectric material. Further, the fact that the specific resistance is large means that the figure of merit as a thermoelectric material is also low, and the performance was not sufficient.

【0011】本発明はかかる問題点に鑑みてなされたも
のであって、比抵抗を低下させることにより性能指数Z
を向上させることができる熱電冷却材料及び熱電変換素
子の製造方法を提供することを目的とする。
The present invention has been made in view of the above problems, and the figure of merit Z is reduced by decreasing the specific resistance.
It is an object of the present invention to provide a thermoelectric cooling material and a method for manufacturing a thermoelectric conversion element that can improve the temperature.

【0012】[0012]

【課題を解決するための手段】本発明に係る熱電冷却材
料は、Cu4(Sn1-xx)S4[但し、AはC、Si、
Geからなる群より選ばれた1種又は2種以上、0≦x
≦1]の組成を有する合金の結晶の粒界にAgが分散し
ていることを特徴とする。
The thermoelectric cooling material according to the present invention is Cu 4 (Sn 1-x A x ) S 4 [where A is C, Si,
One or more selected from the group consisting of Ge, 0 ≦ x
It is characterized in that Ag is dispersed in the grain boundaries of the crystal of the alloy having the composition [1].

【0013】本発明に係る熱電冷却材料は、Cu4(S
1-xx)S4[但し、AはC、Si、Geからなる群
より選ばれた1種又は2種以上、0≦x≦1]の組成を
有する合金粉末と、Ag粉末とを混合した後、粉末固化
成形法により固化成形することを特徴とする。
The thermoelectric cooling material according to the present invention is Cu 4 (S
n 1-x A x ) S 4 [where A is one or more selected from the group consisting of C, Si and Ge, 0 ≦ x ≦ 1], and an Ag powder and an alloy powder. Is mixed and then solidified and molded by a powder solidification molding method.

【0014】本発明に係る熱電冷却材料は、Cu4(S
1-xx)S4[但し、AはC、Si、Geからなる群
より選ばれた1種又は2種以上、0≦x≦1]の組成を
有する合金粉末を、AgNo3溶液に浸漬し、乾燥させ
た後、粉末固化成形法により固化成形することを特徴と
する。
The thermoelectric cooling material according to the present invention is Cu 4 (S
n 1-x A x ) S 4 [where A is one or more selected from the group consisting of C, Si and Ge, and 0 ≦ x ≦ 1] is used as an AgNo 3 solution. It is characterized in that it is immersed in, dried and then solidified by a powder solidification molding method.

【0015】尚、AとしてC、Si、Geから2種以上
を用いる場合は、その総量が0≦x≦1を満たすものと
する。
When two or more kinds of C, Si and Ge are used as A, the total amount thereof should satisfy 0 ≦ x ≦ 1.

【0016】[0016]

【作用】本発明によれば、Cu4(Sn1-xx)S4の組
成を有する材料にAgを添加しているので、Agが粒界
に分散することにより、電気伝導度が向上する。また、
この電気伝導度の向上の結果として、性能指数Zが向上
する。
According to the present invention, Ag is added to the material having the composition of Cu 4 (Sn 1-x A x ) S 4 , so that Ag is dispersed in the grain boundaries, so that the electric conductivity is improved. To do. Also,
As a result of this improvement in electrical conductivity, the figure of merit Z is improved.

【0017】このAgの添加方法には、請求項2に記載
のように、前記組成の粉末とAg粉末とを混合した後、
粉末固化成形法により固化成形する方法と、請求項3に
記載のように、前記組成の粉末をAgNO3溶液に浸漬
し、乾燥させた後、粉末固化成形する方法とがある。
This Ag addition method is carried out by mixing the powder of the composition and the Ag powder as described in claim 2, and then adding
There are a method of solidifying and molding by a powder solidifying method, and a method of immersing the powder having the composition in an AgNO 3 solution, drying the powder, and then solidifying and molding the powder.

【0018】これにより、容易にCu4(Sn1-xx
4の組成を有する合金の粒界にAgが分散した熱電冷
却材料又は熱電変換素子を得ることができる。
As a result, Cu 4 (Sn 1-x A x ) can be easily formed.
It is possible to obtain the thermoelectric cooling material or the thermoelectric conversion element in which Ag is dispersed in the grain boundaries of the alloy having the composition of S 4 .

【0019】[0019]

【実施例】以下、本発明の実施例について、具体的に説
明する。先ず、本実施例の熱電冷却材料の製造方法につ
いて説明する。 原料粉末(Cu、Sn、Sと、Ge、Si又はC)の
秤量工程 先ず、原料粉末のCu、Sn、Sと、Ge、Si又はC
を所定のCu4(Sn1 -xx)S4[但し、AはC、S
i、Geからなる群より選ばれた1種又は2種以上、0
≦x≦1]の組成になるように秤量する。 溶解方法又は液体急冷法による固化工程 秤量した原料粉末を混合した後、溶解する。そして、先
ず、第1の溶解方法は、必要量の原料粉末を配合し、溶
解し、通常の冷却速度で冷却して固化する。
EXAMPLES Examples of the present invention will be specifically described below. First, a method for manufacturing the thermoelectric cooling material of this example will be described. Weighing process of raw material powder (Cu, Sn, S and Ge, Si or C) First, Cu, Sn, S and Ge, Si or C of raw material powder
Is given Cu 4 (Sn 1 -x A x ) S 4 [where A is C, S
1 or 2 or more selected from the group consisting of i and Ge, 0
Weigh so that the composition is ≦ x ≦ 1]. Solidification process by dissolution method or liquid quenching method The measured raw material powders are mixed and then dissolved. Then, first, in the first melting method, necessary amounts of raw material powders are mixed, melted, and cooled at a normal cooling rate to be solidified.

【0020】第2の液体急冷法は、単ロール法、双ロー
ル法又はArガスを使用するガスアトマイズ法等で、1
4〜106K/秒の速度で急冷し、液体急冷薄片又は急
冷粉末を作成する。 粉砕工程 上述の如く、溶解法又は液体急冷法により固化した原料
を平均粒径300μm以下の粉体に粉砕する。 Ag添加工程 この粉末にAg微粉末を所定量添加し、混合して粉砕す
る。このAgの添加量は0〜20原子%、例えば10原
子%である。
The second liquid quenching method is a single roll method, a twin roll method, a gas atomizing method using Ar gas, or the like.
Quench at a rate of 0 4 to 10 6 K / sec to produce liquid quenched flakes or quenched powders. Crushing Step As described above, the raw material solidified by the melting method or the liquid quenching method is crushed into powder having an average particle size of 300 μm or less. Ag addition step A predetermined amount of Ag fine powder is added to this powder, mixed and pulverized. The amount of Ag added is 0 to 20 atom%, for example, 10 atom%.

【0021】又は、原料粉末をAgNO3(硝酸銀)溶
液中に浸漬し、銀を原料粉末に吸着させることによりA
gを添加する。この場合のAgの添加量の一例は1原子
%である。但し、このAgNO3溶液は、その濃度及び
量を、溶液中のAg+イオンが全て化合物粉末に吸着す
るとしてその濃度が0乃至20原子%になるように決め
る。
Alternatively, by immersing the raw material powder in an AgNO 3 (silver nitrate) solution and adsorbing silver to the raw material powder, A
g is added. An example of the amount of Ag added in this case is 1 atom%. However, the concentration and amount of this AgNO 3 solution are determined so that the concentration becomes 0 to 20 atomic% assuming that all Ag + ions in the solution are adsorbed by the compound powder.

【0022】AgNO3溶液中への浸漬後、粉末を乾燥
し、次いで粉砕する。 成形工程 得られたAg添加粉末を、例えば、80kgf/mm2
の圧力を印加した状態で、650℃に10分間加熱する
ことにより成形するホットプレス法により成形するか、
又は40kgf/mm2の圧力を印加して固めた圧粉を
得た後、650℃に16時間加熱して焼結することによ
り成形する。
After immersion in the AgNO 3 solution, the powder is dried and then ground. Molding step The obtained Ag-added powder is, for example, 80 kgf / mm 2
Molding is performed by heating at 650 ° C. for 10 minutes while applying the pressure of
Alternatively, after applying a pressure of 40 kgf / mm 2 to obtain a compacted powder, the powder is heated to 650 ° C. for 16 hours and sintered to form the powder.

【0023】次に、溶製材を粉砕した後、650℃に1
0分間加熱するホットプレス法により固化成形すること
により、熱電冷却材料を製造し、その特性を評価した結
果について説明する。下記表1はその組成及びAg添加
量と、比抵抗及び室温での性能指数とを示す。
Next, after crushing the ingot, it was heated to 650 ° C. for 1 hour.
The thermoelectric cooling material is manufactured by solidification molding by the hot press method of heating for 0 minutes, and the results of evaluating the characteristics will be described. Table 1 below shows the composition, the amount of Ag added, the specific resistance and the figure of merit at room temperature.

【0024】[0024]

【表1】 [Table 1]

【0025】但し、原料粉末はCu4SnS4を溶解法に
より作成した。Agの添加は、AgNO3溶解中に原料
粉末を浸漬することにより行った。AgNO3の量は原
料粉末1g当たり、50モル1m3のAgNO3水溶液1
-6cm3とした。
However, the raw material powder was prepared by melting Cu 4 SnS 4 . The addition of Ag was performed by immersing the raw material powder in AgNO 3 dissolution. The amount of AgNO 3 is 50 mol 1 m 3 of AgNO 3 aqueous solution per 1 g of raw material powder.
It was set to 0 -6 cm 3 .

【0026】この表1から明らかなように、Cu4(S
1-xx)S4[但し、AはC、Si、Geからなる群
より選ばれた1種又は2種以上、0≦x≦1]の組成を
有する材料にAgを添加することにより、性能指数が従
来の0.8×10-3/Kよりも高く、室温での比抵抗ρ
が0.77×10-5以下となり、熱電冷却材料として性
能が従来の熱電冷却材料よりも優れている。
As is clear from Table 1, Cu 4 (S
n 1-x A x ) S 4 [where A is one or more selected from the group consisting of C, Si and Ge, 0 ≦ x ≦ 1] and Ag is added to the material. Therefore, the figure of merit is higher than the conventional value of 0.8 × 10 -3 / K, and the resistivity at room temperature ρ
Is 0.77 × 10 −5 or less, and the performance as a thermoelectric cooling material is superior to that of conventional thermoelectric cooling materials.

【0027】[0027]

【発明の効果】以上説明したように、本発明はCu
4(Sn1-xx)S4[但し、AはC、Si、Geからな
る群より選ばれた1種又は2種以上、0≦x≦1]の組
成にAgを添加した組成を有する熱電冷却材料であるの
で、比抵抗が低く、性能指数が高く、熱電冷却材料とし
て優れている。また、本発明の製造方法によれば、この
熱電変換素子を容易に製造することができる。
As described above, according to the present invention, the Cu
4 (Sn 1-x A x ) S 4 [where A is one or more selected from the group consisting of C, Si and Ge, 0 ≦ x ≦ 1] and Ag is added to the composition. Since it is a thermoelectric cooling material, it has a low specific resistance, a high figure of merit, and is excellent as a thermoelectric cooling material. Further, according to the manufacturing method of the present invention, this thermoelectric conversion element can be easily manufactured.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Cu4(Sn1-xx)S4[但し、Aは
C、Si、Geからなる群より選ばれた1種又は2種以
上、0≦x≦1]の組成を有する合金の結晶の粒界にA
gが分散していることを特徴とする熱電冷却用材料。
1. A composition of Cu 4 (Sn 1-x A x ) S 4 [wherein A is one or more selected from the group consisting of C, Si and Ge, 0 ≦ x ≦ 1] A at the grain boundaries of the crystals of the alloy
A material for thermoelectric cooling, wherein g is dispersed.
【請求項2】 Cu4(Sn1-xx)S4[但し、Aは
C、Si、Geからなる群より選ばれた1種又は2種以
上、0≦x≦1]の組成を有する合金粉末と、Ag粉末
とを混合した後、粉末固化成形法により固化成形するこ
とを特徴とする熱電変換素子の製造方法。
2. A composition of Cu 4 (Sn 1-x A x ) S 4 [wherein A is one or more selected from the group consisting of C, Si and Ge, 0 ≦ x ≦ 1] A method for producing a thermoelectric conversion element, which comprises mixing the alloy powder having the above and Ag powder, and then solidifying and molding by a powder solidification molding method.
【請求項3】 Cu4(Sn1-xx)S4[但し、Aは
C、Si、Geからなる群より選ばれた1種又は2種以
上、0≦x≦1]の組成を有する合金粉末を、AgNo
3溶液に浸漬し、乾燥させた後、粉末固化成形法により
固化成形することを特徴とする熱電変換素子の製造方
法。
3. A composition of Cu 4 (Sn 1-x A x ) S 4 [wherein A is one or more selected from the group consisting of C, Si and Ge, 0 ≦ x ≦ 1]. The alloy powder having AgNo
(3) A method for producing a thermoelectric conversion element, which comprises soaking in a solution, drying, and then solidifying and molding by a powder solidifying and molding method.
JP7013022A 1995-01-30 1995-01-30 Thermoelectric cooling material and production of thermoelectric conversion element Pending JPH08204240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7013022A JPH08204240A (en) 1995-01-30 1995-01-30 Thermoelectric cooling material and production of thermoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7013022A JPH08204240A (en) 1995-01-30 1995-01-30 Thermoelectric cooling material and production of thermoelectric conversion element

Publications (1)

Publication Number Publication Date
JPH08204240A true JPH08204240A (en) 1996-08-09

Family

ID=11821526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7013022A Pending JPH08204240A (en) 1995-01-30 1995-01-30 Thermoelectric cooling material and production of thermoelectric conversion element

Country Status (1)

Country Link
JP (1) JPH08204240A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8097885B2 (en) 2007-06-11 2012-01-17 Canon Kabushiki Kaisha Compound semiconductor film, light emitting film, and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8097885B2 (en) 2007-06-11 2012-01-17 Canon Kabushiki Kaisha Compound semiconductor film, light emitting film, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JPH08111546A (en) Thermoelectric material and thermoelectric transducer
CN100477309C (en) Filled skutterudite-based alloy, production method thereof and thermoelectric conversion device fabricated using the alloy
JPH0316281A (en) Thermoelectric semiconductor material and manufacture thereof
US7067733B2 (en) Thermoelectric material having crystal grains well oriented in certain direction and process for producing the same
DE69707038T2 (en) A thermoelectric conversion material and a manufacturing method thereof
KR101264311B1 (en) fabrication method of thermoelectric materials containing nano-dot made by external generation and inclusion
TW405273B (en) Manufacturing method of sintered material for thermo-electric converter elements, sintered materials for thermo-electric converter elements, and a thermoelectric converter element made by using the same
JP3415391B2 (en) Manufacturing method of thermoelectric material
JP2936174B2 (en) Electronic components
JPH08204240A (en) Thermoelectric cooling material and production of thermoelectric conversion element
JPH08199281A (en) Production of thermoelectric refrigerating material and thermoelectric transducing element
JP3546675B2 (en) Thermoelectric material and method for producing thermoelectric material
JP3528222B2 (en) P-type thermoelectric material and alloy for P-type thermoelectric material
JPH01196104A (en) Manufacture of rare earth alloy magnet
JP3575332B2 (en) Thermoelectric material and method for manufacturing the same
JPH10102160A (en) Production of cobalt triantimonide type composite material
JP3422570B2 (en) CuSnS-based thermoelectric conversion semiconductor material and method of manufacturing the same
JP2003298122A (en) Method of manufacturing thermoelectric conversion material
JP3478162B2 (en) Manufacturing method of thermoelectric material
JP3572814B2 (en) Manufacturing method of thermoelectric cooling material
JP3572791B2 (en) Manufacturing method of thermoelectric cooling material
JPH06648B2 (en) Meltable superconductor and manufacturing method thereof
JP2000307158A (en) Manufacture of thermoelectric material
DE4129867C2 (en) Semiconductor-based thermoelectric generator and method for producing such a generator
JP4373296B2 (en) Raw material for thermoelectric conversion material, method for producing thermoelectric conversion material, and thermoelectric conversion material