JP3478162B2 - Manufacturing method of thermoelectric material - Google Patents

Manufacturing method of thermoelectric material

Info

Publication number
JP3478162B2
JP3478162B2 JP09442399A JP9442399A JP3478162B2 JP 3478162 B2 JP3478162 B2 JP 3478162B2 JP 09442399 A JP09442399 A JP 09442399A JP 9442399 A JP9442399 A JP 9442399A JP 3478162 B2 JP3478162 B2 JP 3478162B2
Authority
JP
Japan
Prior art keywords
molten metal
cooling roll
thermoelectric material
producing
foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09442399A
Other languages
Japanese (ja)
Other versions
JP2000286471A (en
Inventor
裕磨 堀尾
博之 山下
星  俊治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP09442399A priority Critical patent/JP3478162B2/en
Publication of JP2000286471A publication Critical patent/JP2000286471A/en
Application granted granted Critical
Publication of JP3478162B2 publication Critical patent/JP3478162B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱電材料の製造方
法に関し、特に、結晶の配向性が良い、急冷箔粉末等を
形成することができる熱電材料の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a thermoelectric material, and more particularly, to a method for producing a thermoelectric material having good crystal orientation and capable of forming a quenched foil powder or the like.

【0002】[0002]

【従来の技術】従来、熱電材料の製造方法としては、一
方向凝固させた材料を粉砕して固化成形する方法が知ら
れている。図7(a)乃至(d)は従来の熱電材料の製
造方法を示す模式図である。
2. Description of the Related Art Conventionally, as a method for producing a thermoelectric material, there has been known a method in which a unidirectionally solidified material is pulverized and solidified. FIGS. 7A to 7D are schematic views illustrating a conventional method for manufacturing a thermoelectric material.

【0003】先ず、図7(a)に示すように、原料10
1を石英管100に入れた後、石英管100を溶断して
封入する。次に、図7(b)に示すように、石英管10
0を管状炉102に入れて溶解し管状炉102を揺動し
て攪拌する。次に、図7(c)に示すように、管状炉1
02内に温度勾配をつけ、結晶方位を配向させながら凝
固させて凝固材103を形成する。次に、図7(d)に
示すように、凝固材103を粉砕しホットプレス等によ
り固化成形し、固化成形材を作製する。このとき、圧力
の作用方向と垂直方向に低抵抗の結晶方向が成長するた
め、この方向に電流を流すように電極を取りつけてモジ
ュ−ルを作製している。また、凝固材103をそのまま
モジュールに使用している。
[0003] First, as shown in FIG.
After putting 1 into the quartz tube 100, the quartz tube 100 is melted and sealed. Next, as shown in FIG.
Is melted in a tubular furnace 102, and the tubular furnace 102 is rocked and stirred. Next, as shown in FIG.
A solidified material 103 is formed by solidifying while orienting the crystal orientation while giving a temperature gradient in 02. Next, as shown in FIG. 7D, the solidified material 103 is pulverized and solidified by hot pressing or the like to produce a solidified molded material. At this time, since a crystal direction having a low resistance grows in a direction perpendicular to the direction in which the pressure acts, a module is manufactured by mounting electrodes so that a current flows in this direction. The solidified material 103 is used as it is for the module.

【0004】[0004]

【発明が解決しようとする課題】しかし、上述の従来の
熱電材料の製造方法では、例えば、凝固材103では製
造された熱電材料の結晶粒径が数mm以上になり、へき
開性があるため脆くなるという問題点がある。また、熱
伝導率が高い。熱電材料の性能指数をZ、熱起電力を
α、熱伝導率をκ、比抵抗をρとするとき、下記数式1
のように示される。
However, according to the above-mentioned conventional method for producing a thermoelectric material, for example, the solidified material 103 has a crystal grain size of several mm or more in the produced thermoelectric material, and is brittle because it has cleavage. There is a problem that becomes. Also, the thermal conductivity is high. When the figure of merit of the thermoelectric material is Z, the thermoelectromotive force is α, the thermal conductivity is κ, and the specific resistance is ρ,
Is shown as

【0005】[0005]

【数1】Z=α2/(κ×ρ)## EQU1 ## Z = α 2 / (κ × ρ)

【0006】数式1で示されるように熱伝導率が高いと
性能の向上に限界がある。
[0006] As shown in Equation 1, when the thermal conductivity is high, there is a limit in improving the performance.

【0007】また、図7の(d)で得られる固形成形材
では粉砕された粉末の大きさが結晶粒径であるため、κ
を低下させるために結晶粒を微細化しても限界がある。
また、粉砕時の粉末の表面酸化又は不純物の混入のため
に比抵抗の増大を招いて、数式1に示されるように性能
指数が低下し、性能が劣化するという問題点がある。
In the solid compact obtained in FIG. 7 (d), the size of the pulverized powder is the crystal grain size.
There is a limit even if the crystal grains are refined in order to reduce the crystallinity.
Further, there is a problem that the specific resistance increases due to the surface oxidation of the powder at the time of pulverization or the incorporation of impurities, so that the performance index decreases as shown in Expression 1 and the performance deteriorates.

【0008】本発明はかかる問題点に鑑みてなされたも
のであって、結晶の配向性が良い、急冷箔粉末を形成す
ることができる熱電材料の製造方法を提供することを目
的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a method of manufacturing a thermoelectric material having good crystal orientation and capable of forming a quenched foil powder.

【0009】[0009]

【課題を解決するための手段】本発明に係る熱電材料の
製造方法は、原料を溶融し、前記原料を溶湯射出ノズル
から冷却ロ−ルに溶湯射出する液体急冷方法により急冷
箔を作製し、この急冷箔をそのまま又は粉砕した後、固
化成形して熱電材料を作製する熱電材料の製造方法にお
いて、前記原料はBi及びSbからなる群から選択され
た少なくとも1種の元素と、Te及びSeからなる群か
ら選択された少なくとも1種の元素と、を含有する組成
を有し、前記溶湯射出の溶湯射出温度をTLとし、前記
冷却ロ−ルの回転速度をRとするとき、前記TLは60
0乃至1100℃であり、前記Rは2乃至80m/秒で
あり、前記TLは(20R+46760)/78乃至
(100R+77800)/78である条件で急冷箔を
製造する工程を有することを特徴とする。
According to a method of manufacturing a thermoelectric material according to the present invention, a quenched foil is produced by a liquid quenching method in which a raw material is melted, and the raw material is injected from a molten metal injection nozzle into a cooling roll. In the method for producing a thermoelectric material, in which the quenched foil is directly or pulverized, and then solidified and formed to produce a thermoelectric material, the raw material comprises at least one element selected from the group consisting of Bi and Sb, and Te and Se. The composition has a composition containing at least one element selected from the group consisting of: TL is 60 when the molten metal injection temperature of the molten metal injection is TL, and the rotation speed of the cooling roll is R.
A temperature of 0 to 1100 ° C., R is 2 to 80 m / sec, and TL is (20R + 46760) / 78 to (100R + 77800) / 78.

【0010】この場合、前記原料は更にI、Cl、H
g、Br、Ag及びCuからなる群から選択された少な
くとも1種の元素を含有させて、キャリア密度の制御が
可能である。
In this case, the raw materials further include I, Cl, H
The carrier density can be controlled by containing at least one element selected from the group consisting of g, Br, Ag, and Cu.

【0011】本発明においては、前記冷却ロ−ルの表面
温度をTRとするとき、前記TRは5乃至80℃であ
り、前記TRは(TL−100)/100乃至(TL+
2900)/50である条件で急冷箔を製造する工程を
有することが好ましい。
In the present invention, when the surface temperature of the cooling roll is TR, the TR is 5 to 80 ° C., and the TR is (TL-100) / 100 to (TL +
It is preferable to have a step of manufacturing a quenched foil under the condition of 2900) / 50.

【0012】また、前記溶湯射出ノズルと前記冷却ロー
ルとの間隔をdとするとき、前記dは0.3乃至20m
mであり、前記Rは(8d+37)/19.7乃至(3
0d+976)/19.7である条件で急冷箔を製造す
る工程を有することが好ましい。
When the distance between the molten metal injection nozzle and the cooling roll is d, the distance d is 0.3 to 20 m.
m, and R is (8d + 37) /19.7 to (3
(0d + 976) /19.7.

【0013】更に、前記溶湯射出の圧力をPとすると
き、前記Pは0.1乃至7kgf/cm2であり、前記
Rは(P+4.5)/2.3乃至(25P+377)/
6.9である条件で急冷箔を製造する工程を有すること
が好ましい。
Further, when the pressure of the molten metal injection is P, the P is 0.1 to 7 kgf / cm 2 , and the R is (P + 4.5) /2.3 to (25P + 377) /
It is preferable to have a step of producing a quenched foil under the condition of 6.9.

【0014】更にまた、前記溶湯射出ノズルの口径をφ
とするとき、前記φは0.1乃至10mmであり、前記
Pは(−0.4φ+4.99)/9.9乃至(−2φ+
69.5)/9.9である条件で急冷箔を製造する工程
を有することが好ましい。
Further, the diameter of the molten metal injection nozzle is φ
Is from 0.1 to 10 mm, and P is (−0.4φ + 4.99) /9.9 to (−2φ +
(69.5) /9.9 It is preferable to have a process of manufacturing a quenched foil under the condition of 9.9.

【0015】また、前記急冷箔を製造する工程の後工程
として、前記急冷箔を還元ガス雰囲気で熱処理し、固化
成形する工程を有することが好ましい。
It is preferable that the method further includes a step of heat-treating the quenched foil in a reducing gas atmosphere and solidifying and forming the quenched foil as a step subsequent to the step of manufacturing the quenched foil.

【0016】本発明においては、溶湯射出の溶湯射出温
度をTLとし、冷却ロ−ルの回転速度をRとするとき、
TLは600乃至1100℃であり、Rは2乃至80m
/秒であり、TLは(20R+46760)/78乃至
(100R+77800)/78である条件で急冷箔を
製造することにより、低抵抗に配向された結晶を有する
急冷箔を製造することができる。
In the present invention, when the molten metal injection temperature of molten metal injection is TL and the rotation speed of the cooling roll is R,
TL is 600 to 1100 ° C., R is 2 to 80 m
/ Sec, and the TL is (20R + 46760) / 78 to (100R + 77800) / 78, whereby a quenched foil having crystals oriented with low resistance can be manufactured.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施例に係る熱電
材料の製造方法について添付の図面を参照して詳細に説
明する。図1は本発明の実施例に係る熱電材料の製造装
置を示す模式図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method for manufacturing a thermoelectric material according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a schematic view showing an apparatus for manufacturing a thermoelectric material according to an embodiment of the present invention.

【0018】本実施例では、冷却ロ−ル1と溶融した原
料を冷却ロ−ル1表面に射出させるノズル2が間隔をd
あけて配置されている。このノズル2には溶融した溶湯
3が充填され、溶湯3を射出する口径φの開口部4が形
成されている。また、溶湯3を射出するための溶湯射出
圧力Pを作用させる圧力発生手段(図示せず)に接続さ
れている。
In the present embodiment, the cooling roll 1 and the nozzle 2 for injecting the molten raw material onto the surface of the cooling roll 1 have a distance d.
It is arranged open. The nozzle 2 is filled with a molten metal 3, and an opening 4 having a diameter φ for injecting the molten metal 3 is formed. Further, it is connected to pressure generating means (not shown) for applying a molten metal injection pressure P for injecting the molten metal 3.

【0019】この冷却ロ−ル1を周速度をRで回転さ
せ、冷却ロ−ル1の中心に向けてノズル2から溶湯3を
射出し、冷却ロ−ル1により冷却されて急冷箔5が形成
される。この作製された急冷箔5を還元ガス雰囲気で熱
処理し、固化成形して熱電材料が形成される。なお、冷
却ロ−ル1の材質としては銅、銅合金、鉄、鋼又はチタ
ン合金等を使用することができる。
The cooling roll 1 is rotated at a peripheral speed of R, a molten metal 3 is injected from a nozzle 2 toward the center of the cooling roll 1, and is cooled by the cooling roll 1 to form a quenched foil 5. It is formed. The quenched foil 5 thus produced is heat-treated in a reducing gas atmosphere and solidified to form a thermoelectric material. The material of the cooling roll 1 may be copper, copper alloy, iron, steel, titanium alloy or the like.

【0020】次に、本発明の熱電材料の製造方法の数値
限定理由について説明する。
Next, the reasons for limiting the numerical values of the method for producing a thermoelectric material of the present invention will be described.

【0021】溶湯射出温度:600乃至1100℃ 溶湯射出温度が600℃未満では、材料が十分に溶解で
きないか又は溶湯の粘性が高くて射出できない。一方、
溶湯射出温度が1100℃を超えると、蒸気圧の高いT
e及びSeが蒸発して組成が変わってしまい熱電材料の
性能が高性能を得ることができない。従って、溶湯射出
温度は600乃至1100℃とする。
Melt injection temperature: 600 to 1100 ° C. If the melt injection temperature is lower than 600 ° C., the material cannot be melted sufficiently or the melt cannot be injected due to its high viscosity. on the other hand,
If the molten metal injection temperature exceeds 1100 ° C, T
e and Se evaporate and the composition changes, and the performance of the thermoelectric material cannot be high. Therefore, the molten metal injection temperature is set to 600 to 1100 ° C.

【0022】冷却ロ−ルの回転速度:2乃至80m/秒 冷却ロ−ルの回転速度が2m/秒未満では急冷速度が十
分に得ることができず低抵抗方位に配向した超急冷箔を
得ることができない。一方、冷却ロ−ルの回転速度が8
0m/秒を超えると、冷却ロ−ルと溶湯との濡れ性が悪
化し、箔が粉末状になるため、急冷速度を十分に得るこ
とができず、低抵抗方位に配向した超急冷箔が得られな
いと共に、箔の形状が一定化せず、安定した性能を得る
ことができない。従って、冷却ロ−ルの回転速度は2乃
至80m/秒とする。
Rotation speed of cooling roll: 2 to 80 m / sec When the rotation speed of cooling roll is less than 2 m / sec, a sufficient quenching speed cannot be obtained, and a super-quenched foil oriented in a low resistance direction is obtained. Can not do. On the other hand, when the rotation speed of the cooling roll is 8
If it exceeds 0 m / sec, the wettability between the cooling roll and the molten metal deteriorates, and the foil becomes powdery, so that the quenching speed cannot be sufficiently obtained, and the ultra-quenched foil oriented in the low-resistance direction cannot be obtained. In addition to this, the shape of the foil is not constant and stable performance cannot be obtained. Therefore, the rotation speed of the cooling roll is set to 2 to 80 m / sec.

【0023】溶湯射出温度:(20R+46760)/
78乃至(100R+77800)/78 図2は縦軸に溶湯射出温度、横軸に冷却ロールの回転速
度をとり、急冷箔の製造条件を示すグラフ図である。図
2に示すように、下記数式2及び3に示す直線により表
すことができる。
Melt injection temperature: (20R + 46760) /
78 to (100R + 77800) / 78 FIG. 2 is a graph showing production conditions of the quenched foil, with the vertical axis representing the molten metal injection temperature and the horizontal axis representing the rotation speed of the cooling roll. As shown in FIG. 2, it can be represented by a straight line represented by the following mathematical expressions 2 and 3.

【0024】[0024]

【数2】78TL=20R+46760## EQU2 ## 78TL = 20R + 46760

【0025】[0025]

【数3】78TL=100R+77800## EQU3 ## 78TL = 100R + 77800

【0026】溶湯射出温度が(20R+46760)/
78の値未満では溶湯の粘性が高すぎて冷却ロ−ルで十
分に急冷されず急冷速度が十分に得ることができない。
このため、低抵抗方位に配向した超急冷箔を得ることが
できない。一方、溶湯射出温度が(100R+7780
0)/78を超えると、冷却ロ−ルと溶湯との濡れ性が
悪化すると共に、箔が粉末状になるため急冷速度を十分
に得ることができず、低抵抗方位に配向した超急冷箔を
得ることができない。従って、溶湯射出温度:(20R
+46760)/78乃至(100R+77800)/
78とする。
When the molten metal injection temperature is (20R + 46760) /
When the value is less than 78, the viscosity of the molten metal is too high and the quenching is not sufficiently performed by the cooling roll, so that a sufficient quenching speed cannot be obtained.
Therefore, it is not possible to obtain a super-quenched foil oriented in a low resistance orientation. On the other hand, when the molten metal injection temperature is (100R + 7780)
If the ratio exceeds 0) / 78, the wettability between the cooling roll and the molten metal is deteriorated, and the quenching rate cannot be sufficiently obtained because the foil is powdery. Can not get. Therefore, the molten metal injection temperature: (20R
+47760) / 78 to (100R + 77800) /
78.

【0027】冷却ロ−ルの表面温度:5乃至80℃ 冷却ロ−ルの表面温度が5℃未満では、急冷時に溶湯に
歪が過度に生じ、結晶性が崩れるため、低抵抗の方位に
配向性を揃えることができず、抵抗が高くなり、性能指
数が低下し、高性能の熱電材料を得ることができない。
一方、冷却ロ−ルの表面温度が80℃を超えると、溶湯
と冷却ロ−ルとの濡れ性が悪化し、低抵抗の配向性を得
ることが難しくなり、高性能の熱電材料を得ることがで
きない。従って、冷却ロ−ルの表面温度は5乃至80℃
とすることが好ましい。
Surface temperature of the cooling roll: 5 to 80 ° C. If the surface temperature of the cooling roll is less than 5 ° C., the melt is excessively strained during quenching, and the crystallinity is destroyed. The properties cannot be uniform, the resistance increases, the figure of merit decreases, and a high-performance thermoelectric material cannot be obtained.
On the other hand, if the surface temperature of the cooling roll exceeds 80 ° C., the wettability between the molten metal and the cooling roll deteriorates, making it difficult to obtain a low-resistance orientation, and obtaining a high-performance thermoelectric material. Can not. Therefore, the surface temperature of the cooling roll is 5 to 80 ° C.
It is preferable that

【0028】冷却ロ−ルの表面温度:(TL−100)
/100乃至(TL+2900)/50 図3は縦軸に冷却ロールの表面温度、横軸に溶湯射出温
度をとり、急冷箔の製造条件を示すグラフ図である。図
3に示すように、下記数式4及び5に示す直線により表
すことができる。
Surface temperature of cooling roll: (TL-100)
/ 100 to (TL + 2900) / 50 FIG. 3 is a graph showing the production conditions of the quenched foil, with the vertical axis representing the surface temperature of the cooling roll and the horizontal axis representing the molten metal injection temperature. As shown in FIG. 3, it can be represented by a straight line represented by the following mathematical expressions 4 and 5.

【0029】[0029]

【数4】100TR=TL−100## EQU4 ## 100TR = TL-100

【0030】[0030]

【数5】50TR=TL+2900## EQU5 ## 50TR = TL + 2900

【0031】冷却ロ−ルの表面温度が(TL−100)
/100未満では、急冷時に溶湯に歪が過度に生じ、結
晶性が崩れるため、低抵抗の方位に配向性を揃えること
ができず、抵抗が高くなり、性能指数が低下し、高性能
の熱電材料を得ることができない。一方、冷却ロ−ルの
表面温度が(TL+2900)/50を超えると、溶湯
と冷却ロ−ルとの濡れ性が悪化し、低抵抗の配向性を得
ることが難しくなり、高性能の熱電材料を得ることがで
きない。従って、冷却ロ−ルの表面温度は(TL−10
0)/100乃至(TL+2900)/50とすること
が好ましい。
When the surface temperature of the cooling roll is (TL-100)
If it is less than / 100, the molten metal will be excessively strained during quenching, and the crystallinity will be lost, so that the orientation cannot be aligned with the low resistance direction, the resistance will increase, the figure of merit will decrease, and the high performance thermoelectric I can't get the material. On the other hand, when the surface temperature of the cooling roll exceeds (TL + 2900) / 50, the wettability between the molten metal and the cooling roll deteriorates, it becomes difficult to obtain a low-resistance orientation, and a high-performance thermoelectric material is used. Can not get. Therefore, the surface temperature of the cooling roll is (TL-10)
0) / 100 to (TL + 2900) / 50.

【0032】溶湯射出ノズルと冷却ロールとの間隔:
0.3乃至20mm 溶湯射出ノズルと冷却ロールとの間隔が0.3mm未満
では、冷却ロ−ル上の溶湯にノズルが埋没する射出形態
となり、均質な急冷箔を得ることができない。一方、溶
湯射出ノズルと冷却ロールとの間隔が20mmを超える
と、溶湯がロ−ルに接触するまでの時間が長くなり、冷
却速度が遅くなるため、結晶の配向性が乱れ高性能の熱
電材料を得ることができない。従って、溶湯射出ノズル
と冷却ロールとの間隔は0.3乃至20mmとすること
が好ましい。
[0032]Spacing between melt injection nozzle and cooling roll:
0.3-20mm The gap between the molten metal injection nozzle and the cooling roll is less than 0.3 mm
In the injection mode, the nozzle is buried in the molten metal on the cooling roll
And a homogeneous quenched foil cannot be obtained. On the other hand,
The distance between the hot water injection nozzle and the cooling roll exceeds 20 mm
And the time required for the molten metal to come into contact with the rolls increases,
The crystal orientation is disturbed due to the low
Electric material cannot be obtained. Therefore, the molten metal injection nozzle
The distance between the roller and the cooling roll should be 0.3 to 20 mm
Is preferred.

【0033】冷却ロールの回転速度:(8d+37)/
19.7乃至(30d+976)/19.7 図4は縦軸に冷却ロールの回転速度、横軸に溶湯射出ノ
ズルと冷却ロールとの間隔をとり、急冷箔の製造条件を
示すグラフ図である。図4に示すように、下記数式6及
び7に示す直線により表すことができる。
Rotation speed of cooling roll: (8d + 37) /
19.7 to (30d + 976) /19.7 FIG. 4 is a graph showing the production conditions of the quenched foil, with the vertical axis representing the rotation speed of the cooling roll and the horizontal axis representing the distance between the molten metal injection nozzle and the cooling roll. As shown in FIG. 4, it can be represented by a straight line represented by the following formulas 6 and 7.

【0034】[0034]

【数6】19.7R=8d+37## EQU6 ## 19.7R = 8d + 37

【0035】[0035]

【数7】19.7R=30d+976## EQU7 ## 19.7R = 30d + 976

【0036】冷却ロールの回転速度が(8d+37)/
19.7未満では、急冷速度が十分に得ることができ
ず、低抵抗方位に配向した超急冷箔を得ることができな
い。冷却ロールの回転速度が(30d+976)/1
9.7を超えると、溶湯と冷却ロ−ルとの濡れ性が悪化
すると共に、箔が粉末状になるため、急冷速度が十分に
得ることができない。このため、低抵抗方位に配向した
超急冷箔を得ることができないと共に、箔の形状が一定
化せず、安定した性能を得ることができない。従って、
冷却ロールの回転速度は(8d+37)/19.7乃至
(30d+976)/19.7とすることが好ましい。
The rotation speed of the cooling roll is (8d + 37) /
If it is less than 19.7, a rapid cooling rate cannot be sufficiently obtained, and a super-quenched foil oriented in a low resistance direction cannot be obtained. The rotation speed of the cooling roll is (30d + 976) / 1
If it exceeds 9.7, the wettability between the molten metal and the cooling roll deteriorates, and the foil becomes powdery, so that a sufficient rapid cooling rate cannot be obtained. For this reason, a super-quenched foil oriented in a low-resistance direction cannot be obtained, and the shape of the foil is not constant, so that stable performance cannot be obtained. Therefore,
The rotation speed of the cooling roll is preferably (8d + 37) /19.7 to (30d + 976) /19.7.

【0037】溶湯射出圧力:0.1乃至7kgf/cm
2 溶湯射出圧力が0.1kgf/cm2未満では、圧力が
不足して溶湯を射出することができない。一方、溶湯射
出圧力が7kgf/cm2を超えると、溶湯量、即ち、
溶湯の熱容量が大きくなりすぎて急冷速度が低下し、配
向性のよい箔を得ることができず、高性能の熱電材料を
得ることができない。従って、溶湯射出圧力は0.1乃
至7kgf/cm2とすることが好ましい。
Molten injection pressure: 0.1 to 7 kgf / cm
(2) If the molten metal injection pressure is less than 0.1 kgf / cm 2 , the pressure is insufficient and the molten metal cannot be injected. On the other hand, when the molten metal injection pressure exceeds 7 kgf / cm 2 , the molten metal amount, that is,
The heat capacity of the molten metal becomes too large and the quenching rate is reduced, so that a foil with good orientation cannot be obtained, and a high-performance thermoelectric material cannot be obtained. Therefore, the injection pressure of the molten metal is preferably set to 0.1 to 7 kgf / cm 2 .

【0038】冷却ロールの回転速度:(P+4.5)/
2.3乃至(25P+377)/6.9 図5は縦軸に冷却ロールの回転速度、横軸に溶湯射出圧
力をとり、急冷箔の製造条件を示すグラフ図である。図
5に示すように、下記数式8及び9に示す直線により表
すことができる。
Rotation speed of cooling roll: (P + 4.5) /
2.3 to (25P + 377) /6.9 FIG. 5 is a graph showing the quenching foil production conditions with the vertical axis representing the rotation speed of the cooling roll and the horizontal axis representing the molten metal injection pressure. As shown in FIG. 5, it can be represented by a straight line represented by the following Expressions 8 and 9.

【0039】[0039]

【数8】2.3R=P+4.5## EQU8 ## 2.3R = P + 4.5

【0040】[0040]

【数9】6.9R=25P+3776.9R = 25P + 377

【0041】冷却ロールの回転速度が(P+4.5)/
2.3未満では、冷却速度が低下し、必要な冷却速度を
得ることができない。このため、配向性の良い箔を得る
ことができず、高性能の熱電材料を得ることができな
い。一方、冷却ロールの回転速度が(25P+377)
/6.9を超えると、急冷箔が薄くなりすぎ粉末状にな
り箔の形状が一定化せず、配向性も崩れるため安定した
熱電材料を得ることができない。従って、冷却ロールの
回転速度は(P+4.5)/2.3乃至(25P+37
7)/6.9とすることが好ましい。
The rotation speed of the cooling roll is (P + 4.5) /
If it is less than 2.3, the cooling rate decreases, and the required cooling rate cannot be obtained. Therefore, a foil having good orientation cannot be obtained, and a high-performance thermoelectric material cannot be obtained. On the other hand, the rotation speed of the cooling roll is (25P + 377)
If the ratio exceeds /6.9, the quenched foil becomes too thin and powdery, the shape of the foil is not constant, and the orientation is lost, so that a stable thermoelectric material cannot be obtained. Therefore, the rotation speed of the cooling roll is (P + 4.5) /2.3 to (25P + 37).
7) /6.9 is preferred.

【0042】溶湯射出ノズルの口径:0.1乃至10m
溶湯射出ノズルの口径が0.1mm未満では口径が小さ
すぎて溶湯を射出することができない。一方、溶湯射出
ノズルの口径が10mmを超えると、射出される溶湯の
熱容量が大きすぎて急冷が効かず、低抵抗方位に揃った
箔を形成することができない。このため、高性能の熱電
材料を形成することができない。従って、溶湯射出ノズ
ルの口径は0.1乃至10mmとすることが好ましい。
Diameter of molten metal injection nozzle: 0.1 to 10 m
If the diameter of the m injection nozzle is less than 0.1 mm, the diameter is too small to allow injection of the molten metal. On the other hand, when the diameter of the molten metal injection nozzle exceeds 10 mm, the heat capacity of the molten metal to be injected is too large to perform rapid cooling, and a foil having a low resistance orientation cannot be formed. Therefore, a high-performance thermoelectric material cannot be formed. Therefore, the diameter of the molten metal injection nozzle is preferably set to 0.1 to 10 mm.

【0043】溶湯射出圧力:(−0.4φ+4.99)
/9.9乃至(−2φ+69.5)/9.9 図6は縦軸に溶湯射出圧力、横軸にノズルの口径をと
り、急冷箔の製造条件を示すグラフ図である。図6に示
すように、下記数式10及び11に示す直線により表す
ことができる。
Molten metal injection pressure: (-0.4φ + 4.99)
/9.9 to (-2φ + 69.5) /9.9 FIG. 6 is a graph showing the production conditions of the quenched foil, with the vertical axis representing the molten metal injection pressure and the horizontal axis representing the nozzle diameter. As shown in FIG. 6, it can be represented by a straight line represented by the following mathematical expressions 10 and 11.

【0044】[0044]

【数10】9.9R=−0.4φ+4.999.9R = −0.4φ + 4.99

【0045】[0045]

【数11】9.9R=−2φ+69.59.9R = −2φ + 69.5

【0046】溶湯射出圧力は(−0.4φ+4.99)
/9.9未満では溶湯の粘性及び溶湯とノズルとの間の
摩擦力のため、射出することができない。一方、溶湯射
出圧力が(−2φ+69.5)/9.9を超えると、射
出される溶湯の量が多すぎて急冷が効かず、低抵抗方位
に配向の揃った箔を形成することができない。このた
め、高性能の熱電材料を得ることができない。従って、
溶湯射出圧力は(−0.4φ+4.99)/9.9乃至
(−2φ+69.5)/9.9とすることが好ましい。
The injection pressure of the molten metal is (−0.4φ + 4.99)
If it is less than /9.9, it cannot be injected due to the viscosity of the molten metal and the frictional force between the molten metal and the nozzle. On the other hand, if the molten metal injection pressure exceeds (−2φ + 69.5) /9.9, the amount of the molten metal to be injected is too large to perform rapid cooling, and a foil having a uniform orientation in a low resistance direction cannot be formed. . Therefore, a high-performance thermoelectric material cannot be obtained. Therefore,
The molten metal injection pressure is preferably (−0.4φ + 4.99) /9.9 to (−2φ + 69.5) /9.9.

【0047】[0047]

【実施例】以下、本発明の範囲に入る熱電材料の製造方
法の実施例について、その特性を比較例と比較して具体
的に説明する。
EXAMPLES Examples of the method for producing a thermoelectric material falling within the scope of the present invention will be specifically described in comparison with comparative examples.

【0048】第1実施例 Bi0.5Sb1.5Te3+2重量%Te及びBi1.8Sb
0.2Te2.85Se0.15+0.15重量%Sbの原料を使
用し、溶湯射出温度及び冷却ロ−ルの回転速度を表1に
示す条件で急冷箔を作製し、この急冷箔を使用して熱電
材料を作製した。この得られた熱電材料の熱起電力、熱
伝導率及び比抵抗を測定し、性能指数Zを上記数式1に
より算出した。これらの結果を表1に示す。
First Embodiment Bi 0.5 Sb 1.5 Te 3 +2 wt% Te and Bi 1.8 Sb
Using a raw material of 0.2 Te 2.85 Se 0.15 + 0.15 % by weight of Sb, a quenched foil is produced under the conditions shown in Table 1 for the molten metal injection temperature and the rotation speed of the cooling roll. Was prepared. The thermoelectromotive force, the thermal conductivity, and the specific resistance of the obtained thermoelectric material were measured, and the figure of merit Z was calculated by the above formula 1. Table 1 shows the results.

【0049】なお、表1の実施例No.1乃至3及び比較
例No.46乃至48はBi0.5Sb1.5Te3+2重量%T
eの組成の熱電材料である。表1の実施例No.4乃至6
及び比較例No.50乃至56はBi1.8Sb0.2Te2.85
Se0.15+0.15重量%Sbの組成の熱電材料であ
る。
In Examples 1 to 3 and Comparative Examples 46 to 48 in Table 1, Bi 0.5 Sb 1.5 Te 3 + 2% by weight T
e is a thermoelectric material having a composition of e. Example Nos. 4 to 6 in Table 1
And Comparative Examples No.50 to 56 Bi 1.8 Sb 0.2 Te 2.85
It is a thermoelectric material having a composition of Se 0.15 + 0.15 % by weight Sb.

【0050】[0050]

【表1】 [Table 1]

【0051】上記表1に示すように、本発明の範囲に入
る実施例No.1乃至6は比抵抗値が低いため、性能指数
が4.21×10-31/Kを超える高い値となった。
As shown in Table 1 above, Examples Nos. 1 to 6 which fall within the scope of the present invention have low specific resistance values, and have a high figure of merit exceeding 4.21 × 10 −3 1 / K. became.

【0052】一方、比較例No.46乃至56は良好な性
能指数を得ることができなかった。比較例No.46は冷
却ロ−ルの回転速度が本発明の範囲未満であるため、低
抵抗方位に配向した急冷箔を得ることができず、性能指
数が低くなった。
On the other hand, in Comparative Examples Nos. 46 to 56, a good figure of merit could not be obtained. In Comparative Example No. 46, since the rotation speed of the cooling roll was less than the range of the present invention, a quenched foil oriented in a low resistance direction could not be obtained, and the figure of merit was low.

【0053】比較例No.47は冷却ロ−ルの回転速度が
本発明の範囲を超えているため、低抵抗方位に配向した
急冷箔を得ることができず、性能指数が低くなった。
In Comparative Example No. 47, since the rotation speed of the cooling roll exceeded the range of the present invention, a quenched foil oriented in a low resistance direction could not be obtained, and the figure of merit was low.

【0054】比較例No.48は溶湯射出温度の値が(1
00R+77800)/78の値よりも大きいため、低
抵抗方位に配向した急冷箔を得ることができず、性能指
数が低くなった。
In Comparative Example No. 48, the value of the molten metal injection temperature was (1).
(00R + 77800) / 78, a quenched foil oriented in a low resistance orientation could not be obtained, and the figure of merit was low.

【0055】比較例No.49は溶湯射出温度の値が(2
0R+46760)/78の値よりも小さいため、低抵
抗方位に配向した急冷箔を得ることができず、性能指数
が低くなった。
In Comparative Example No. 49, the value of the molten metal injection temperature was (2
0R + 46760) / 78, it was not possible to obtain a quenched foil oriented in a low resistance orientation, and the figure of merit was low.

【0056】比較例No.50は溶湯射出温度の値が(2
0R+46760)/78の値よりも小さいため、低抵
抗方位に配向した急冷箔を得ることができず、性能指数
が低くなった。
In Comparative Example No. 50, the value of the molten metal injection temperature was (2
0R + 46760) / 78, it was not possible to obtain a quenched foil oriented in a low resistance orientation, and the figure of merit was low.

【0057】比較例No.51は溶湯射出温度の値が(2
0R+46760)/78の値よりも小さいため、低抵
抗方位に配向した急冷箔を得ることができず、性能指数
が低くなった。
In Comparative Example No. 51, the value of the molten metal injection temperature was (2
0R + 46760) / 78, it was not possible to obtain a quenched foil oriented in a low resistance orientation, and the figure of merit was low.

【0058】比較例No.52は溶湯射出温度の値が(1
00R+77800)/78の値よりも大きいため、低
抵抗方位に配向した急冷箔を得ることができず、性能指
数が低くなった。
In Comparative Example No. 52, the value of the molten metal injection temperature was (1).
(00R + 77800) / 78, a quenched foil oriented in a low resistance orientation could not be obtained, and the figure of merit was low.

【0059】比較例No.53は冷却ロ−ルの回転速度が
本発明の範囲を超えているため、低抵抗方位に配向した
急冷箔を得ることができず、性能指数が低くなった。
In Comparative Example No. 53, since the rotation speed of the cooling roll exceeded the range of the present invention, a quenched foil oriented in a low resistance direction could not be obtained, and the figure of merit was low.

【0060】比較例No.54は冷却ロ−ルの回転速度が
本発明の範囲未満であるため、急冷速度を十分に得るこ
とができず、性能指数が低くなった。
In Comparative Example No. 54, since the rotation speed of the cooling roll was less than the range of the present invention, a sufficient quenching speed could not be obtained, and the figure of merit was low.

【0061】比較例No.55は溶湯射出温度が本発明の
範囲未満であるため、溶湯を射出することできなかっ
た。
In Comparative Example No. 55, the molten metal could not be injected because the molten metal injection temperature was lower than the range of the present invention.

【0062】比較例No.56は溶湯射出温度が本発明の
範囲を超えているため、組成が変化してしまい低抵抗方
位に配向した急冷箔を得ることができず、性能指数が低
くなった。
In Comparative Example No. 56, since the molten metal injection temperature exceeded the range of the present invention, the composition was changed and a rapidly cooled foil oriented in a low resistance direction could not be obtained, and the figure of merit was low. .

【0063】第2実施例 Bi0.4Sb0.1Te3+4重量%Teの原料を使用し、
冷却用のロ−ル表面温度及び溶湯射出温度を表2に示す
条件で急冷箔を作製し、この急冷箔を使用して熱電材料
を作製した。この得られた熱電材料の熱起電力、熱伝導
率及び比抵抗を測定し、性能指数Zを上記数式1により
算出した。これらの結果を表2に示す。
Second Example Using a raw material of Bi 0.4 Sb 0.1 Te 3 +4 wt% Te,
A quenched foil was produced under the conditions shown in Table 2 for the cooling roll surface temperature and the molten metal injection temperature, and a thermoelectric material was produced using the quenched foil. The thermoelectromotive force, the thermal conductivity, and the specific resistance of the obtained thermoelectric material were measured, and the figure of merit Z was calculated by the above formula 1. Table 2 shows the results.

【0064】[0064]

【表2】 [Table 2]

【0065】上記表2に示すように、本発明の範囲に入
る実施例No.8乃至17は比抵抗値が低いため、性能指
数が4.22×10-31/Kを超える高い値となった。
As shown in Table 2 above, Examples Nos. 8 to 17 which fall within the range of the present invention have low specific resistance values, and therefore have a high figure of merit exceeding 4.22 × 10 -3 1 / K. became.

【0066】一方、比較例No.57乃至62は良好な性
能指数を得ることができなかった。比較例No.57は溶
湯射出温度が本発明の範囲を超えているため、組成が変
化してしまい低抵抗方位に配向した急冷箔を得ることが
できず、性能指数が低くなった。
On the other hand, in Comparative Examples Nos. 57 to 62, a good figure of merit could not be obtained. In Comparative Example No. 57, since the molten metal injection temperature was beyond the range of the present invention, the composition changed, and it was not possible to obtain a quenched foil oriented in a low resistance direction, and the figure of merit was low.

【0067】比較例No.58は請求項1は満足するもの
のロ−ル表面温度の値が(TL−100)/100の値
よりも小さいため、急冷時に歪が過度に入り結晶性が崩
れ、低抵抗の方位に配向を揃えることができないため、
性能指数が若干低かった。
Comparative Example No. 58 satisfies claim 1, but the roll surface temperature value is smaller than the value of (TL-100) / 100. Because it is not possible to align the orientation to the direction of low resistance,
The figure of merit was slightly lower.

【0068】比較例No.59は請求項1は満足するもの
のロ−ル表面温度の値が(TL−100)/100の値
よりも小さいため、急冷時に歪が過度に入り結晶性が崩
れ、低抵抗の方位に配向を揃えることができないため、
性能指数が若干低かった。
Comparative Example No. 59 satisfies claim 1, but the value of the roll surface temperature is smaller than the value of (TL-100) / 100. Because it is not possible to align the orientation to the direction of low resistance,
The figure of merit was slightly lower.

【0069】比較例No.60は請求項1は満足するもの
のロ−ル表面温度の値が(TL+2900)/50の値
よりも大きいため、溶湯と冷却ロ−ルとの濡れ性が悪化
し、低抵抗の方位に配向を揃えることができないため、
性能指数が若干低かった。
Comparative Example No. 60 satisfies claim 1, but the roll surface temperature value is larger than (TL + 2900) / 50, so that the wettability between the molten metal and the cooling roll deteriorates. Because it is not possible to align the orientation to the direction of low resistance,
The figure of merit was slightly lower.

【0070】比較例No.61は請求項1は満足するもの
のロ−ル表面温度の値が(TL+2900)/50の値
よりも大きいため、溶湯と冷却ロ−ルとの濡れ性が悪化
し、低抵抗の方位に配向を揃えることができないため、
性能指数が若干低かった。
Comparative Example No. 61 satisfies claim 1, but the roll surface temperature value is larger than (TL + 2900) / 50, so that the wettability between the molten metal and the cooling roll deteriorates. Because it is not possible to align the orientation to the direction of low resistance,
The figure of merit was slightly lower.

【0071】比較例No.62は溶湯射出温度が本発明の
範囲未満であるため、溶湯を射出することができなかっ
た。
In Comparative Example No. 62, the molten metal could not be injected because the molten metal injection temperature was lower than the range of the present invention.

【0072】第3実施例 Bi0.4Sb1.6Te2.95Se0.05+5重量%Teの原料
を使用し、冷却用のロ−ルの回転速度及びノズル口径を
表3に示す条件で急冷箔を作製し、この急冷箔を使用し
て熱電材料を作製した。この得られた熱電材料の熱起電
力、熱伝導率及び比抵抗を測定し、性能指数Zを上記数
式1により算出した。これらの結果を表3に示す。
Third Example Using a raw material of Bi 0.4 Sb 1.6 Te 2.95 Se 0.05 +5 wt% Te, a quenched foil was produced under the conditions shown in Table 3 with the rotation speed of the cooling roll and the nozzle diameter. A thermoelectric material was produced using this quenched foil. The thermoelectromotive force, the thermal conductivity, and the specific resistance of the obtained thermoelectric material were measured, and the figure of merit Z was calculated by the above formula 1. Table 3 shows the results.

【0073】[0073]

【表3】 [Table 3]

【0074】上記表3に示すように、本発明の請求項4
の範囲に入る実施例No.18乃至24は比抵抗値が低い
ため、性能指数が4.21×10-31/Kを超える高い
値となった。
As shown in Table 3 above, claim 4 of the present invention
In Examples Nos. 18 to 24 which fall within the range, the specific resistance was low, and the figure of merit was a high value exceeding 4.21 × 10 −3 1 / K.

【0075】一方、比較例No.63乃至69良好な性能
指数を得ることができなかった。比較例No.63は請求
項1は満足するもののノズル口径が本発明の範囲未満で
あるため、均質な急冷箔を得ることができない。このた
め、性能指数が低かった。
On the other hand, in Comparative Examples Nos. 63 to 69, a good figure of merit could not be obtained. Comparative Example No. 63 satisfies Claim 1, but cannot obtain a homogeneous quenched foil because the nozzle diameter is less than the range of the present invention. Therefore, the figure of merit was low.

【0076】比較例No.64は請求項1は満足するもの
のノズル口径が本発明の範囲を超えるため、溶湯の熱容
量が大きく急冷箔を得ることができない。このため、性
能指数が低かった。
Comparative Example No. 64 satisfies claim 1, but the nozzle diameter exceeds the range of the present invention, so that the heat capacity of the molten metal is large and a quenched foil cannot be obtained. Therefore, the figure of merit was low.

【0077】比較例No.65は請求項1は満足するもの
のロ−ル回転速度の値が(30d+976)/19.7
の値よりも大きいため、原料と冷却ロ−ルとの濡れ性が
悪化すると共に、箔が粉末状になる。このため、結晶の
配向が乱れ、性能指数が低かった。
Comparative Example No. 65 satisfies claim 1, but the value of the roll rotation speed is (30d + 976) /19.7.
, The wettability between the raw material and the cooling roll deteriorates, and the foil becomes powdery. For this reason, the orientation of the crystal was disturbed, and the figure of merit was low.

【0078】比較例No.66は請求項1は満足するもの
のロ−ル回転速度の値が(8d+37)/19.7の値
よりも小さいため、急冷速度が十分に得ることができな
い。このため、性能指数が低かった。
Although Comparative Example No. 66 satisfies claim 1, the rapid cooling rate cannot be sufficiently obtained because the value of the roll rotation speed is smaller than the value of (8d + 37) /19.7. Therefore, the figure of merit was low.

【0079】比較例No.67は請求項1は満足するもの
のロ−ル回転速度の値が(30d+976)/19.7
の値よりも大きいため、原料と冷却ロ−ルとの濡れ性が
悪化すると共に、箔が粉末状になる。このため、結晶の
配向が乱れ、性能指数が低かった。
Although the comparative example No. 67 satisfies claim 1, the value of the roll rotation speed is (30d + 976) /19.7.
, The wettability between the raw material and the cooling roll deteriorates, and the foil becomes powdery. For this reason, the orientation of the crystal was disturbed, and the figure of merit was low.

【0080】比較例No.68は冷却ロ−ルの回転速度が
本発明の範囲未満であるため、急冷速度を十分に得るこ
とができず、性能指数が低くなった。
In Comparative Example No. 68, since the rotation speed of the cooling roll was less than the range of the present invention, a sufficient quenching speed could not be obtained, and the figure of merit was low.

【0081】比較例No.69は冷却ロ−ルの回転速度が
本発明の範囲を超えているため、低抵抗方位に配向した
急冷箔を得ることができず、性能指数が低くなった。
In Comparative Example No. 69, since the rotation speed of the cooling roll exceeded the range of the present invention, a quenched foil oriented in a low resistance direction could not be obtained, and the figure of merit was low.

【0082】第4実施例 Bi1.9Sb0.1Te3 65Se0.35+0.15重量%Hg
Br2の原料を使用し、冷却用のロ−ルの回転速度及び
溶湯射出圧力を表4に示す条件で急冷箔を作製し、この
急冷箔を使用して熱電材料を作製した。この得られた熱
電材料の熱起電力、熱伝導率及び比抵抗を測定し、性能
指数Zを上記数式1により算出した。これらの結果を表
4に示す。
Fourth Embodiment Bi 1.9 Sb 0.1 Te 3 . 65 Se 0.35 + 0.15% by weight Hg
Using a raw material of Br 2 , a quenched foil was produced under the conditions shown in Table 4 with the rotation speed of the roll for cooling and the injection pressure of the molten metal, and a thermoelectric material was produced using the quenched foil. The thermoelectromotive force, the thermal conductivity, and the specific resistance of the obtained thermoelectric material were measured, and the figure of merit Z was calculated by the above formula 1. Table 4 shows the results.

【0083】[0083]

【表4】 [Table 4]

【0084】上記表4に示すように、本発明の請求項5
の範囲に入る実施例No.25乃至34は比抵抗値が低い
ため、性能指数が4.21×10-31/Kを超える高い
値となった。特に、実施例No.33及び34は比抵抗値
が低いために起電力が同じ値のものに比べて高い性能指
数を得ることができる。
As shown in Table 4, claim 5 of the present invention
In Examples Nos. 25 to 34 in the range, the specific resistance was low, and the figure of merit was a high value exceeding 4.21 × 10 −3 1 / K. In particular, in Examples 33 and 34, since the specific resistance value is low, a higher figure of merit can be obtained as compared with those having the same electromotive force.

【0085】一方、比較例No.70乃至75は良好な性
能指数を得ることができなかった。比較例No.70は溶
湯射出圧力が本発明の範囲未満であるため、溶湯を射出
することができなかった。
On the other hand, in Comparative Examples Nos. 70 to 75, a good figure of merit could not be obtained. In Comparative Example No. 70, the molten metal could not be injected because the molten metal injection pressure was less than the range of the present invention.

【0086】比較例No.71は請求項1は満足するもの
の溶湯射出圧力が本発明の範囲を超えているため、溶湯
量即ち、溶湯の熱容量が大きくなりすぎて急冷速度が低
下し、配向性の良い箔を得ることができない。このた
め、性能指数が低かった。
Comparative Example No. 71 satisfies claim 1, but since the molten metal injection pressure exceeds the range of the present invention, the amount of molten metal, that is, the heat capacity of the molten metal becomes too large, so that the quenching speed is reduced, and Can not get a good foil. Therefore, the figure of merit was low.

【0087】比較例No.72は請求項1は満足するもの
のロ−ル回転速度の値が(P+4.5)/2.3の値よ
りも小さいため、原料の冷却速度が低下し、必要な冷却
速度を得ることができない。このため、性能指数が低か
った。
Comparative Example No. 72 satisfies claim 1, but the value of the roll rotation speed is smaller than the value of (P + 4.5) /2.3. No cooling rate can be obtained. Therefore, the figure of merit was low.

【0088】比較例No.73は請求項1は満足するもの
のロ−ル回転速度の値が(25P+377)/6.9の
値よりも大きいため、急冷箔が薄くなりすぎ粉末状にな
り、箔の形状が一定化せず配向性も崩れる。このため、
性能指数が低かった。
Comparative Example No. 73 satisfies claim 1, but since the value of the roll rotation speed is larger than the value of (25P + 377) /6.9, the quenched foil becomes too thin and powdery. Is not fixed and the orientation is lost. For this reason,
The figure of merit was low.

【0089】比較例No.74は冷却ロ−ルの回転速度が
本発明の範囲を超えているため、低抵抗方位に配向した
急冷箔を得ることができず、性能指数が低くなった。
In Comparative Example No. 74, since the rotation speed of the cooling roll exceeded the range of the present invention, a quenched foil oriented in a low resistance direction could not be obtained, and the figure of merit was low.

【0090】比較例No.75は冷却ロ−ルの回転速度が
本発明の範囲未満であるため、急冷速度を十分に得るこ
とができず、性能指数が低くなった。
In Comparative Example No. 75, since the rotation speed of the cooling roll was less than the range of the present invention, a sufficient quenching speed could not be obtained, and the figure of merit was low.

【0091】第5実施例 Bi1.9Sb0.1Te3 75Se0.25+0.06重量%Ag
lの原料を使用し、ノズルの口径及び溶湯射出圧力を表
5に示す条件で急冷箔を作製し、この急冷箔を使用して
熱電材料を作製した。この得られた熱電材料の熱起電
力、熱伝導率及び比抵抗を測定し、性能指数Zを上記数
式1により算出した。これらの結果を表5に示す。
Fifth Embodiment Bi 1.9 Sb 0.1 Te 3 . 75 Se 0.25 +0.06 wt% Ag
A quenched foil was prepared using the raw material 1 under the conditions shown in Table 5 with the nozzle diameter and molten metal injection pressure, and a thermoelectric material was prepared using the quenched foil. The thermoelectromotive force, the thermal conductivity, and the specific resistance of the obtained thermoelectric material were measured, and the figure of merit Z was calculated by the above formula 1. Table 5 shows the results.

【0092】[0092]

【表5】 [Table 5]

【0093】上記表5に示すように、本発明の請求項6
の範囲に入る実施例No.35乃至45は比抵抗値が低い
ため、性能指数が4.27×10-31/Kを超える高い
値となった。
As shown in Table 5, claim 6 of the present invention
In Examples Nos. 35 to 45 falling within the range, the specific resistance was low, so that the figure of merit was a high value exceeding 4.27 × 10 −3 1 / K.

【0094】一方、比較例No.76乃至81は良好な性
能指数を得ることができなかった。
On the other hand, in Comparative Examples Nos. 76 to 81, a good figure of merit could not be obtained.

【0095】比較例No.76は溶湯射出圧力及び溶湯射
出圧力の値が(−2φ+69.5)/9.9の値より大
きいため、射出される溶湯の熱容量が大きすぎて急冷す
ることができず、低抵抗方位に配向の揃った箔を形成す
ることができない。このため、性能定数が低くくなっ
た。
In Comparative Example No. 76, since the value of the molten metal injection pressure and the value of the molten metal injection pressure were larger than the value of (−2φ + 69.5) /9.9, the heat capacity of the injected molten metal was too large to be rapidly cooled. Therefore, it is impossible to form a foil having a uniform orientation in a low resistance direction. For this reason, the performance constant became low.

【0096】比較例No.77はノズル口径の値が(−
0.4φ+4.99)/9.9の値よりも小さいため、
溶湯の粘性及び溶湯とノズルとの間の摩擦力のため、射
出することができない。このため、性能指数が低くなっ
た。
In Comparative Example No. 77, the value of the nozzle diameter was (−).
0.4φ + 4.99) /9.9.
Injection is not possible due to the viscosity of the melt and the frictional force between the melt and the nozzle. For this reason, the figure of merit was low.

【0097】比較例No.78はノズル口径の値が(−
0.4φ+4.99)/9.9の値よりも小さいため、
溶湯の粘性及び溶湯とノズルとの間の摩擦力のため、射
出することができない。このため、性能指数が低くくな
った。
In Comparative Example No. 78, the value of the nozzle diameter was (−
0.4φ + 4.99) /9.9.
Injection is not possible due to the viscosity of the melt and the frictional force between the melt and the nozzle. Therefore, the figure of merit decreased.

【0098】比較例No.79は溶湯射出圧力の値が(−
2φ+69.5)/9.9の値より大きいため、射出さ
れる溶湯の熱容量が大きすぎて急冷することができず、
低抵抗方位に配向の揃った箔を形成することができな
い。このため、性能定数が低くくなった。
In Comparative Example No. 79, the value of the molten metal injection pressure was (−
2φ + 69.5) /9.9, the molten metal to be injected has too large a heat capacity and cannot be rapidly cooled.
It is not possible to form a foil having a uniform orientation in a low resistance direction. For this reason, the performance constant became low.

【0099】比較例No.80はノズル口径が本発明の範
囲を超えているため、射出される溶湯の熱容量が大きす
ぎて急冷することができず、低抵抗方位に配向の揃った
箔を形成することができない。このため、性能定数が低
くくなった。
In Comparative Example No. 80, since the nozzle diameter exceeded the range of the present invention, the heat capacity of the molten metal to be injected was too large to be rapidly cooled, and a foil having a uniform orientation in a low resistance direction was formed. Can not do it. For this reason, the performance constant became low.

【0100】比較例No.81はノズル口径が本発明の範
囲未満であるため、口径が狭すぎて溶湯を射出すること
ができなかった。
In Comparative Example No. 81, since the nozzle diameter was less than the range of the present invention, the diameter was too small to inject the molten metal.

【0101】[0101]

【発明の効果】以上詳述したように本発明においては、
溶湯射出の溶湯射出温度をTLとし、冷却ロ−ルの回転
速度をRとするとき、TLは600乃至1100℃であ
り、Rは2乃至80m/秒であり、TLは(20R+4
6760)/78乃至(100R+77800)/78
である条件で急冷箔を製造することにより、低抵抗に配
向された結晶を有する急冷箔を製造することができる。
このため、性能指数が高い熱電材料を得ることができ
る。
As described in detail above, in the present invention,
When the molten metal injection temperature of the molten metal injection is TL and the rotation speed of the cooling roll is R, TL is 600 to 1100 ° C., R is 2 to 80 m / sec, and TL is (20R + 4
6760) / 78 to (100R + 77800) / 78
By manufacturing the quenched foil under the condition, it is possible to manufacture a quenched foil having crystals oriented with low resistance.
Therefore, a thermoelectric material having a high figure of merit can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施例に係る熱電材料の製造装置を
示す模式図である。
FIG. 1 is a schematic diagram showing an apparatus for manufacturing a thermoelectric material according to an embodiment of the present invention.

【図2】 縦軸に溶湯射出温度、横軸に冷却ロールの回
転速度をとり、急冷箔の製造条件を示すグラフ図であ
る。
FIG. 2 is a graph showing production conditions of a quenched foil, with the vertical axis representing molten metal injection temperature and the horizontal axis representing the rotation speed of a cooling roll.

【図3】 縦軸に冷却ロールの表面温度、横軸に溶湯射
出温度をとり、急冷箔の製造条件を示すグラフ図であ
る。
FIG. 3 is a graph showing production conditions of a quenched foil, with the vertical axis representing the surface temperature of the cooling roll and the horizontal axis representing the molten metal injection temperature.

【図4】 縦軸に冷却ロールの回転速度、横軸に溶湯射
出ノズルと冷却ロールとの間隔をとり、急冷箔の製造条
件を示すグラフ図である。
FIG. 4 is a graph showing the production conditions of the quenched foil, with the vertical axis representing the rotation speed of the cooling roll and the horizontal axis representing the distance between the molten metal injection nozzle and the cooling roll.

【図5】 縦軸に冷却ロールの回転速度、横軸に溶湯射
出圧力をとり、急冷箔の製造条件を示すグラフ図であ
る。
FIG. 5 is a graph showing production conditions of a quenched foil, with the vertical axis representing the rotation speed of the cooling roll and the horizontal axis representing the molten metal injection pressure.

【図6】 縦軸に溶湯射出圧力、横軸にノズルの口径を
とり、急冷箔の製造条件を示すグラフ図である。
FIG. 6 is a graph showing production conditions of a quenched foil, with the vertical axis representing molten metal injection pressure and the horizontal axis representing the nozzle diameter.

【図7】 (a)乃至(d)は従来の熱電材料の製造方
法を示す模式図である。
FIGS. 7A to 7D are schematic diagrams illustrating a conventional method for manufacturing a thermoelectric material.

【符号の説明】[Explanation of symbols]

1;冷却ロール、 2;ノズル、 3;溶湯、 4;開
口部、 5;急冷箔、100;石英管、 101;原
料、 102;管状炉、 103;凝固材
DESCRIPTION OF SYMBOLS 1; Cooling roll, 2; Nozzle, 3; Molten, 4; Opening, 5; Quenched foil, 100; Quartz tube, 101; Raw material, 102; Tubular furnace, 103;

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−36583(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 35/34 H01L 35/16 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-63-36583 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 35/34 H01L 35/16

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 原料を溶融し、前記原料を溶湯射出ノズ
ルから冷却ロ−ルに溶湯射出する液体急冷方法により急
冷箔を作製し、この急冷箔をそのまま又は粉砕した後、
固化成形して熱電材料を作製する熱電材料の製造方法に
おいて、 前記原料はBi及びSbからなる群から選択された少な
くとも1種の元素と、Te及びSeからなる群から選択
された少なくとも1種の元素と、を含有する組成を有
し、前記溶湯射出の溶湯射出温度をTLとし、前記冷却
ロ−ルの回転速度をRとするとき、前記TLは600乃
至1100℃であり、前記Rは2乃至80m/秒であ
り、前記TLは(20R+46760)/78乃至(1
00R+77800)/78である条件で急冷箔を製造
する工程を有することを特徴とする熱電材料の製造方
法。
1. A quenched foil is produced by a liquid quenching method in which a raw material is melted, and the raw material is injected from a molten metal injection nozzle to a cooling roll, and the quenched foil is directly or pulverized.
In the method for producing a thermoelectric material by solidifying and forming a thermoelectric material, the raw material is at least one element selected from the group consisting of Bi and Sb, and at least one element selected from the group consisting of Te and Se. TL is 600 to 1100 ° C., where R is the rotation speed of the cooling roll, and TL is 600 to 1100 ° C. To 80 m / sec, and the TL is (20R + 46760) / 78 to (1
(00R + 77800) / 78. A method for producing a thermoelectric material, comprising a step of producing a quenched foil under the condition of (00R + 77800) / 78.
【請求項2】 前記原料は更にI、Cl、Hg、Br、
Ag及びCuからなる群から選択された少なくとも1種
の元素を含有することを特徴とする請求項1に記載の熱
電材料の製造方法。
2. The raw material further comprises I, Cl, Hg, Br,
The method for producing a thermoelectric material according to claim 1, comprising at least one element selected from the group consisting of Ag and Cu.
【請求項3】 前記冷却ロ−ルの表面温度をTRとする
とき、前記TRは5乃至80℃であり、前記TRは(T
L−100)/100乃至(TL+2900)/50で
ある条件で急冷箔を製造する工程を有することを特徴と
する請求項1又は2に記載の熱電材料の製造方法。
3. When the surface temperature of the cooling roll is TR, the TR is 5 to 80 ° C., and the TR is (T
The method for producing a thermoelectric material according to claim 1, further comprising a step of producing a quenched foil under a condition of (L−100) / 100 to (TL + 2900) / 50.
【請求項4】 前記溶湯射出ノズルと前記冷却ロールと
の間隔をdとするとき、前記dは0.3乃至20mmで
あり、前記Rは(8d+37)/19.7乃至(30d
+976)/19.7である条件で急冷箔を製造する工
程を有することを特徴とする請求項1乃至3のいずれか
1項に記載の熱電材料の製造方法。
4. When the distance between the molten metal injection nozzle and the cooling roll is d, d is 0.3 to 20 mm, and R is (8d + 37) /19.7 to (30d).
The method for producing a thermoelectric material according to any one of claims 1 to 3, further comprising a step of producing a quenched foil under the condition of (+976) /19.7.
【請求項5】 前記溶湯射出の圧力をPとするとき、前
記Pは0.1乃至7kgf/cm2であり、前記Rは
(P+4.5)/2.3乃至(25P+377)/6.
9である条件で急冷箔を製造する工程を有することを特
徴とする請求項1乃至4のいずれか1項に記載の熱電材
料の製造方法。
5. When the pressure of the molten metal injection is P, the P is 0.1 to 7 kgf / cm 2 , and the R is (P + 4.5) /2.3 to (25P + 377) / 6.
The method for producing a thermoelectric material according to any one of claims 1 to 4, further comprising a step of producing a quenched foil under the condition of (9).
【請求項6】 前記溶湯射出ノズルの口径をφとすると
き、前記φは0.1乃至10mmであり、前記Pは(−
0.4φ+4.99)/9.9乃至(−2φ+69.
5)/9.9である条件で急冷箔を製造する工程を有す
ることを特徴とする請求項1乃至5のいずれか1項に記
載の熱電材料の製造方法。
6. When the diameter of the molten metal injection nozzle is φ, the φ is 0.1 to 10 mm, and the P is (−
0.4φ + 4.99) /9.9 to (−2φ + 69.
The method for producing a thermoelectric material according to any one of claims 1 to 5, further comprising a step of producing a quenched foil under the condition of (5) /9.9.
【請求項7】 前記急冷箔を製造する工程の後工程とし
て、前記急冷箔を還元ガス雰囲気で熱処理し、固化成形
する工程を有することを特徴とする請求項1乃至6のい
ずれか1項に記載の熱電材料の製造方法。
7. The method according to claim 1, further comprising a step of heat-treating the quenched foil in a reducing gas atmosphere and solidifying and forming the quenched foil as a post-step of the step of manufacturing the quenched foil. A method for producing the thermoelectric material according to the above.
JP09442399A 1999-03-31 1999-03-31 Manufacturing method of thermoelectric material Expired - Lifetime JP3478162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09442399A JP3478162B2 (en) 1999-03-31 1999-03-31 Manufacturing method of thermoelectric material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09442399A JP3478162B2 (en) 1999-03-31 1999-03-31 Manufacturing method of thermoelectric material

Publications (2)

Publication Number Publication Date
JP2000286471A JP2000286471A (en) 2000-10-13
JP3478162B2 true JP3478162B2 (en) 2003-12-15

Family

ID=14109834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09442399A Expired - Lifetime JP3478162B2 (en) 1999-03-31 1999-03-31 Manufacturing method of thermoelectric material

Country Status (1)

Country Link
JP (1) JP3478162B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3594008B2 (en) * 2000-11-30 2004-11-24 ヤマハ株式会社 Thermoelectric material, manufacturing method thereof and Peltier module
US7067733B2 (en) * 2001-12-13 2006-06-27 Yamaha Corporation Thermoelectric material having crystal grains well oriented in certain direction and process for producing the same
JP4286053B2 (en) * 2003-05-08 2009-06-24 株式会社Ihi THERMOELECTRIC SEMICONDUCTOR MATERIAL, THERMOELECTRIC SEMICONDUCTOR ELEMENT USING THE THERMOELECTRIC SEMICONDUCTOR MATERIAL, THERMOELECTRIC MODULE USING THE THERMOELECTRIC SEMICONDUCTOR ELEMENT, AND METHOD FOR PRODUCING THEM
CN100453216C (en) * 2006-07-11 2009-01-21 武汉理工大学 Method for preparing high performance bismuth telluride thermoelectric material

Also Published As

Publication number Publication date
JP2000286471A (en) 2000-10-13

Similar Documents

Publication Publication Date Title
US5108515A (en) Thermoelectric material and process for production thereof
KR100500493B1 (en) Silicon based conductive material and process for production thereof
US20060118161A1 (en) Thermoelectric material having crystal grains well oriented in certain direction and process for producing the same
US5246504A (en) Thermoelectric material
KR20160125132A (en) Method for Bi-Te-based thermoelectric materials using Resistance Heat
EP0235702B1 (en) Thermoelectric material for low temperature use and method of manufacturing the same
JP3478162B2 (en) Manufacturing method of thermoelectric material
EP0996174B1 (en) Thermoelectric materials and thermoelectric conversion element
JP3572939B2 (en) Thermoelectric material and method for manufacturing the same
JP3604308B2 (en) Raw material alloy for nanocomposite magnet, powder and manufacturing method thereof, and nanocomposite magnet powder and magnet manufacturing method
JPH1051037A (en) Thermoelectric material and thermoelectric conversion element
JPH0832588B2 (en) Thermoelectric semiconductor material and manufacturing method thereof
JP2000036627A (en) Thermoelectric material and thermoelectric transfer element
JP3603698B2 (en) Thermoelectric material and thermoelectric conversion element
JP4553521B2 (en) Powder thermoelectric material manufacturing apparatus and powder thermoelectric material manufacturing method using the same
JP4303924B2 (en) Method for manufacturing thermoelectric semiconductor member
JP2879152B2 (en) Manufacturing method of thermoelectric material
JP3572877B2 (en) Method for producing thermoelectric material and thermoelectric conversion element
JP3861804B2 (en) Thermoelectric material and manufacturing method thereof
JP3575332B2 (en) Thermoelectric material and method for manufacturing the same
JPH0462981A (en) Manufacture of amorphous fesi2 thermoelectric conversion semiconductor
JP3572814B2 (en) Manufacturing method of thermoelectric cooling material
JP2002164584A (en) Manufacturing method of peltier element material
JP2003037302A (en) Method for manufacturing thermoelectric material
JP2000277817A (en) Ingot for thermoelectric module, the thermoelectric module, and manufacture of the module

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071003

Year of fee payment: 4

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101003

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101003

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 10

EXPY Cancellation because of completion of term