JP2879152B2 - Manufacturing method of thermoelectric material - Google Patents
Manufacturing method of thermoelectric materialInfo
- Publication number
- JP2879152B2 JP2879152B2 JP1175517A JP17551789A JP2879152B2 JP 2879152 B2 JP2879152 B2 JP 2879152B2 JP 1175517 A JP1175517 A JP 1175517A JP 17551789 A JP17551789 A JP 17551789A JP 2879152 B2 JP2879152 B2 JP 2879152B2
- Authority
- JP
- Japan
- Prior art keywords
- thermoelectric material
- powder
- producing
- raw material
- sintering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 title claims description 41
- 238000004519 manufacturing process Methods 0.000 title claims description 32
- 239000000843 powder Substances 0.000 claims description 44
- 239000002994 raw material Substances 0.000 claims description 30
- 238000002156 mixing Methods 0.000 claims description 26
- 238000005245 sintering Methods 0.000 claims description 24
- 238000000465 moulding Methods 0.000 claims description 16
- 238000010298 pulverizing process Methods 0.000 claims description 15
- 238000000137 annealing Methods 0.000 claims description 12
- 229910052797 bismuth Inorganic materials 0.000 claims description 12
- 229910052714 tellurium Inorganic materials 0.000 claims description 12
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 claims description 12
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 11
- 239000002245 particle Substances 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 8
- 239000011812 mixed powder Substances 0.000 claims description 3
- 238000000034 method Methods 0.000 description 23
- 239000002019 doping agent Substances 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 239000011669 selenium Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 229910052787 antimony Inorganic materials 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 229910052711 selenium Inorganic materials 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910021589 Copper(I) bromide Inorganic materials 0.000 description 1
- 229910002531 CuTe Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 230000005679 Peltier effect Effects 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 230000005678 Seebeck effect Effects 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- ADZWSOLPGZMUMY-UHFFFAOYSA-M silver bromide Chemical compound [Ag]Br ADZWSOLPGZMUMY-UHFFFAOYSA-M 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 150000003498 tellurium compounds Chemical class 0.000 description 1
- 238000004857 zone melting Methods 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、熱電材料の製造法に関し、詳しくは、高性
能で任意な形状の熱電材料を、簡略化された製造工程で
安価にかつ工業的に有利に製造することのできる方法に
関する。Description: FIELD OF THE INVENTION The present invention relates to a method for producing a thermoelectric material, and more particularly, to a method for producing a high-performance, arbitrary-shaped thermoelectric material in a simplified production process at low cost and industrially. To a method which can be advantageously produced.
ゼーベック効果を利用して熱電発電を行わせたり、ペ
ルチェ効果を利用して熱電冷却を行わせる熱電材料は、
熱電発電,温度センサーや半導体製造プロセスにおける
恒温装置,エレクトロニクスデバイスの冷却など種々の
分野において幅広く利用されている。また、この熱電材
料を製造する方法として従来から種々の手段が提供され
てきている。例えば、(1)原料を混合溶解してインゴ
ット化してスライスする結晶インゴット製造法、(2)
原料粉末、あるいは混合溶解物を粉末化した後に、これ
を成形焼結し、必要に応じてスライスする粉末焼結製造
法、(3)多結晶化−帯溶解製造法、さらには(4)非
晶質製造法や(5)薄・厚膜製造法等各種の製造法が知
られている。Thermoelectric materials that cause thermoelectric power generation using the Seebeck effect or thermoelectric cooling using the Peltier effect are:
It is widely used in various fields such as thermoelectric generation, temperature sensors, constant temperature devices in semiconductor manufacturing processes, and cooling of electronic devices. In addition, various means have been conventionally provided as a method for producing the thermoelectric material. For example, (1) a method for producing a crystal ingot in which raw materials are mixed and dissolved to form an ingot and sliced, (2)
After powdering the raw material powder or the mixed solution, it is molded and sintered, and sliced as necessary, (3) polycrystallization-band melting production method, and (4) non-sintering production method. Various production methods such as a crystalline production method and (5) a thin / thick film production method are known.
しかし、これらのいずれの方法も工程が複雑で、しか
も融解混合という長時間の処理を必要とするなど量産性
が低いという問題があり、また、工程中にスライス操作
を含むものではスライスロスが発生し、あるいは多結晶
化−帯溶解製造法では、結晶による電気的・機械的な方
向性が生じていた。さらに超小型の素子の製造が困難で
あるなどの理由により、その応用範囲は一部の分野に限
られていた。However, all of these methods have the problem of low mass productivity, such as the complicated steps and the need for long-term processing of melting and mixing, and slice loss occurs when the method involves slicing during the process. Alternatively, in the polycrystallization-zone melting production method, the electrical and mechanical directions due to the crystals have been generated. Further, its application range has been limited to some fields because it is difficult to manufacture ultra-small elements.
特に従来の方法にあっては、成形方法が限定されてお
り、種々の成形方法によって任意の形状の成形品を得る
ことが困難であるという本質的な問題点があった。In particular, in the conventional method, the molding method is limited, and there is an essential problem that it is difficult to obtain a molded article of an arbitrary shape by various molding methods.
また特開昭59−143383号公報には、これらの問題点を
解決する一手段として、鉛テルル化合物とマンガン系の
金属を強制混合することが記載されているが、未だ充分
な方法とはいえない。Japanese Patent Application Laid-Open No. Sho 59-143383 discloses that as one means for solving these problems, a lead tellurium compound and a manganese-based metal are forcibly mixed, but it is still a sufficient method. Absent.
本発明者らは、すでに、特定の原料粉末を用い、これ
を強制混合することによって得られた粉末を成形,焼結
し、優れた性能の熱電材料およびその製造方法を提案し
た(特願昭63−286869号明細書)。しかしながら、この
熱電材料は優れた生産性を有しているものの、性能の点
で必ずしも充分なものではなかった。The present inventors have already proposed a thermoelectric material having excellent performance and a method for producing the same by using a specific raw material powder, molding and sintering the powder obtained by forcibly mixing the powder, and a method for producing the thermoelectric material. 63-286869). However, although this thermoelectric material has excellent productivity, it is not always sufficient in performance.
そこで、本発明者らは、より性能指数が向上した高品
質の熱電材料を開発すべく鋭意研究を重ねた。その結
果、素原料(出発原料)であるビスマス,テルル等の金
属粉を粉砕混合したものを、成形,焼成して熱電材料を
製造すると、粉砕混合の際に数μm以下に微粉化が生じ
るため酸化されやすく、これを所定の製造工程において
還元処理することにより、性能指数が向上することを見
出した。本発明はかかる知見に基いて完成したものであ
る。Therefore, the present inventors have intensively studied to develop a high-quality thermoelectric material with a further improved figure of merit. As a result, if a thermoelectric material is manufactured by pulverizing and mixing metal powders such as bismuth and tellurium, which are raw materials (starting raw materials), and then pulverizing and mixing, pulverization occurs to several μm or less during pulverization and mixing. It has been found that it is easily oxidized, and the performance index is improved by reducing it in a predetermined manufacturing process. The present invention has been completed based on such findings.
すなわち本発明は、少なくともビスマスを含有する粉
末と少なくともテルルを含有する粉末を粉砕混合,成
形,焼結し、必要によりアニールして熱電材料を製造す
るにあたり、粉砕混合粉末,焼結及びアニールの少なく
ともいずれかにおいて還元処理することを特徴とする熱
電材料の製造法を提供するものである。That is, the present invention relates to a method of pulverizing, mixing, molding, and sintering a powder containing at least bismuth and a powder containing at least tellurium, and annealing as necessary to produce a thermoelectric material. It is intended to provide a method for producing a thermoelectric material, which is characterized by performing a reduction treatment in any of them.
上記熱電材料の製造法において、素原料となる粉末
は、少なくともビスマスを含有する粉末と少なくともテ
ルルを含有する粉末であり、ビスマスとテルルの他に、
アンチモン,セレンなどの粉末、あるいはテルルとアン
チモンの合金粉末などとすることもできる。これらの素
原料粉末の粒径は、100メッシュパス、好ましくは150メ
ッシュパスのもので、粒径の大きいものは、事前に粉砕
等の手段により上記粒径の範囲に調節しておくことが好
ましい。また素原料粉末の種類やその混合比は、様々な
態様が考えられるが、例えばBi:Te=2:3(モル比),Bi:
Sb:Te=2:8:15(モル比),Bi:Te:Se=2:2:1(モル比)
あるいは(Bi+Sb):(Te+Se)=2:3(モル比)など
があり、特にビスマス(Bi)またはビスマス+アンチモ
ン(Bi+Sb)とテルル(Te)またはテルル+セレン(Te
+Se)を約2:3の割合で含有させることにより、600K以
下で非常に優れた性能を有する熱電材料を得ることがで
きる。In the method for producing the thermoelectric material, the raw material powder is a powder containing at least bismuth and a powder containing at least tellurium, in addition to bismuth and tellurium,
Powders such as antimony and selenium, or alloy powders of tellurium and antimony can also be used. The particle size of these raw material powders is 100 mesh pass, preferably 150 mesh pass, and those having a large particle size are preferably adjusted to the above particle size range by means of pulverization or the like in advance. . Various modes can be considered for the type of the raw material powder and the mixing ratio. For example, Bi: Te = 2: 3 (molar ratio), Bi:
Sb: Te = 2: 8: 15 (molar ratio), Bi: Te: Se = 2: 2: 1 (molar ratio)
Alternatively, there is (Bi + Sb) :( Te + Se) = 2: 3 (molar ratio), and particularly, bismuth (Bi) or bismuth + antimony (Bi + Sb) and tellurium (Te) or tellurium + selenium (Te
+ Se) in a ratio of about 2: 3 can provide a thermoelectric material having excellent performance at 600 K or less.
さらに上記素原料粉末には、適量のドーパントを添加
することが望ましい。このドーパントとしては、従来か
ら用いられているものを常法にしたがって添加すること
ができるが、例えば熱電材料をn形とする場合には、Sb
I3,CuTe,Cu2S,CuI,CuBr,AgBrなどを用いることができ
る。またp形とする場合には、Te,Cd,Sb,Pb,As,Biなど
を用いることができる。特に上記の如くビスマスとテル
ルを約2:3で含有させる際には、n形の場合はSbI3を用
いることが、またp形の場合にはTeを用いることが溶解
度や安定性の面から好ましい。このドーパントの添加量
は、素原料粉末の種類や混合比、あるいはドーパントと
なる物質の種類等により適宜決定されるものであるが、
通常は0.01〜10モル%、好ましくは0.05〜5モル%が適
当である。Further, it is desirable to add an appropriate amount of dopant to the raw material powder. As this dopant, a conventionally used dopant can be added according to a conventional method. For example, when the thermoelectric material is made n-type,
I 3 , CuTe, Cu 2 S, CuI, CuBr, AgBr and the like can be used. In the case of p-type, Te, Cd, Sb, Pb, As, Bi, or the like can be used. In particular, when bismuth and tellurium are contained at about 2: 3 as described above, it is preferable to use SbI 3 for the n-type and to use Te for the p-type from the viewpoint of solubility and stability. preferable. The amount of the dopant to be added is appropriately determined depending on the type and the mixing ratio of the raw material powder or the type of the substance to be the dopant.
Usually, 0.01 to 10 mol%, preferably 0.05 to 5 mol% is appropriate.
また、この素原料粉末あるいは粉砕混合した原料粉末
に、熱伝導率の低い物質(熱伝導率低下材)を添加する
こともできる。これらの熱伝導率低下材の添加によって
性能指数の向上を図ることができる。この熱伝導率低下
材としては、SiO2,TiO2,ZrO2,B2O3,BN,Si3N4などを例示
することができる。また熱伝導率低下材の添加量は、使
用目的、特に低温冷却において何度まで冷却しなければ
ならないかという装置の要求値等により決定されるが、
通常は0.1〜50重量%である。この熱伝導率低下材を加
えることにより、熱電材料の性能指数が同じでも、熱伝
導率が低下するため、より低温に冷却することができ
る。In addition, a substance having a low thermal conductivity (a material having a reduced thermal conductivity) can be added to the raw material powder or the ground and mixed raw material powder. The performance index can be improved by adding these thermal conductivity reducing materials. Examples of the thermal conductivity lowering material include SiO 2 , TiO 2 , ZrO 2 , B 2 O 3 , BN, and Si 3 N 4 . The addition amount of the thermal conductivity lowering material is determined by the purpose of use, particularly the required value of the device such as how many times the temperature must be cooled in low-temperature cooling,
Usually, it is 0.1 to 50% by weight. By adding this thermal conductivity lowering material, even if the thermoelectric material has the same figure of merit, the thermal conductivity is reduced, so that the thermoelectric material can be cooled to a lower temperature.
本発明の方法においては、このように配合した素原料
粉末を粉砕混合して充分に混合させるわけであるが、こ
の際に、粉砕と混合を同時に進行させて素原料粉末の粒
子径をさらに小さくすることが望ましい。この場合、粉
砕混合は、ボールミル,衝撃微粉砕機,ジェット粉砕
機,塔式摩擦機等の混合と粉砕を同時に行う手段により
行うことができる。好ましくい粉砕混合方法としては、
通常の落下式ボールミルではなく、遊星型ボールミルを
用いる方法がある。In the method of the present invention, the raw material powder thus blended is pulverized and mixed and sufficiently mixed.At this time, the particle size of the raw material powder is further reduced by simultaneously performing the pulverization and mixing. It is desirable to do. In this case, the pulverization and mixing can be performed by means such as a ball mill, an impact pulverizer, a jet pulverizer, and a tower-type friction machine that simultaneously perform mixing and pulverization. Preferred grinding and mixing methods include:
There is a method of using a planetary ball mill instead of a normal drop type ball mill.
また粉砕混合時の状態は、乾式あるいは湿式のいずれ
でもよく、例えば湿式で行う場合には、混合助剤として
は、エタノールやブタノール等のアルコール類や各種の
溶媒を用いて行うことができる。The state of pulverization and mixing may be either a dry type or a wet type. For example, when the wet type is used, the mixing aid may be an alcohol such as ethanol or butanol or various solvents.
上記強制混合の混合力や混合時間は、混合後の原料粉
末の平均粒径が0.05〜5μm、好ましくは0.08〜3μm
程度となるように設定することが望ましい。The mixing force and the mixing time of the forced mixing are such that the average particle size of the raw material powder after mixing is 0.05 to 5 μm, preferably 0.08 to 3 μm.
It is desirable to set it to be about the same.
次いで本発明の方法では、粉砕混合後の原料粉末を、
従来行われていた融解混合処理を行うことなく、たとえ
ばプレス成形等の加圧手段により希望する形状に加圧成
形する。この加圧成形は、必要に応じてポリビニルアル
コール等のバインダー成分を添加して行うことができ
る。加圧成形時の圧力は、原料粉末の種類や粒径により
異なるが、通常は0.2〜5ton/cm2、好ましくは0.5〜3ton
/cm2が適当である。Then, in the method of the present invention, the raw material powder after pulverization and mixing,
Without performing the melting and mixing process conventionally performed, pressure molding into a desired shape is performed by pressure means such as press molding. This pressure molding can be performed by adding a binder component such as polyvinyl alcohol as needed. The pressure at the time of pressure molding varies depending on the type and particle size of the raw material powder, but is usually 0.2 to 5 ton / cm 2 , preferably 0.5 to 3 ton.
/ cm 2 is appropriate.
成形方法としては、上記加圧成形の他、押出成形,射
出成形,コーティング,スクリーン印刷法など任意の成
形方法を採用することができる。As the molding method, any molding method such as extrusion molding, injection molding, coating, and screen printing can be employed in addition to the above-described pressure molding.
さらに本発明の方法では、上記成形を行った後、焼結
操作を行うことが必要であり、この焼結によって得られ
る焼結体が熱電材料としての機能を発揮することとな
る。この焼結は、前述の成形により得られる成形体に対
して、一般には、減圧,常圧あるいは加圧下において、
アルゴンガス等の不活性ガス雰囲気下で行われる。焼結
温度は、原料粉末の種類,混合比等により適宜選択され
るが、通常は300〜600℃、好ましくは400〜520℃で行う
ことができる。この際の昇温速度、特に200℃以上、と
りわけ400℃以上における昇温速度を10K/時間以下とす
ることが好ましい。これよりも早い速度で昇温すると、
得られる熱電材料の性能が低下することがある。また昇
温速度が遅すぎると、所定の温度まで到達するのに長時
間を必要とするため、例えば5〜10K/時間程度とするこ
とが適当である。なお、昇温時間は加圧下等の雰囲気や
組成等によって異なり、必ずしもこの範囲に限定される
ものではない。Furthermore, in the method of the present invention, it is necessary to perform a sintering operation after performing the above-described molding, and a sintered body obtained by this sintering will exhibit a function as a thermoelectric material. This sintering is generally performed on the compact obtained by the above-mentioned molding under reduced pressure, normal pressure or under pressure.
This is performed in an atmosphere of an inert gas such as an argon gas. The sintering temperature is appropriately selected depending on the type of the raw material powder, the mixing ratio, and the like, but is usually 300 to 600 ° C, preferably 400 to 520 ° C. In this case, it is preferable that the heating rate at 200 ° C. or higher, particularly 400 ° C. or higher, is 10 K / hour or less. If the temperature rises faster than this,
The performance of the obtained thermoelectric material may decrease. On the other hand, if the heating rate is too slow, it takes a long time to reach the predetermined temperature. Therefore, it is appropriate to set the heating rate to, for example, about 5 to 10 K / hour. The heating time varies depending on the atmosphere under pressure or the like, the composition, and the like, and is not necessarily limited to this range.
かかる昇温速度で所定の焼結温度に到達した後、該温
度に所定時間保持して、前記成形体を焼結することによ
り、目的の熱電材料を得ることができる。また、焼結時
間は通常0.5〜30時間である。さらに必要により焼結温
度より50〜150℃低い温度において0.5〜30時間アニール
することにより、より高性能の熱電材料が得られる。After reaching a predetermined sintering temperature at such a temperature increasing rate, the temperature is maintained for a predetermined time and the formed body is sintered to obtain a target thermoelectric material. The sintering time is usually 0.5 to 30 hours. If necessary, annealing at a temperature lower by 50 to 150 ° C. than the sintering temperature for 0.5 to 30 hours can provide a higher performance thermoelectric material.
本発明は、以上説明した熱電材料の製造過程における
粉砕混合粉末,焼結あるいはアニールの少なくともいず
れかにおいて還元処理を行うものである。ここで還元処
理は、通常、H2やCOなどの還元性ガス雰囲気下で加熱す
ることにより進行する。なお、この還元処理において
は、上記還元性ガスとArなどの不活性ガスとの混合ガス
を用いることもできる。還元処理の操作は特に制限はな
く、様々な手法によることができる。なお、焼結やアニ
ールにおいて還元処理を行うには、特に付加的工程を要
せず、単に還元雰囲気下で焼結やアニールを行なえばよ
い。According to the present invention, the reduction treatment is performed in at least one of the pulverized mixed powder, sintering, and annealing in the process of manufacturing the thermoelectric material described above. Here, the reduction treatment usually proceeds by heating in an atmosphere of a reducing gas such as H 2 or CO. In the reduction treatment, a mixed gas of the above reducing gas and an inert gas such as Ar can be used. The operation of the reduction process is not particularly limited, and can be performed by various methods. In addition, in order to perform the reduction treatment in the sintering or annealing, an additional step is not required, and the sintering or annealing may be performed simply in a reducing atmosphere.
また、還元処理の圧力条件としては、特に制限はない
が、焼結時やアニール時に還元処理を行う場合は、密封
条件下とすることが好ましい。The pressure condition of the reduction treatment is not particularly limited, but when the reduction treatment is performed at the time of sintering or annealing, it is preferable to perform the sealing condition.
次に、本発明を実施例,比較例及び参考例に基いてさ
らに詳しく説明する。しかし、本発明はこれらに限定さ
れるものではない。Next, the present invention will be described in more detail based on Examples, Comparative Examples and Reference Examples. However, the present invention is not limited to these.
実施例1〜7,比較例1〜2および参考例1〜2 次表に示すように、各種組成の100メッシュパスの素
原料粉末及びドーパントを用意し、それぞれをエタノー
ルを加えた湿式遊星型ボールミルを用い20時間粉砕混合
した。得られた原料粉末の平均粒径は約1μmであっ
た。次に、得られた粉末を2.7×105kPaの圧力で加圧成
形した。Examples 1 to 7, Comparative Examples 1 and 2, and Reference Examples 1 to 2 As shown in the following table, 100-mesh pass raw material powders and dopants of various compositions were prepared, and a wet planetary ball mill was prepared by adding ethanol to each. And pulverized and mixed for 20 hours. The average particle size of the obtained raw material powder was about 1 μm. Next, the obtained powder was pressed under a pressure of 2.7 × 10 5 kPa.
次に、得られた成形体を表に示すそれぞれの焼結条件
およびアニール条件にて焼結,アニールを行い熱電材料
を得た。Next, the obtained compact was sintered and annealed under the respective sintering conditions and annealing conditions shown in the table to obtain a thermoelectric material.
焼結温度 n型:460℃ p型:470℃ 焼結時間 :6時間 昇温速度 :6K/時間(400℃以上での速度) アニール温度 :360℃ アニール時間 :6時間 性能指数(Z)=α2・σ/κ(α:熱起電力,σ:
電気伝導率,κ:熱伝導率)の評価結果を表に示す。Sintering temperature n-type: 460 ° C p-type: 470 ° C Sintering time: 6 hours Heating rate: 6K / hour (speed at 400 ° C or higher) Annealing temperature: 360 ° C Annealing time: 6 hours Figure of merit (Z) = α 2 · σ / κ (α : thermal electromotive force, σ:
The evaluation results of the electric conductivity (κ: thermal conductivity) are shown in the table.
なお、比較例はアルゴンガス流中で焼結したものであ
り、参考例は、従来公知の融解混合法により得られた原
料粉末を用いて得たものである。The comparative example was sintered in an argon gas flow, and the reference example was obtained using a raw material powder obtained by a conventionally known melting and mixing method.
〔発明の効果〕 以上詳細に説明したように、素原料となる金属粉末を
粉砕混合し(特に遊星型ボールミルを用いて)、成形,
焼結し、さらに必要によりアニールして熱電材料を製造
する工程に、還元処理を組み込むことにより、特別な工
程を付加することなく、それぞれの雰囲気ガス条件を変
更することによって、性能指数の向上が達成される。 [Effects of the Invention] As described in detail above, a metal powder as a raw material is pulverized and mixed (especially using a planetary ball mill), and molded,
By incorporating reduction treatment into the process of sintering and further annealing as necessary to produce thermoelectric materials, the performance index can be improved by changing each atmosphere gas condition without adding a special process. Achieved.
したがって、本発明は、原料の調製が容易なこと、各
種成形法により任意な形状の熱電材料が得られること、
製造時のロスが少ないこと、性能指数が高く、高品質の
ものを安価に製造することができる大きな効果を有して
いる。Therefore, the present invention is that the preparation of the raw material is easy, a thermoelectric material of any shape can be obtained by various molding methods,
There is a great effect that a loss at the time of manufacturing is small, a figure of merit is high, and a high-quality product can be manufactured at low cost.
また、結晶構造による方向性も生ぜず、そのうえ、任
意の形状のものを直接得ることができるため、小型化が
可能である共に、モジュールの一体成形も可能である。In addition, directionality due to the crystal structure does not occur, and furthermore, any shape can be directly obtained, so that downsizing can be achieved and the module can be integrally formed.
したがって、本発明の方法で得られる熱電材料は、熱
電発電や熱電冷却,温度センサーや半導体製造プロセス
における恒温装置,エレクトロニクスデバイスの冷却な
ど幅広い分野で有効な利用が期待される。Therefore, the thermoelectric material obtained by the method of the present invention is expected to be effectively used in a wide range of fields such as thermoelectric power generation and thermoelectric cooling, temperature sensors and cooling of electronic devices in a semiconductor manufacturing process.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭64−2379(JP,A) 特公 昭38−21434(JP,B1) (58)調査した分野(Int.Cl.6,DB名) H01L 35/16 H01L 35/34 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-64-2379 (JP, A) JP-B-38-21434 (JP, B1) (58) Fields investigated (Int. Cl. 6 , DB name) H01L 35/16 H01L 35/34
Claims (8)
ることにより十分に混合させてなる原料粉末を、成形
し、焼結してなる熱電材料の製造法において、 上記素原料粉末として、すくなくともビスマスを含有す
る粉末と、少なくともテルルを含有する粉末とを用い、
かつ、粉砕混合粉末及び焼結の少なくともいずれかにお
いて還元処理することを特徴とする熱電材料の製造法。1. A method for producing a thermoelectric material obtained by molding and sintering a raw material powder obtained by pulverizing and mixing an unalloyed raw material powder, wherein the raw material powder is at least Using a powder containing bismuth and a powder containing at least tellurium,
A method for producing a thermoelectric material, characterized in that at least one of pulverized mixed powder and sintering is reduced.
くともテルルを含有する粉末においてBi:Te=2:3(モル
比)である請求項1に記載された熱電材料の製造法。2. The method for producing a thermoelectric material according to claim 1, wherein Bi: Te = 2: 3 (molar ratio) between the powder containing at least bismuth and the powder containing at least tellurium.
径、0.05〜5μmである請求項1記載の熱電材料の製造
法。3. The method for producing a thermoelectric material according to claim 1, wherein the raw material powder obtained by pulverizing and mixing has an average particle size of 0.05 to 5 μm.
0K/時間以下である請求項1〜3記載の熱電材料の製造
法。4. A heating rate at 400 ° C. or higher during sintering is 1
The method for producing a thermoelectric material according to claim 1, wherein the temperature is 0 K / hour or less.
ることにより十分に混合させてなる原料粉末を、成形
し、焼結し、アニールしてなる熱電材料の製造法におい
て、 上記素原料粉末として、すくなくともビスマスを含有す
る粉末と、少なくともテルルを含有する粉末とを用い、
かつ、粉砕混合粉末、焼結及びアニールの少なくともい
ずれかにおいて還元処理することを特徴とする熱電材料
の製造法。5. A method for producing a thermoelectric material, wherein a raw material powder obtained by pulverizing and mixing an unalloyed raw material powder, molding, sintering, and annealing is used. As, using at least a powder containing bismuth and a powder containing at least tellurium,
A method for producing a thermoelectric material, wherein a reduction treatment is performed in at least one of pulverized mixed powder, sintering, and annealing.
くともテルルを含有する粉末においてBi:Te=2:3(モル
比)である請求項5に記載された熱電材料の製造法。6. The method for producing a thermoelectric material according to claim 5, wherein Bi: Te = 2: 3 (molar ratio) between the powder containing at least bismuth and the powder containing at least tellurium.
径、0.05〜5μmである請求項5又は6記載の熱電材料
の製造法。7. The method for producing a thermoelectric material according to claim 5, wherein the raw material powder obtained by pulverizing and mixing has an average particle size of 0.05 to 5 μm.
0K/時間以下である請求項5〜7記載の熱電材料の製造
法。8. The heating rate at 400 ° C. or higher during sintering is 1
The method for producing a thermoelectric material according to claim 5, wherein the temperature is 0 K / hour or less.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1175517A JP2879152B2 (en) | 1989-07-10 | 1989-07-10 | Manufacturing method of thermoelectric material |
US07/432,125 US5108515A (en) | 1988-11-15 | 1989-11-06 | Thermoelectric material and process for production thereof |
EP89120859A EP0369340A1 (en) | 1988-11-15 | 1989-11-10 | Thermoelectric material and process for production thereof |
CA002002921A CA2002921A1 (en) | 1988-11-15 | 1989-11-14 | Thermoelectric material and process for production thereof |
KR1019890016653A KR900008002A (en) | 1988-11-15 | 1989-11-15 | Thermoelectric material and its manufacturing method |
US07/819,118 US5246504A (en) | 1988-11-15 | 1992-01-10 | Thermoelectric material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1175517A JP2879152B2 (en) | 1989-07-10 | 1989-07-10 | Manufacturing method of thermoelectric material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0341780A JPH0341780A (en) | 1991-02-22 |
JP2879152B2 true JP2879152B2 (en) | 1999-04-05 |
Family
ID=15997438
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1175517A Expired - Lifetime JP2879152B2 (en) | 1988-11-15 | 1989-07-10 | Manufacturing method of thermoelectric material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2879152B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0959507A4 (en) | 1996-09-13 | 2002-11-13 | Komatsu Mfg Co Ltd | Thermoelectric semiconductor material, manufacture process therefor, and method of hot forging thermoelectric module using the same |
JPH11177156A (en) * | 1997-12-16 | 1999-07-02 | Natl Aerospace Lab | Machining method for thermoelectric conversion material and production of thermoelectric conversion element |
JP4601206B2 (en) * | 2001-05-18 | 2010-12-22 | 京セラ株式会社 | Method for manufacturing thermoelectric element |
JP6473069B2 (en) * | 2015-10-29 | 2019-02-20 | 住友電気工業株式会社 | Thermoelectric conversion material and thermoelectric conversion element |
CN116022743A (en) * | 2022-12-12 | 2023-04-28 | 先导薄膜材料(广东)有限公司 | Antimony ditelluride and preparation method thereof |
-
1989
- 1989-07-10 JP JP1175517A patent/JP2879152B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0341780A (en) | 1991-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5108515A (en) | Thermoelectric material and process for production thereof | |
US5246504A (en) | Thermoelectric material | |
JP3092463B2 (en) | Thermoelectric material and thermoelectric conversion element | |
JP4399757B2 (en) | Thermoelectric conversion material and manufacturing method thereof | |
US6440768B1 (en) | Thermoelectric semiconductor material and method of manufacturing the same | |
US20050284512A1 (en) | Thermoelectric materials comprising nanoscale inclusions to enhance seebeck coefficient | |
US20060118161A1 (en) | Thermoelectric material having crystal grains well oriented in certain direction and process for producing the same | |
JP3458587B2 (en) | Thermoelectric conversion material and its manufacturing method | |
JP2879152B2 (en) | Manufacturing method of thermoelectric material | |
JP2847123B2 (en) | Manufacturing method of thermoelectric material | |
JP2000261047A (en) | Semiconductor material for thermoelectric conversion and manufacture of the same | |
JP2750416B2 (en) | Manufacturing method of thermoelectric material | |
JPH08186294A (en) | Thermoelectric material | |
EP0948061B1 (en) | P-type thermoelectric converting substance and method of manufacturing the same | |
JP2000261044A (en) | Thermoelectric conversion material and its manufacture | |
JPH0856020A (en) | Thermoelectric material and thermionic element | |
JP2835406B2 (en) | Thermoelectric material and method of manufacturing the same | |
JP2004014804A (en) | Thermoelectric material and thermoelectric device | |
JP2003298122A (en) | Method of manufacturing thermoelectric conversion material | |
JP2000261048A (en) | Semiconductor material for thermoelectric conversion and manufacture of the same | |
JPH06169110A (en) | Manufacture of thermoelectric conversion material | |
JP2000114606A (en) | Silicon/germanium based thermoelectric material and manufacture of the same | |
KR102134306B1 (en) | P-type thermoelectric composite and process for preparing the same | |
JP2002118299A (en) | Manufacturing method of thermoelement | |
JPH10308538A (en) | Thermoelectric element and its manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |