JP2002118299A - Manufacturing method of thermoelement - Google Patents

Manufacturing method of thermoelement

Info

Publication number
JP2002118299A
JP2002118299A JP2000310032A JP2000310032A JP2002118299A JP 2002118299 A JP2002118299 A JP 2002118299A JP 2000310032 A JP2000310032 A JP 2000310032A JP 2000310032 A JP2000310032 A JP 2000310032A JP 2002118299 A JP2002118299 A JP 2002118299A
Authority
JP
Japan
Prior art keywords
thermoelectric
powder
thermoelectric element
less
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000310032A
Other languages
Japanese (ja)
Inventor
Takeshi Kajiwara
健 梶原
Kenichi Tomita
健一 冨田
Youkun Ri
鎔勲 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP2000310032A priority Critical patent/JP2002118299A/en
Publication of JP2002118299A publication Critical patent/JP2002118299A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a thermoelement having excellent thermoelectric performance and mechanical strength by effectively using a thermoelectric material powder whose particle size is 38 μm or less. SOLUTION: Materials of prescribed composition are mixed and heated to be melted, and then coagulated to produce a solid solution ingot which is pulverized to produce a solid solution powder whose particle size is 38 μm or less. The solid solution powder is sintered under pressure, and then hot plastic deformed so that the crystal grain is orientated in a crystal orientation excellent in performance index.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱エネルギーと電
気エネルギーとの間の変換を行う熱電モジュールを作製
するために使用する熱電素子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a thermoelectric element used for manufacturing a thermoelectric module for converting between heat energy and electric energy.

【0002】[0002]

【従来の技術】熱電現象とは、ゼーベック現象、ペルチ
ェ現象、トムソン現象の総称であり、この現象を利用し
た素子を、熱電素子、熱電対、電子冷却素子等という。
熱電現象は、元来、異種の金属間で発見された現象であ
るが、近年、半導体の熱電材料が得られるようになり、
金属材料では得られなかった変換効率が得られるように
なった。熱電半導体材料を利用した熱電素子は、構造が
簡単で取り扱いが容易であり、安定な特性を維持できる
ことから、広範囲にわたる利用が注目されている。特
に、局所冷却や室温付近の精密な温度制御が可能である
ことから、オプトエレクトロニクスや半導体レーザ等の
温度調節、また、小型冷蔵庫等への適用に向けて、広く
研究開発が進められている。
2. Description of the Related Art The thermoelectric phenomenon is a general term for the Seebeck phenomenon, the Peltier phenomenon, and the Thomson phenomenon, and elements utilizing this phenomenon are called thermoelectric elements, thermocouples, thermoelectric coolers, and the like.
Thermoelectric phenomena were originally discovered between different types of metals, but in recent years, semiconductor thermoelectric materials have become available,
Conversion efficiencies that could not be obtained with metallic materials can now be obtained. BACKGROUND ART A thermoelectric element using a thermoelectric semiconductor material has attracted attention for its wide use because it has a simple structure, is easy to handle, and can maintain stable characteristics. In particular, since local cooling and precise temperature control near room temperature are possible, research and development have been widely conducted for temperature control of optoelectronics and semiconductor lasers, and application to small refrigerators and the like.

【0003】従来、熱電素子の製造は、原材料を所望の
組成となるよう秤量し、それらを加熱溶解した溶湯を凝
固して固溶体インゴットを作製し、さらに固溶体インゴ
ットを粉砕し、篩にかけて分級及び整粒して粉末化し、
それら粉体を焼結し、スライス、ダイシングするという
方法が採用されている。又は、焼結した後に、鍛造や押
出し等による熱間塑性加工を行う場合もある。
Conventionally, in the production of a thermoelectric element, raw materials are weighed so as to have a desired composition, a molten metal obtained by heating and melting them is solidified to produce a solid solution ingot, and the solid solution ingot is further pulverized, sieved and classified and sized. Granulated and powdered,
A method of sintering, slicing and dicing these powders has been adopted. Alternatively, after sintering, hot plastic working such as forging or extrusion may be performed.

【0004】ところで、日本国特許出願公開(特開)昭
64−77184号公報において、分級後の径が数十μ
m以下である粉末を用いた熱電素子は、大幅に性能が低
下することが指摘されている。また、特開昭62−26
4682号公報では37〜74μm、特開昭64−37
456号公報及び特開平3−16281号公報では10
〜200μmと、それぞれ使用する熱電材料の粉末の分
級範囲を限定している。実際に、38μm以下の粉末、
即ち微粉末を用いて焼結した熱電素子の成型品は、焼結
密度が低く電気抵抗が高いために熱電性能が著しく低
く、また、機械強度もないため、製品としては用いるこ
とができなかった。
In Japanese Patent Application Laid-Open Publication No. 64-77184, the diameter after classification is several tens μm.
It has been pointed out that the performance of a thermoelectric element using a powder having a particle size of m or less is greatly reduced. Also, Japanese Patent Application Laid-Open No. 62-26
No. 4,682,37-74 .mu.m.
No. 456 and JP-A-3-16281 disclose 10
200200 μm, which limits the classification range of the powder of the thermoelectric material used. In fact, a powder of 38 μm or less,
That is, the molded product of the thermoelectric element sintered using the fine powder cannot be used as a product because the sintering density is low, the electric resistance is high, the thermoelectric performance is extremely low, and there is no mechanical strength. .

【0005】[0005]

【発明が解決しようとする課題】このように、従来は、
分級範囲が38μmより大きく150μm程度の範囲の
粉末熱電材料が用いられ、38μm以下の粉末は有効に
利用されていなかった。
As described above, conventionally,
Powder thermoelectric materials having a classification range of more than 38 μm and about 150 μm have been used, and powders of 38 μm or less have not been effectively used.

【0006】そこで、上記の点に鑑み、本発明は、粒径
が38μm以下の微粉末の熱電材料を有効に利用し、且
つ、製品として十分に耐えうる熱電性能と機械強度を持
つ熱電素子の製造方法を提供することを目的とする。
In view of the above, the present invention is directed to a thermoelectric element having a thermoelectric performance and mechanical strength that can effectively utilize a fine powder thermoelectric material having a particle size of 38 μm or less and that can endure as a product. It is intended to provide a manufacturing method.

【0007】[0007]

【課題を解決するための手段】以上の課題を解決するた
め、本発明に係る熱電素子の製造方法は、所定の組成を
有する原材料を混合し、加熱溶融する工程と、加熱溶融
した原材料を凝固させ、六方晶構造を有する熱電半導体
のインゴットを作製する工程と、インゴットを粉砕し、
粒径が38μm以下の粉末を作製する工程と、粉末を加
圧焼結して、焼結体を作製する工程と、焼結体を、結晶
粒が性能指数の優れた結晶方位に配向するように熱間で
塑性変形させる工程とを具備する。本発明によれば、イ
ンゴットを粉砕した粉末のほとんどを有効に利用し、優
れた熱電性能と機械強度を持つ熱電素子を製造すること
ができる。
In order to solve the above-mentioned problems, a method for manufacturing a thermoelectric element according to the present invention comprises mixing a raw material having a predetermined composition, heating and melting, and solidifying the heated and melted raw material. And a step of producing a thermoelectric semiconductor ingot having a hexagonal structure, and crushing the ingot,
A step of producing a powder having a particle size of 38 μm or less, a step of producing a sintered body by sintering the powder under pressure, and a step of sintering the sintered body so that the crystal grains are oriented in a crystal orientation having an excellent figure of merit. And hot plastic deformation. ADVANTAGE OF THE INVENTION According to this invention, most of the powder which grind | pulverized the ingot can be used effectively, and the thermoelectric element which has excellent thermoelectric performance and mechanical strength can be manufactured.

【0008】[0008]

【発明の実施の形態】以下、図面に基づいて本発明の実
施の形態について説明する。なお、同一の構成要素には
同一の参照番号を付して、説明を省略する。図1は、本
発明の一実施形態に係る熱電素子の製造方法を示すフロ
ーチャートである。以下、図1を参照しながら、本発明
の一実施形態に係る熱電素子の製造方法について説明す
る。
Embodiments of the present invention will be described below with reference to the drawings. The same components are denoted by the same reference numerals, and description thereof will be omitted. FIG. 1 is a flowchart showing a method for manufacturing a thermoelectric element according to one embodiment of the present invention. Hereinafter, a method for manufacturing a thermoelectric element according to an embodiment of the present invention will be described with reference to FIG.

【0009】まず、所定の組成を有する原料を秤量し
て、容器内に封入する(ステップS1)。熱電材料の原
材料としては、例えば、V族元素としてアンチモン(S
b)やビスマス(Bi)を、VI族元素としてセレン
(Se)やテルル(Te)を用いる。V族とVI族の固
溶体は、六方晶構造を有するので、Bi、Te、Sb、
Seの内、少なくとも2種類以上の元素が原料として用
いられ、一般的には次のように表される。 (Bi1-XSbX2(Te1-YSeY3 ただし、0≦X,Y≦1 具体的には、P型素子の材料として、テルル化ビスマス
(Bi2Te3)とテルル化アンチモン(Sb2Te3)と
の混晶系固溶体にP型のドーパントを添加して用いた
り、N型素子の材料として、テルル化ビスマス(Bi2
Te3)とセレン化ビスマス(Bi2Se3)との混晶系
固溶体にN型のドーパントを添加して用いることができ
る。
First, a raw material having a predetermined composition is weighed and sealed in a container (step S1). As a raw material of the thermoelectric material, for example, antimony (S
b) or bismuth (Bi), and selenium (Se) or tellurium (Te) as a group VI element. Since the group V and group VI solid solutions have a hexagonal crystal structure, Bi, Te, Sb,
At least two or more elements of Se are used as raw materials, and are generally represented as follows. (Bi 1−X Sb X ) 2 (Te 1−Y Se Y ) 3 where 0 ≦ X, Y ≦ 1 More specifically, bismuth telluride (Bi 2 Te 3 ) and tellurium P-type dopants are added to a mixed crystal solid solution with antimony bromide (Sb 2 Te 3 ), and bismuth telluride (Bi 2
An N-type dopant can be added to a mixed crystal solid solution of Te 3 ) and bismuth selenide (Bi 2 Se 3 ).

【0010】次に、容器に封入した原材料を加熱して、
溶融及び混合する(ステップS2)。次に、溶融した材
料を凝固させる(ステップS3)。凝固して作製された
固溶体インゴットは、六方晶構造(菱面体構造)を有し
ている。次に、上記固溶体インゴットをスタンプミルや
ボールミル等で粉砕し(ステップS4)、400メッシ
ュの篩にかけ、分級する(ステップS5)。ここで、4
00メッシュの篩を通過したものを選ぶと、粒径38μ
m以下の固溶体粉末(微粉末)を得ることができる。
Next, the raw material sealed in the container is heated,
Melt and mix (step S2). Next, the molten material is solidified (step S3). The solid solution ingot produced by solidification has a hexagonal structure (rhombohedral structure). Next, the solid solution ingot is pulverized by a stamp mill, a ball mill, or the like (step S4), sieved with a 400 mesh sieve, and classified (step S5). Where 4
If you select one that has passed through a 00 mesh sieve,
m or less as a solid solution powder (fine powder).

【0011】次に、ステップS5で得られた微粉末を焼
結型に封入し、真空又は必要に応じて不活性ガス雰囲気
中で加圧焼結する(ステップS6)。最後に、焼結体
を、結晶粒が性能指数の優れた方位に配向するように熱
間で塑性変形させる(ステップS7)。塑性加工の方法
は、熱間すえこみ鍛造により展延させても良いし、熱間
押出し成形を行っても良い。また、加工温度について
は、450℃以下の熱間で行うものとし、望ましくは4
00℃以下の熱間で行う。
Next, the fine powder obtained in step S5 is sealed in a sintering mold and pressure-sintered in a vacuum or an inert gas atmosphere as required (step S6). Finally, the sintered body is plastically deformed by heating so that the crystal grains are oriented in an orientation having an excellent figure of merit (step S7). The method of plastic working may be spreading by hot upsetting forging or hot extrusion forming. Regarding the processing temperature, it is performed at a hot temperature of 450 ° C. or less,
The heating is performed at a temperature of 00 ° C. or less.

【0012】図2は、上記の方法により38μm以下の
微粉末を用いて製造した熱電素子(実施例)と、微粉末
を用いて従来の焼結のみの方法により製造した熱電素子
(比較例1)と、粒径が38μm〜150μmの範囲の
粉末を用いて製造した熱電素子(比較例2及び3)とを
比較した結果である。この実験において、熱電素子の原
材料には、ビスマスBi、テルルTe、アンチモンSb
の元素単体を、化学量論比Bi0.4Sb1.6Te3.0とな
るように秤量して用いた。また、粉末焼結は、アルゴン
雰囲気中で、焼結温度500℃、加圧力750kgf/
cm2(73.5N/mm2)の下で15分間行った。更
に、実施例及び比較例2については、熱間塑性加工とし
て、熱間すえこみ鍛造を400℃の下で行った。
FIG. 2 shows a thermoelectric element manufactured by the above method using fine powder of 38 μm or less (Example) and a thermoelectric element manufactured by a conventional method using only the fine powder by sintering only (Comparative Example 1). ) And thermoelectric elements (Comparative Examples 2 and 3) manufactured using powder having a particle size in the range of 38 μm to 150 μm. In this experiment, the raw materials of the thermoelectric element were bismuth Bi, tellurium Te, and antimony Sb.
Was weighed and used so that the stoichiometric ratio was Bi 0.4 Sb 1.6 Te 3.0 . The powder sintering was performed in an argon atmosphere at a sintering temperature of 500 ° C. and a pressure of 750 kgf /
Performed for 15 minutes under cm 2 (73.5 N / mm 2 ). Further, in Example and Comparative Example 2, hot upsetting forging was performed at 400 ° C. as hot plastic working.

【0013】図2において「密度」とは粉密度を示して
おり、この値が大きいほど熱電素子の機械的強度が大き
い。また、パワーファクター(PF)は、熱電素子の性
能を表している。通常、熱電素子の性能は、ゼーベック
係数α、電気伝導度σ、熱伝導率κを用いて次式で表さ
れる性能指数Zにより評価される。 Z=α2σ/κ しかしながら、本実験においては、熱伝導率κに大きな
変化が見られなかったため省略し、電気伝導度σの代わ
りに比抵抗ρ=1/σを用いて、次式で表されるパワー
ファクターPFにより評価した。 PF=α2/ρ 熱電素子の性能は、パワーファクターPFの値が大きい
ほど良好である。
In FIG. 2, "density" indicates the powder density, and the greater the value, the greater the mechanical strength of the thermoelectric element. The power factor (PF) indicates the performance of the thermoelectric element. Normally, the performance of a thermoelectric element is evaluated by a performance index Z expressed by the following equation using a Seebeck coefficient α, an electric conductivity σ, and a thermal conductivity κ. Z = α 2 σ / κ However, in this experiment, a large change was not found in the thermal conductivity κ, so that it was omitted, and instead of the electric conductivity σ, the specific resistance ρ = 1 / σ was used, and the following equation was used. It was evaluated by the power factor PF expressed. PF = α 2 / ρ The performance of the thermoelectric element is better as the value of the power factor PF is larger.

【0014】図2を参照すると、38μm以下の粉末を
用いた実施例と比較例1とを比べると、鍛造工程を付加
した実施例ではPF値が4.5であるのに対して、焼結
工程のみの比較例1では4.0となっている。また、従
来用いている粉末(38μm〜150μm)による比較
例2と比較例3とを比べると、鍛造工程を付加した比較
例2ではPH値が4.0〜4.4、焼結のみの比較例で
は3.8〜4.0となっている。このことから、同じ粒
径範囲の粉末を用いた場合には、加工方法として、焼結
後に熱間すえこみ鍛造工程を付加した方が、焼結工程の
みで加工したものよりも良好な熱電性能が得られると言
える。
Referring to FIG. 2, a comparison between the example using powder having a size of 38 μm or less and the comparative example 1 shows that the PF value of the example in which the forging step was added was 4.5, while the PF value was 4.5. In Comparative Example 1 having only the process, the value is 4.0. In addition, comparing Comparative Example 2 and Comparative Example 3 with the powder (38 μm to 150 μm) conventionally used, Comparative Example 2 with the addition of a forging step has a PH value of 4.0 to 4.4, and a comparison of only sintering. In the example, it is 3.8 to 4.0. For this reason, when powders having the same particle size range are used, it is better to add a hot upsetting forging process after sintering as a processing method than to the one processed only by the sintering process. Is obtained.

【0015】また、実施例と比較例2とを比較すると、
微粉末を用いた実施例におけるPF値が4.5であるの
に対して、従来用いている粉末による比較例2ではPF
値が4.0〜4.4となっている。即ち、加工方法に鍛
造工程を付加した場合には、むしろ微粉末(38μm以
下)を用いた方が、性能の良い熱電素子が得られるとい
うことである。
Further, comparing the embodiment with the comparative example 2,
While the PF value in the example using the fine powder is 4.5, the PF value in Comparative Example 2 using the conventionally used powder is
The values are 4.0 to 4.4. In other words, when a forging step is added to the working method, a better performance thermoelectric element can be obtained by using fine powder (38 μm or less).

【0016】また、密度に注目すると、実施例では9
9.2%となっている。これは、粒径が38μm以下の
微粉末を用いても、加工方法を工夫することにより、従
来用いている粉末による熱電素子と変わらない機械強度
の熱電素子が得られるということを示している。
Further, focusing on the density, in the embodiment, 9
It is 9.2%. This indicates that even if a fine powder having a particle size of 38 μm or less is used, a thermoelectric element having a mechanical strength equivalent to that of a conventional thermoelectric element using powder can be obtained by devising a processing method.

【0017】以上の結果より、熱電材料の粉体を成形加
工するときには、従来の焼結工程の後で、さらに熱間す
えこみ鍛造等により結晶粒が性能方位の優れた方位に配
向するように熱間で塑性加工すると、熱電素子の機械的
強度及びパワーファクター即ち熱電素子の性能は向上す
る。
From the above results, when the powder of the thermoelectric material is molded, after the conventional sintering process, the crystal grains are further oriented by hot upsetting forging or the like so that the crystal grains are oriented in the direction having excellent performance orientation. When hot plastic working is performed, the mechanical strength and power factor of the thermoelectric element, that is, the performance of the thermoelectric element are improved.

【0018】また、このような製造方法によれば、粉体
の粒径によらず性能の良い熱電素子が得られるため、粒
径を38μmより大きいか小さいかで分ける必要はな
く、粒径150μm以下の粉末を全て用いることができ
る。従って、400メッシュの篩をかける手間が省け、
製品歩留まりを向上させることができる。
According to such a manufacturing method, a thermoelectric element having good performance can be obtained irrespective of the particle size of the powder. Therefore, it is not necessary to divide the particle size into larger or smaller than 38 μm. All of the following powders can be used. Therefore, the labor of sieving a 400 mesh can be omitted,
Product yield can be improved.

【0019】図3は、熱電素子を用いて作製された熱電
モジュールを示す図である。図3に示すように、2枚の
セラミック基板11と12との間で、P型素子(P型半
導体)13とN型素子(N型半導体)14とを電極15
を介して接続することによりPN素子対を形成し、さら
に、複数のPN素子対を直列に接続したものである。こ
のようなPN素子対の直列回路の一方の端のN型素子に
は電流導入端子(正極)16が接続され、他方の端のP
型素子には電流導入端子(負極)17が接続されてい
る。これらの電流導入端子16、17の間に電圧を印加
することにより、電流導入端子(正極)16からPN素
子対の直列回路を経て電流導入端子(負極)17に向け
て電流を流すと、セラミック基板11側が冷却されてセ
ラミック基板12側が加熱される。その結果、図中の矢
印に示すような熱の流れが発生する。
FIG. 3 is a diagram showing a thermoelectric module manufactured using thermoelectric elements. As shown in FIG. 3, a P-type element (P-type semiconductor) 13 and an N-type element (N-type semiconductor) 14 are connected between two ceramic substrates 11 and 12 by electrodes 15.
To form a PN element pair, and a plurality of PN element pairs are connected in series. A current introduction terminal (positive electrode) 16 is connected to the N-type element at one end of the series circuit of the PN element pair, and the P-type terminal at the other end is connected to the N-type element.
A current introduction terminal (negative electrode) 17 is connected to the mold element. When a voltage is applied between the current introduction terminals 16 and 17 to cause a current to flow from the current introduction terminal (positive electrode) 16 to the current introduction terminal (negative electrode) 17 through a series circuit of PN element pairs, the ceramic The substrate 11 is cooled and the ceramic substrate 12 is heated. As a result, a heat flow is generated as shown by the arrow in the figure.

【0020】[0020]

【発明の効果】以上述べたように、本発明によれば、3
8μm以下の微粉末を有効に利用し、優れた熱電性能と
機械強度を持つ熱電素子を製造することができる。
As described above, according to the present invention, 3
A thermoelectric element having excellent thermoelectric performance and mechanical strength can be manufactured by effectively utilizing fine powder of 8 μm or less.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係る熱電素子の製造方法
を示すフローチャートである。。
FIG. 1 is a flowchart illustrating a method for manufacturing a thermoelectric element according to an embodiment of the present invention. .

【図2】本発明の一実施形態に係る熱電素子の製造方法
により製造した熱電素子と、従来の方法で製造した熱電
素子の性能を比較する実験を行った結果を示す図であ
る。
FIG. 2 is a diagram showing the results of an experiment for comparing the performance of a thermoelectric element manufactured by a method of manufacturing a thermoelectric element according to an embodiment of the present invention with the performance of a thermoelectric element manufactured by a conventional method.

【図3】本発明の一実施形態に係る製造方法により製造
された熱電素子を用いて作製された熱電モジュールの構
造を示す斜視図である。
FIG. 3 is a perspective view showing a structure of a thermoelectric module manufactured using a thermoelectric element manufactured by a manufacturing method according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11、12 セラミック基板 13 P型素子(P型半導体) 14 N型素子(N型半導体) 15 電極 16 電流導入端子(正極) 17 電流導入端子(負極) 11, 12 Ceramic substrate 13 P-type element (P-type semiconductor) 14 N-type element (N-type semiconductor) 15 Electrode 16 Current introduction terminal (positive electrode) 17 Current introduction terminal (negative electrode)

フロントページの続き (72)発明者 李 鎔勲 神奈川県平塚市万田1200 株式会社小松製 作所研究本部内 Fターム(参考) 4K018 FA01 KA32 Continued on the front page (72) Inventor 1200, Manda, Hiratsuka-shi, Kanagawa F-term (reference) 4K018 FA01 KA32

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 所定の組成を有する原材料を混合し、加
熱溶融する工程(a)と、 前記加熱溶融した原材料を凝固させ、六方晶構造を有す
る熱電半導体のインゴットを作製する工程(b)と、 前記インゴットを粉砕し、粒径が38μm以下の粉末を
作製する工程(c)と、 前記粉末を加圧焼結して、焼結体を作製する工程(d)
と、 前記焼結体を、結晶粒が性能指数の優れた結晶方位に配
向するように熱間で塑性変形させる工程(e)と、を具
備する熱電素子の製造方法。
1. A step (a) of mixing and heating and melting a raw material having a predetermined composition, and a step (b) of solidifying the heated and melted raw material to produce a thermoelectric semiconductor ingot having a hexagonal structure. (C) crushing the ingot to produce a powder having a particle size of 38 μm or less; and (d) sintering the powder under pressure to produce a sintered body.
And a step (e) of hot plastically deforming the sintered body so that the crystal grains are oriented in a crystal orientation having an excellent figure of merit.
【請求項2】 工程(c)において作製する粉末が、粒
径10μm以下の粉末を含むことを特徴とする請求項1
記載の熱電素子の製造方法。
2. The powder produced in the step (c) includes a powder having a particle size of 10 μm or less.
A method for producing the thermoelectric element according to the above.
【請求項3】 工程(e)が、上記焼結体を、450℃
以下の熱間で展延することにより塑性変形させる熱間す
えこみ鍛造であることを特徴とする請求項1又は2記載
の熱電素子の製造方法。
3. The method according to claim 1, wherein the step (e) comprises:
The method of manufacturing a thermoelectric element according to claim 1 or 2, wherein the method is hot upsetting forging in which plastic deformation is performed by spreading in the following heat.
【請求項4】 工程(e)が、上記焼結体を、450℃
以下の熱間で成形型から押出すことにより塑性変形させ
る熱間押出し加工であることを特徴とする請求項1又は
2記載の熱電素子の製造方法。
4. The method according to claim 1, wherein the step (e) comprises:
The method for producing a thermoelectric element according to claim 1, wherein the method is a hot extrusion process in which plastic deformation is performed by extruding from a mold in the following hot conditions.
JP2000310032A 2000-10-11 2000-10-11 Manufacturing method of thermoelement Withdrawn JP2002118299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000310032A JP2002118299A (en) 2000-10-11 2000-10-11 Manufacturing method of thermoelement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000310032A JP2002118299A (en) 2000-10-11 2000-10-11 Manufacturing method of thermoelement

Publications (1)

Publication Number Publication Date
JP2002118299A true JP2002118299A (en) 2002-04-19

Family

ID=18790059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000310032A Withdrawn JP2002118299A (en) 2000-10-11 2000-10-11 Manufacturing method of thermoelement

Country Status (1)

Country Link
JP (1) JP2002118299A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100805726B1 (en) 2006-12-21 2008-02-21 주식회사 포스코 Fabrication method of porous thermoelectric device
US8692103B2 (en) 2003-05-08 2014-04-08 Ihi Corporation Thermoelectric semiconductor material, thermoelectric semiconductor element using thermoelectric semiconductor material, thermoelectric module using thermoelectric semiconductor element and manufacturing method for same
CN106956004A (en) * 2017-02-23 2017-07-18 厦门理工学院 High stability Zn4Sb3Thermoelectric composite material and preparation method thereof
CN115287753A (en) * 2022-07-15 2022-11-04 湖北赛格瑞新能源科技有限公司 Preparation method of p-type polycrystalline bismuth telluride-based thermoelectric material based on die-free overlap heading

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8692103B2 (en) 2003-05-08 2014-04-08 Ihi Corporation Thermoelectric semiconductor material, thermoelectric semiconductor element using thermoelectric semiconductor material, thermoelectric module using thermoelectric semiconductor element and manufacturing method for same
US8884152B2 (en) 2003-05-08 2014-11-11 Ihi Corporation Thermoelectric semiconductor material, thermoelectric semiconductor element using thermoelectric semiconductor material, thermoelectric module using thermoelectric semiconductor element and manufacturing method for same
KR100805726B1 (en) 2006-12-21 2008-02-21 주식회사 포스코 Fabrication method of porous thermoelectric device
CN106956004A (en) * 2017-02-23 2017-07-18 厦门理工学院 High stability Zn4Sb3Thermoelectric composite material and preparation method thereof
CN106956004B (en) * 2017-02-23 2018-12-28 厦门理工学院 High stability Zn4Sb3Thermoelectric composite material and preparation method thereof
CN115287753A (en) * 2022-07-15 2022-11-04 湖北赛格瑞新能源科技有限公司 Preparation method of p-type polycrystalline bismuth telluride-based thermoelectric material based on die-free overlap heading
CN115287753B (en) * 2022-07-15 2024-02-02 湖北赛格瑞新能源科技有限公司 Preparation method of p-type polycrystalline bismuth telluride-based thermoelectric material based on mold-free upsetting

Similar Documents

Publication Publication Date Title
US5763293A (en) Process of fabricating a thermoelectric module formed of V-VI group compound semiconductor including the steps of rapid cooling and hot pressing
KR101087355B1 (en) Process for producing a heusler alloy, a half heusler alloy, a filled skutterudite based alloy and thermoelectric conversion system using them
US6222242B1 (en) Thermoelectric semiconductor material and method of manufacturing same
US20060118161A1 (en) Thermoelectric material having crystal grains well oriented in certain direction and process for producing the same
EP2662331B1 (en) Thermoelectric material, and thermoelectric module and thermoelectric apparatus including the thermoelectric material
JP2005116746A (en) Thermoelectric conversion material and thermoelectric convertor
US20020062853A1 (en) Method of manufacturing a thermoelectric element and a thermoelectric module
KR20110052225A (en) Nanocomposite thermoelectric material, and thermoelectric device and thermoelectric module comprising same
CN107408618B (en) Compound semiconductor thermoelectric material and method for producing same
JP2001320097A (en) Thermoelectric element and method of production and thermoelectric module
JPH0316281A (en) Thermoelectric semiconductor material and manufacture thereof
KR20070117270A (en) Method for fabricating thermoelectric material by mechanical milling-mixing and thermoelectric material fabricated thereby
US3086068A (en) Process for the preparation of thermo-electric elements
US8986566B2 (en) Thermoelectric material, thermoelectric device using the same, and method of manufacturing thereof
JP2007165463A (en) Thermoelectric converting element and power generating module
JP2002118299A (en) Manufacturing method of thermoelement
JPH08186294A (en) Thermoelectric material
JPH10209508A (en) Thermoelectric transducer and its manufacture
JPH11163422A (en) Manufacture of thermoelectric material
JP2879152B2 (en) Manufacturing method of thermoelectric material
JPH0856020A (en) Thermoelectric material and thermionic element
JP2003243733A (en) METHOD FOR MANUFACTURING p-TYPE THERMOELECTRIC CONVERSION MATERIAL
JP3580783B2 (en) Thermoelectric element manufacturing method and thermoelectric element
JP2002009350A (en) Thermoelectric module and its manufacturing method
KR102134306B1 (en) P-type thermoelectric composite and process for preparing the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080108