JP3572791B2 - Manufacturing method of thermoelectric cooling material - Google Patents

Manufacturing method of thermoelectric cooling material Download PDF

Info

Publication number
JP3572791B2
JP3572791B2 JP07522996A JP7522996A JP3572791B2 JP 3572791 B2 JP3572791 B2 JP 3572791B2 JP 07522996 A JP07522996 A JP 07522996A JP 7522996 A JP7522996 A JP 7522996A JP 3572791 B2 JP3572791 B2 JP 3572791B2
Authority
JP
Japan
Prior art keywords
temperature
powder
thermoelectric cooling
thermal conductivity
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07522996A
Other languages
Japanese (ja)
Other versions
JPH08306970A (en
Inventor
博之 山下
裕磨 堀尾
星  俊治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP07522996A priority Critical patent/JP3572791B2/en
Publication of JPH08306970A publication Critical patent/JPH08306970A/en
Priority to US08/810,651 priority patent/US5763293A/en
Application granted granted Critical
Publication of JP3572791B2 publication Critical patent/JP3572791B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Description

【0001】
【産業上の利用分野】
本発明は熱電変換による熱電冷却等に応用される熱電冷却用材料の製造方法に関する。
【0002】
【従来の技術】
種類が異なる2物質を接合させ、2箇所の接合部を有する回路を構成し、一方の接合部を高温に加熱し、他方の接合部を低温に冷却すると、接合部の温度差に基づく起電力が発生する。この現象をゼーベック効果という。
【0003】
また、同様に接合させた2物質に直流電流を流すと、一方の接合部で熱を吸収し、他方の接合部で熱を発生する。この現象をペルチェ効果という。
【0004】
更に、均質な物質に温度勾配を設け、この温度勾配がある方向に電流を流すと、この物質内で熱の吸収又は発生がある。この現象をトムソン効果という。
【0005】
これらのゼーベック効果、ペルチェ効果及びトムソン効果は熱電効果といわれる可逆反応であり、ジュール効果及び熱伝導等の非可逆現象と対比される。これらの可逆過程及び非可逆過程を組み合わせて、電子冷熱に利用されている。
【0006】
このような熱電冷却用材料又は熱電変換素子において、素子の性能は下記数式1にて表される性能指数で評価される。
【0007】
【数1】Z=α2σ/κ
但し、αは熱電能(ゼーベック係数)
σは電気伝導度
κは熱伝導度
である。即ち、性能指数Zが大きい方が熱電材料としての性能が優れている。
【0008】
ところで、従来の熱電冷却用材料としては、Bi及びSbからなる群から選択された1種又は2種と、Te及びSeからなる群から選択された1種又は2種とからなる合金があり、主にBi又はSbの原子数と、Te又はSeの原子数との比が2:3となる組成{以下、(Bi,Sb)2(Te,Se)3と記す}で用いられている。
【0009】
なお、(Bi,Sb)2(Te,Se)3の組成には、Bi−Te系、Bi−Se系、Sb−Te、Sb−Se系、Bi−Sb−Te系、Bi−Sb−Se系、Bi−Te−Se系、Sb−Te−Se系及びBi−Sb−Te−Se系の9種類がある。
【0010】
この熱電冷却用材料は、従来以下のようにして製造されている。先ず、原料粉末を所定の組成に秤量した後、溶解し、冷却条件を適宜制御しながら凝固させることによって結晶性が制御(一方向凝固した多結晶、又は単結晶)された鋳塊を得る。
【0011】
しかし、この方法では、熱伝導率が高いため、性能指数Zが小さかった。これを解決するため、従来種々の方法が提案されており、例えば、特開平1−276678号公報に記載のように、熱電材料を急冷凝固させてアモルファス相又は微細結晶相とする方法が公知である。
【0012】
熱伝導率は、κ=−1/3CvL(dt/dx)で表される。但し、Cは比熱、vは平均粒子速度、Lはフォノンの平均自由行程である。アモルファスの場合は、フォノンの平均自由行程Lが小さいために熱伝導率が小さいために熱伝導率が小さくなるので、微細結晶と同様に、性能係数Zを大きくすることが望ましい。
【0013】
【発明が解決しようとする課題】
しかしながら、上記の従来方法では、劈開による強度低下の問題がある。また、その対策として得られた鋳塊を粉砕し、粉末とした後、これを焼結して固化成形する方法があるこの場合は性能指数の低下が生じる。従って、液体急冷法を適用したときには、焼結等の工程で再結晶させることが必要である。ところが、この焼結時のエネルギが高すぎると、結晶は再結晶が更に進み、液体急冷法によって得た微細結晶は粗大化し、性能指数が低下する。
【0014】
従って、この従来の(Bi,Sb) (Te,Se) の組成を有する熱電冷却用材料は、性能指数Zが3.3×10 −3 /K以下であり、それ以上の性能指数を得ることができなかった。また、焼結エネルギが低すぎると、材料が固化しないことがあった。
【0015】
本発明はかかる問題点に鑑みてなされたものであって、性能指数Zを向上させることができる熱電冷却材料の製造方法を提供することを目的とする。
【0017】
【課題を解決するための手段】
本発明に係る熱電冷却材料の製造方法は、Bi及びSbからなる群から選択された1種又は2種と、Te又はSeからなる群から選択された1種又は2種とを液体急冷法により薄膜又は粉末状とし、これを更に粉砕し、これによって得られた粉末を400kgf/cm以上の圧力を印加して焼結温度をT(℃)、焼結時間をt(分)とした場合に、200≦T≦300のときに−T/5+90≦t≦150の条件で、また300<T≦500のときに30≦t≦150の条件でホットプレスすることにより固化成形することを特徴とする。
【0018】
【作用】
本発明においては、液体急冷法により、結晶粒の微細な材料、アモルファス材料又は非平衡相のような構造的歪みが導入された材料を得ているので、従来の材料と異なり、再結晶時に僅かなエネルギーで結晶が粗大化することはない。また、これを粉砕して粉末粒径を小さくしているので、強度も向上し、結晶粒成長を抑制することができる。
【0019】
これを更に粗大化が生じない条件でホットプレスして固化成形するので、急冷時の微細な組織又は歪みを保持した成形体を得ることができる。このように、微細な組織とすることにより、成形体の結晶粒が小さくなり、その結果、熱伝導率が小さくなり、性能指数が大きくなる。
【0020】
【実施例】
以下、本発明の実施例について更に詳細に説明する。
(a)原料粉末(Bi,Sb,Te,Se)の秤量工程
先ず、原料粉末のBi,Sb,Te又はSeを所定の(Bi,Sb) (Te,Se) の組成になるように秤量する。
【0021】
(b)液体急冷法による固化工程
秤量した原料粉末を混合した後、溶解する。そして、これを液体急冷法により固化する。即ち、溶湯を単ロール法、双ロール法又はArガスを使用するガスアトマイズ法等で、10 〜10 K/秒の速度で急冷し、液体急冷薄片を作成する。
【0022】
▲3▼粉砕工程
上述の如く、液体急冷法により固化した原料を平均粒径300μm以下の粉体に粉砕する。望ましくは、平均粒径が53μm以下となるように粉砕する。
【0023】
(c)成形工程
得られた粉末をホットプレス法により固化成形する。このとき、400kgf/cm 以上の圧力を印加する。また、温度T(℃)及び加圧時間t(分)は以下の数式1及び2を満足するものとする。
【0024】
【数1】
−T/5+90≦t≦150
但し、200≦T≦400の場合である。
【0025】
【数2】
5≦t≦150
但し、400<T≦500の場合である。
【0026】
このホットプレス条件を図示すると図1に示すようになる。この図1に斜線にて示す領域内の条件でホットプレスする。図2はホットプレスの温度と到達密度との関係を表した図である。ホットプレスの条件は圧力を400kgf/cmとし、温度は100〜600℃、時間は5〜150分である。これによると、到達密度が十分なホットプレス条件が限られていることがわかる。つまり、低温では固化成形が不可能なために到達密度が低い。また、高温では固化成形するが、成分元素が脱離するので、密度が低下する。
【0027】
このホットプレスの替わりに、焼結法により原料粉末を焼結することにより、固化成形することもできる。この焼結温度は原料粉末の結晶粒が粗大化しない温度であり、例えば400℃以下にすることが好ましい。この焼結によっても微細組織を保持した成形体を得ることができる。
【0028】
図3乃至図5は従来材と本発明材の成形体の顕微鏡組織を示す写真である。図3の従来材は成分がBi Te 、成形条件が500kgf/cm の加圧力で550℃に10分間加熱してホットプレスしたものであり、得られた成形体の熱伝導率は1.36W/m・Kである。
【0029】
図4の本発明材1は成分がBi 0.5 Sb 1.5 Te であり、ホットプレス成形条件は、加圧力が8000kgf/cm 、温度が450℃、時間が10分である。得られた成形体の熱伝導率は1.08W/m・Kである。また、図5に示す本発明材2は成分がBi 0.5 Sb 1.5 Te 、ホットプレスの加圧力が8000kgf/cm 、温度が350℃、時間が80分である。得られた成形体の熱伝導率は0.93W/m・Kである。
【0030】
このように本発明例1,2の場合は、組織が微細であり、熱伝導率が低い。これに対し、比較例の場合は、組織が粗く、熱伝導率が高い。
【0031】
下記表1は本発明の実施例及び比較例の平均結晶粒径、室温での熱伝導率κ及び性能指数Zと、製造時のホットプレス条件を示す。
【0032】
この表1における比較例は、実施例のホットプレス条件、即ち、温度及び時間を変えることにより、エネルギを高く又は低く設定した例である。
【0033】
【表1】

Figure 0003572791
【0034】
この表1に示すように、結晶粒径とプレス条件の上限との関係については、プレス条件530℃の比較例では、実施例と比較して平均結晶粒径が極めて大きい値を示すことがわかる。プレス温度が同一の場合には、ホットプレス時間を長くすると更に結晶が粗大化することがわかる。従って、本発明の実施例の場合は、粗大化しない条件でホットプレスされていることがわかる。
【0035】
また、表1に示すように、本発明の実施例方法により製造した熱電冷却材料は結晶粒径が小さく、熱伝導率が低く、性能指数Zは3.4×10−3/K以上と高い。例えば、ペルチェモジュール(熱電素子)を得る場合、この素子性能は主として最大温度差(ΔTmax)と最大吸熱量で表すことができる。性能指数が3.4×10−3/Kであれば、最大温度差は70K以上、最大吸熱量は8W/cm以上の能力となり、これは室温から10Kの温度差を付ける場合、現在のモジュールの消費電力を30%削減することができる。これにより、本発明を各種デバイスの冷却温度調節に応用することができる。
【0036】
【発明の効果】
以上説明したように、本発明によれば、液体急冷法で得た微細な材料、アモルファス材料又は非平衡相の材料を、粉砕して粉末粒径を小さくし、これを更に粗大化が生じないような条件でホットプレスして固化成形するので、微細な結晶組織を有し、熱伝導度が低く、性能指数が高い熱電冷却材料を得ることができる。
【図面の簡単な説明】
【図1】ホットプレス条件を示すグラフ図である。
【図2】横軸に焼結温度をとり、縦軸に到達温度をとって400kgf/cmの圧力下での焼結温度と到達密度との関係を示すグラフ図である。
【図3】従来材の成形体の組織を示す顕微鏡写真である。
【図4】本発明材1の成形体の組織を示す顕微鏡写真である。
【図5】本発明材2の成形体の組織を示す顕微鏡写真である。[0001]
[Industrial applications]
The present invention relates to a method for producing a thermoelectric cooling material applied to thermoelectric cooling or the like by thermoelectric conversion.
[0002]
[Prior art]
By joining two different materials to form a circuit with two joints, heating one joint to a high temperature and cooling the other to a low temperature, the electromotive force based on the temperature difference between the joints Occurs. This phenomenon is called the Seebeck effect.
[0003]
In addition, when a direct current is applied to two materials that are similarly joined, heat is absorbed at one joint and heat is generated at the other joint. This phenomenon is called the Peltier effect.
[0004]
Furthermore, when a temperature gradient is provided in a homogeneous substance and an electric current flows in a direction in which the temperature gradient is present, heat is absorbed or generated in the substance. This phenomenon is called the Thomson effect.
[0005]
These Seebeck effect, Peltier effect and Thomson effect are reversible reactions called thermoelectric effects, and are compared with irreversible phenomena such as Joule effect and heat conduction. A combination of these reversible and irreversible processes is used for electronic cooling and heating.
[0006]
In such a thermoelectric cooling material or a thermoelectric conversion element, the performance of the element is evaluated by a performance index represented by the following equation 1.
[0007]
## EQU1 ## Z = α2σ / κ
Where α is thermoelectric power (Seebeck coefficient)
σ is the electrical conductivity κ is the thermal conductivity. That is, the larger the figure of merit Z, the better the performance as a thermoelectric material.
[0008]
By the way, as a conventional thermoelectric cooling material, there is an alloy composed of one or two selected from the group consisting of Bi and Sb, and one or two selected from the group consisting of Te and Se, It is mainly used in a composition where the ratio of the number of atoms of Bi or Sb to the number of atoms of Te or Se is 2: 3 (hereinafter, referred to as (Bi, Sb) 2 (Te, Se) 3).
[0009]
The composition of (Bi, Sb) 2 (Te, Se) 3 includes Bi-Te system, Bi-Se system, Sb-Te, Sb-Se system, Bi-Sb-Te system, Bi-Sb-Se system. System, Bi-Te-Se system, Sb-Te-Se system and Bi-Sb-Te-Se system.
[0010]
This thermoelectric cooling material is conventionally manufactured as follows. First, a raw material powder is weighed to a predetermined composition, then melted and solidified while appropriately controlling cooling conditions to obtain an ingot with controlled crystallinity (unidirectionally solidified polycrystal or single crystal).
[0011]
However, in this method, since the thermal conductivity was high, the figure of merit Z was small. In order to solve this, various methods have been conventionally proposed. For example, as described in JP-A-1-276678, a method of rapidly solidifying a thermoelectric material to form an amorphous phase or a fine crystalline phase is known. is there.
[0012]
The thermal conductivity is represented by κ = − / CvL (dt / dx). Here, C is the specific heat, v is the average particle velocity, and L is the mean free path of phonons. In the case of amorphous, since the thermal conductivity is small because the mean free path L of phonons is small and the thermal conductivity is small, it is desirable to increase the coefficient of performance Z like the fine crystal.
[0013]
[Problems to be solved by the invention]
However, in the above-mentioned conventional method, there is a problem of a decrease in strength due to cleavage. As a countermeasure, there is a method in which the obtained ingot is pulverized into powder, then sintered and solidified . In this case, the performance index decreases. Therefore, when the liquid quenching method is applied, it is necessary to recrystallize in a process such as sintering. However, if the energy at the time of sintering is too high, the crystals are further recrystallized, and the fine crystals obtained by the liquid quenching method are coarsened and the figure of merit is lowered.
[0014]
Therefore, the conventional thermoelectric cooling material having the composition of (Bi, Sb) 2 (Te, Se) 3 has a performance index Z of 3.3 × 10 −3 / K or less, and a performance index of more than 3.3 × 10 −3 / K. I couldn't get it. If the sintering energy is too low, the material may not be solidified.
[0015]
The present invention has been made in view of such a problem, and an object of the present invention is to provide a method for manufacturing a thermoelectric cooling material that can improve the figure of merit Z.
[0017]
[Means for Solving the Problems]
Manufacturing method of engaging Ru thermoelectric cooling material in the present invention, and one or two species selected from the group consisting of Bi and Sb, one or two and the liquid quenching is selected from the group consisting of Te or Se The sintering temperature is set to T (° C.), and the sintering time is set to t (min) by applying a pressure of 400 kgf / cm 2 or more to a thin film or powder by the method and further crushing the obtained powder. In this case, when 200 ≦ T ≦ 300 , solidification molding is performed by hot pressing under the condition of −T / 5 + 90 ≦ t ≦ 150, and when 300 <T ≦ 500, under the condition of 30 ≦ t ≦ 150. It is characterized by.
[0018]
[Action]
In the present invention, a liquid quenching method is used to obtain a material having a fine crystal grain, an amorphous material, or a material into which a structural strain such as a non-equilibrium phase is introduced. The crystal is not coarsened by a large energy. Further, since the powder is pulverized to reduce the particle size of the powder, the strength is improved and the growth of crystal grains can be suppressed.
[0019]
Since this is solidified by hot pressing under a condition that does not cause further coarsening, it is possible to obtain a molded body that retains a fine structure or strain during rapid cooling. As described above, by forming a fine structure, the crystal grains of the compact are reduced, and as a result, the thermal conductivity is reduced and the figure of merit is increased.
[0020]
【Example】
Hereinafter, examples of the present invention will be described in more detail.
(A) Step of weighing raw material powder (Bi, Sb, Te, Se) First, Bi, Sb, Te or Se of the raw material powder is adjusted to have a predetermined (Bi, Sb) 2 (Te, Se) 3 composition. Weigh.
[0021]
(B) Solidification step by liquid quenching method After the weighed raw material powders are mixed, they are dissolved. Then, this is solidified by a liquid quenching method. That is, the molten metal is quenched at a rate of 10 4 to 10 6 K / sec by a single roll method, a twin roll method, a gas atomizing method using Ar gas, or the like, to produce a liquid quenched flake.
[0022]
{Circle over (3)} Pulverization Step As described above, the raw material solidified by the liquid quenching method is pulverized into powder having an average particle diameter of 300 μm or less. Desirably, pulverization is performed so that the average particle diameter is 53 μm or less.
[0023]
(C) Forming Step The obtained powder is solidified and formed by a hot press method. At this time, a pressure of 400 kgf / cm 2 or more is applied. Further, the temperature T (° C.) and the pressurization time t (minute) satisfy the following formulas 1 and 2.
[0024]
(Equation 1)
−T / 5 + 90 ≦ t ≦ 150
However, this is the case where 200 ≦ T ≦ 400.
[0025]
(Equation 2)
5 ≦ t ≦ 150
However, this is the case where 400 <T ≦ 500.
[0026]
FIG. 1 shows the hot press conditions. Hot pressing is performed under the conditions in the region shown by hatching in FIG. FIG. 2 is a diagram showing the relationship between the temperature of the hot press and the attained density. The conditions of the hot pressing are a pressure of 400 kgf / cm 2 , a temperature of 100 to 600 ° C., and a time of 5 to 150 minutes. According to this, it can be seen that the hot press conditions with a sufficient attained density are limited. That is, the solidification molding is impossible at a low temperature, so that the ultimate density is low. At a high temperature, solidification is performed, but the density is reduced because the component elements are eliminated.
[0027]
Instead of the hot pressing, solidification molding can be performed by sintering the raw material powder by a sintering method. This sintering temperature is a temperature at which the crystal grains of the raw material powder do not become coarse, and is preferably, for example, 400 ° C. or less. By this sintering, a compact having a fine structure can be obtained.
[0028]
3 to 5 are photographs showing the microscopic structures of the compacts of the conventional material and the material of the present invention. The conventional material of FIG. 3 is a material obtained by heating to 550 ° C. for 10 minutes with a component of Bi 2 Te 3 and a molding pressure of 500 kgf / cm 2 for 10 minutes, and has a thermal conductivity of 1 .36 W / m · K.
[0029]
The material 1 of the present invention in FIG. 4 has a component of Bi 0.5 Sb 1.5 Te 3 , and the hot press molding conditions are as follows: a pressure of 8000 kgf / cm 2 , a temperature of 450 ° C., and a time of 10 minutes. The thermal conductivity of the obtained molded body is 1.08 W / m · K. The material 2 of the present invention shown in FIG. 5 has Bi 0.5 Sb 1.5 Te 3 as a component, a pressing force of 8000 kgf / cm 2 , a temperature of 350 ° C., and a time of 80 minutes. The thermal conductivity of the obtained molded body is 0.93 W / m · K.
[0030]
Thus, in the case of the present invention examples 1 and 2, the structure is fine and the thermal conductivity is low. On the other hand, in the case of the comparative example, the structure is coarse and the thermal conductivity is high.
[0031]
Table 1 below shows the average crystal grain size, the thermal conductivity κ at room temperature and the figure of merit Z at room temperature, and the hot pressing conditions at the time of production in Examples and Comparative Examples of the present invention.
[0032]
The comparative example in Table 1 is an example in which the energy was set higher or lower by changing the hot pressing conditions of the example, that is, the temperature and time.
[0033]
[Table 1]
Figure 0003572791
[0034]
As shown in Table 1, as for the relationship between the crystal grain size and the upper limit of the pressing conditions, it can be seen that the comparative example under the pressing condition of 530 ° C. shows an extremely large value of the average crystal grain size as compared with the example. . It can be seen that when the pressing temperature is the same, increasing the hot pressing time further increases the crystal size. Therefore, in the case of the embodiment of the present invention, it can be seen that hot pressing is performed under conditions that do not cause coarsening.
[0035]
Further, as shown in Table 1, the thermoelectric cooling material manufactured by the method of the embodiment of the present invention has a small crystal grain size, low thermal conductivity, and a high performance index Z of 3.4 × 10 −3 / K or more. . For example, when obtaining a Peltier module (thermoelectric element), the element performance can be mainly represented by the maximum temperature difference (ΔTmax) and the maximum heat absorption. If the figure of merit is 3.4 × 10 −3 / K, the maximum temperature difference is 70 K or more, and the maximum heat absorption is 8 W / cm 2 or more. The power consumption of the module can be reduced by 30%. Thereby, the present invention can be applied to cooling temperature control of various devices.
[0036]
【The invention's effect】
As described above, according to the present invention, a fine material, an amorphous material, or a material in a non-equilibrium phase obtained by a liquid quenching method is crushed to reduce the powder particle size, and further coarsening does not occur. Since the material is solidified by hot pressing under such conditions, a thermoelectric cooling material having a fine crystal structure, low thermal conductivity, and a high figure of merit can be obtained.
[Brief description of the drawings]
FIG. 1 is a graph showing hot pressing conditions.
FIG. 2 is a graph showing the relationship between the sintering temperature and the ultimate density under a pressure of 400 kgf / cm 2 with the horizontal axis representing the sintering temperature and the vertical axis representing the ultimate temperature.
FIG. 3 is a micrograph showing the structure of a molded product of a conventional material.
FIG. 4 is a micrograph showing the structure of a molded product of the material 1 of the present invention.
FIG. 5 is a micrograph showing the structure of a molded product of the material 2 of the present invention.

Claims (1)

Bi及びSbからなる群から選択された1種又は2種と、Te又はSeからなる群から選択された1種又は2種とを液体急冷法により薄膜又は粉末状とし、これを更に粉砕し、これによって得られた粉末を400kgf/cm以上の圧力を印加して焼結温度をT(℃)、焼結時間をt(分)とした場合に、200≦T≦300のときに−T/5+90≦t≦150の条件で、また300<T≦500のときに30≦t≦150の条件でホットプレスすることにより固化成形することを特徴とする熱電冷却用材料の製造方法。One or two selected from the group consisting of Bi and Sb and one or two selected from the group consisting of Te or Se are formed into a thin film or powder by a liquid quenching method, and this is further pulverized, When a pressure of 400 kgf / cm 2 or more is applied to the obtained powder and the sintering temperature is T (° C.) and the sintering time is t (minute), −T when 200 ≦ T ≦ 300. / 5 + 90 ≦ t ≦ 150, and when 300 <T ≦ 500, solidification molding is performed by hot pressing under the condition of 30 ≦ t ≦ 150.
JP07522996A 1995-03-03 1996-03-04 Manufacturing method of thermoelectric cooling material Expired - Lifetime JP3572791B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP07522996A JP3572791B2 (en) 1995-03-03 1996-03-04 Manufacturing method of thermoelectric cooling material
US08/810,651 US5763293A (en) 1996-03-04 1997-03-03 Process of fabricating a thermoelectric module formed of V-VI group compound semiconductor including the steps of rapid cooling and hot pressing

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-70586 1995-03-03
JP7058695 1995-03-03
JP07522996A JP3572791B2 (en) 1995-03-03 1996-03-04 Manufacturing method of thermoelectric cooling material

Publications (2)

Publication Number Publication Date
JPH08306970A JPH08306970A (en) 1996-11-22
JP3572791B2 true JP3572791B2 (en) 2004-10-06

Family

ID=26411715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07522996A Expired - Lifetime JP3572791B2 (en) 1995-03-03 1996-03-04 Manufacturing method of thermoelectric cooling material

Country Status (1)

Country Link
JP (1) JP3572791B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU8649798A (en) * 1997-10-24 1999-05-17 Sumitomo Special Metals Co., Ltd. Silicon based conductive material and process for production thereof
KR20020010768A (en) * 2000-07-31 2002-02-06 병 선 천 Method of producing thermoelectric transform materials by using the twin rolling and the hot forming process

Also Published As

Publication number Publication date
JPH08306970A (en) 1996-11-22

Similar Documents

Publication Publication Date Title
US8884152B2 (en) Thermoelectric semiconductor material, thermoelectric semiconductor element using thermoelectric semiconductor material, thermoelectric module using thermoelectric semiconductor element and manufacturing method for same
JP3092463B2 (en) Thermoelectric material and thermoelectric conversion element
US20060118161A1 (en) Thermoelectric material having crystal grains well oriented in certain direction and process for producing the same
US6440768B1 (en) Thermoelectric semiconductor material and method of manufacturing the same
US5763293A (en) Process of fabricating a thermoelectric module formed of V-VI group compound semiconductor including the steps of rapid cooling and hot pressing
JP2829415B2 (en) Thermoelectric semiconductor material and method of manufacturing the same
JP4479628B2 (en) Thermoelectric material, manufacturing method thereof, and thermoelectric module
JP3572791B2 (en) Manufacturing method of thermoelectric cooling material
EP0996174B1 (en) Thermoelectric materials and thermoelectric conversion element
US5981863A (en) Process of manufacturing thermoelectric refrigerator alloy having large figure of merit
JP3572814B2 (en) Manufacturing method of thermoelectric cooling material
JPH06144825A (en) Production of thermoelectric element
JP3546675B2 (en) Thermoelectric material and method for producing thermoelectric material
JPH10209508A (en) Thermoelectric transducer and its manufacture
JP2556970B2 (en) Thermoelectric material manufacturing method
JP3575332B2 (en) Thermoelectric material and method for manufacturing the same
JP3572877B2 (en) Method for producing thermoelectric material and thermoelectric conversion element
JP3603698B2 (en) Thermoelectric material and thermoelectric conversion element
JPH08199281A (en) Production of thermoelectric refrigerating material and thermoelectric transducing element
JP2533356B2 (en) Thermoelectric element and manufacturing method thereof
JPH0955542A (en) Production of thermoelectric conversion material
JP2002118299A (en) Manufacturing method of thermoelement
JPH07211944A (en) Manufacture of thermoelectric element
JP3543650B2 (en) Method for producing thermoelectric material and method for producing thermoelectric module
JPH0344461A (en) Copper-selenium target material for sputtering

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040621

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 9

EXPY Cancellation because of completion of term