JP2556970B2 - Thermoelectric material manufacturing method - Google Patents

Thermoelectric material manufacturing method

Info

Publication number
JP2556970B2
JP2556970B2 JP61177662A JP17766286A JP2556970B2 JP 2556970 B2 JP2556970 B2 JP 2556970B2 JP 61177662 A JP61177662 A JP 61177662A JP 17766286 A JP17766286 A JP 17766286A JP 2556970 B2 JP2556970 B2 JP 2556970B2
Authority
JP
Japan
Prior art keywords
thermoelectric
thermoelectric material
grain size
powder
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61177662A
Other languages
Japanese (ja)
Other versions
JPS6336583A (en
Inventor
卓司 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP61177662A priority Critical patent/JP2556970B2/en
Priority to US07/016,265 priority patent/US4764212A/en
Priority to DE8787102425T priority patent/DE3767892D1/en
Priority to EP87102425A priority patent/EP0235702B1/en
Publication of JPS6336583A publication Critical patent/JPS6336583A/en
Application granted granted Critical
Publication of JP2556970B2 publication Critical patent/JP2556970B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C12/00Alloys based on antimony or bismuth
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Continuous Casting (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ペルチエ効果を利用する電子冷却用モジユ
ールの脚部材料或いはゼーベツク効果を利用する熱電発
電用モジユールの脚部材料として用いられる熱電材料の
製造方法に関するものである。
TECHNICAL FIELD The present invention relates to the production of a leg material of a module for electronic cooling utilizing the Peltier effect or a thermoelectric material used as a leg material of a module for thermoelectric power generation utilizing the Seebeck effect. It is about the method.

従来の技術 (イ) 従来、熱電材料製造には粉末→成形→焼結(以
下プレスシンター法と呼ぶ)やホツトプレス(HOT PRES
S)法が用いられてきた。
Conventional technology (a) Conventionally, in the production of thermoelectric materials, powder → molding → sintering (hereinafter referred to as press sintering method) and hot press (HOT PRES
The S) method has been used.

(ロ) 熱電材料の特性は、性能指数(figure of meri
t)Zで示される。
(B) The characteristics of thermoelectric materials are
t) denoted by Z.

Z≡α・σ/K α:ゼーベツク定数 σ:電気伝導度 K:熱伝導度 αは、結晶粒度にあまり影響されないが、σ及びK
は、一般に結晶粒度が細かくなる程小さくなる。
Z≡α 2 · σ / K α: Seebeck constant σ: Electric conductivity K: Thermal conductivity α is not affected by the grain size, but σ and K
Is generally smaller as the crystal grain size is smaller.

Si−Ge系熱電材料の文献(Rowe,Sinter Theory Prac
t.p.487〜495 '82)では、粒度がある程度以上細かくな
ると、σは変らず、Kのみが小さくなることが報告され
ている。
References on Si-Ge based thermoelectric materials (Rowe, Sinter Theory Prac
tp487-495 '82), it has been reported that σ does not change and K only decreases when the grain size becomes finer to some extent.

(ハ) 従つて、結晶粒度を細かくするほどZが大きく
なるため、結晶粒度の細かい粉末を用いたプレスシンタ
ー法、ホツトプレス(HOT PRESS)法が行なわれてき
た。
(C) Therefore, the finer the grain size is, the larger Z is. Therefore, the press sinter method and the hot press method using a powder having a fine grain size have been performed.

発明が解決しようとする問題点 プレスシンター法、ホツトプレス法に供せられる粉末
は、一般に機械的粉砕により作製されるが、長時間粉砕
すると不純物の混入量が増加するため、平均粒径は数ミ
クロン程度のものが用いられる。従つて得られる焼結体
の結晶粒度も数ミクロン程度となり、それ以上詳細な結
晶粒度をもつ熱電材料は作製不可能であつた。
Problems to be Solved by the Invention Powders to be subjected to the press sinter method and hot press method are generally produced by mechanical pulverization, but when pulverized for a long time, the amount of impurities mixed in increases, so the average particle size is several microns. Something is used. Therefore, the crystal grain size of the sintered body obtained was about several microns, and it was impossible to produce a thermoelectric material having a more detailed crystal grain size.

発明の目的 本発明は上記の事情に鑑みなされたもので、その目的
とするところは溶融状態の熱電合金を急冷することによ
りサブミクロンの結晶粒度をもつ薄膜状物、粉末状物を
得てこれらを冷間成形、焼結することによりサブミクロ
ンの結晶粒度をもつ熱電材料を得るようにして優れた性
能指数Zをもつ熱電材料の製造方法を提供することにあ
る。
OBJECT OF THE INVENTION The present invention has been made in view of the above circumstances, and its object is to obtain a thin film-like material having a submicron grain size and a powdery material by rapidly cooling a thermoelectric alloy in a molten state. It is intended to provide a method for producing a thermoelectric material having an excellent figure of merit Z by obtaining a thermoelectric material having a submicron grain size by cold forming and sintering.

問題点を解決するための手段及び作用 上記の目的を達成するために本発明は、熱電合金を溶
融する工程と、この溶融状態の熱電合金を不活性ガスと
共に回転するロールに噴出して急冷して上記熱電合金に
よる薄膜物又は粉末物を生成する工程と、この工程にて
生成された熱電合金による薄膜物又は粉末物を出発原料
として冷間成形又は焼結する工程にて熱電材料を製造よ
うにしたものである。
Means and Actions for Solving the Problems In order to achieve the above-mentioned object, the present invention comprises a step of melting a thermoelectric alloy, and the molten thermoelectric alloy is jetted to a rotating roll together with an inert gas and rapidly cooled. To produce a thermoelectric material by a step of forming a thin film or powder of the above thermoelectric alloy and a step of cold forming or sintering using the thin film or powder of the thermoelectric alloy produced in this step as a starting material. It is the one.

実施例 以下、本発明の実施例を図面に基づいて説明する。Embodiment An embodiment of the present invention will be described below with reference to the drawings.

サブミクロンの結晶粒度をもつ熱電材料を得る方法は
第1図に示すように溶湯留4に熱電合金3を装填し、高
周波コイル2で加熱、熱電合金3を溶融状態とする。
In order to obtain a thermoelectric material having a submicron grain size, as shown in FIG. 1, a molten metal fraction 4 is charged with a thermoelectric alloy 3 and heated by a high frequency coil 2 to bring the thermoelectric alloy 3 into a molten state.

金属製のロール1を周速5〜40m/secとなるように回
転させ溶湯留4より不活性ガス(圧力0.1kg/cm2〜4kg/c
m2)により溶湯をロール1に噴出させ薄膜或いは粉末と
する。
The metal roll 1 is rotated at a peripheral speed of 5 to 40 m / sec, and an inert gas (pressure 0.1 kg / cm 2 to 4 kg / c) is supplied from the molten metal residue 4.
The molten metal is ejected onto the roll 1 by m 2 ) to form a thin film or powder.

薄膜或いは粉末を冷間成形或いは焼結することにより
熱電材料を得る。
A thermoelectric material is obtained by cold forming or sintering a thin film or powder.

上記の熱電材料の製造方法では急冷される際、いたる
ところで結晶化するため、サブミクロンの結晶粒度をも
つ薄膜状、粉末状熱電材料が得られる。それらを冷間成
形、或いは結晶粒粗大化温度以下で焼結すればサブミク
ロンの結晶粒度をもつ熱電材料が得られる。
In the above-mentioned method for producing a thermoelectric material, when it is rapidly cooled, it is crystallized everywhere, so that a thin film or powdery thermoelectric material having a submicron grain size can be obtained. A thermoelectric material having a submicron grain size can be obtained by cold forming or sintering at a grain size coarsening temperature or lower.

その結果従来のプレスシンター法、ホツトプレス(HO
T PRESS)法で作製される熱電材料より優れた性能指数
Zをもつ熱電材料が作製可能となる。
As a result, the conventional press sintering method, hot press (HO
The thermoelectric material having a figure of merit Z superior to that of the thermoelectric material produced by the T PRESS) method can be produced.

実施例(1) Bi88Sb12の組成をもつ熱電合金を約600℃に加熱し、液
相状態とする。その状態より周速約10m/secで回転するC
u製のロールにガス噴射圧約1.0kg/cm2で溶湯を噴き付け
長さ約20mm、巾約2mm、厚さ約30μmの薄膜を作製し
た。
Example (1) A thermoelectric alloy having a composition of Bi 88 Sb 12 is heated to about 600 ° C. to be in a liquid phase state. C that rotates at a peripheral speed of about 10 m / sec from that state
The molten metal was sprayed onto a u roll at a gas spray pressure of about 1.0 kg / cm 2 to form a thin film having a length of about 20 mm, a width of about 2 mm, and a thickness of about 30 μm.

その薄膜を約30000倍で透過電顕で観察したところ、
第1図に示す組織であつた。
When the thin film was observed with a transmission electron microscope at a magnification of about 30,000,
The organization shown in FIG.

比較例(1) Bi88Sb12の組成をもつ熱電合金を約600℃に加熱し液
相状態とする。その状態より炉冷したインゴツトをボー
ルミルで約5時間粉砕した後Ar雰囲気中で約180℃、300
kg/cm2の圧力で10分間焼結した。
Comparative Example (1) A thermoelectric alloy having a composition of Bi 88 Sb 12 is heated to about 600 ° C to be in a liquid phase state. From that state, the furnace-cooled ingot was crushed with a ball mill for about 5 hours and then heated in an Ar atmosphere at about 180 ° C and 300 ° C.
It was sintered for 10 minutes at a pressure of kg / cm 2 .

その焼結体を1000倍で光学顕微鏡観察したところ、第
3図に示す組織であつた。
When the sintered body was observed with an optical microscope at a magnification of 1000, it had the structure shown in FIG.

比較例(1)は、従来技術(ハ)で示したホツトプレ
ス(HOT PRESS)法により作製する熱電材料の1例であ
る。焼結体の結晶粒度は数ミクロンである。(粉末に超
微粒子を用いれば更に結晶粒子の小さい焼結体が得られ
るが熱電材料のコストが上がるため実用的ではない。) 実施例(1)で示した通り本発明による方法では容易
にサブミクロンの結晶粒度をもつ急冷薄膜が得られた。
この薄膜を束ね冷間成形し、膜厚方向に垂直に電気を流
せば優れた性能をもつ熱電材料として使用できる。
Comparative Example (1) is an example of a thermoelectric material produced by the HOT PRESS method shown in Related Art (C). The crystal grain size of the sintered body is several microns. (If ultrafine particles are used for the powder, a sintered body having smaller crystal particles can be obtained, but this is not practical because the cost of the thermoelectric material increases.) As described in Example (1), the method according to the present invention can be easily performed in the sub direction. Quenched thin films with micron grain size were obtained.
This thin film can be used as a thermoelectric material having excellent performance by bundling these thin films, cold forming them, and passing electricity perpendicularly to the film thickness direction.

急冷時のロール回転数、噴射圧を変更すればサブミク
ロンの結晶粒度をもつ急冷粉末が得られる。急冷粉末を
ホツトプレス(HOT PRESS)し、焼結体を作製する際に
は、結晶粒が粗大化する温度以下で作業を行なう。
By changing the roll rotation speed and the injection pressure during quenching, a quenching powder having a submicron grain size can be obtained. When the quenched powder is hot pressed (HOT PRESS) to produce a sintered body, the work is performed at a temperature not higher than the temperature at which the crystal grains become coarse.

急冷法すなわち本発明方法において、ロール回転数が
大きくなる程、又噴射圧が小さくなる程得られる急冷物
は薄状から粉末状へ変化する。ロール回転数が周速5m/s
ec以下、噴射圧が4kg/cm2以上になると薄片の厚みが増
し急冷度が下がりロールへ薄片が巻きつくなどの不都合
が生じる。またロール回転数が周速40m/sec以上、噴射
厚が0.1kg/cm2以下になると粉末が細かくなり回収率が
悪くなるため好ましくない。
In the quenching method, that is, the method of the present invention, as the roll rotation number increases and the injection pressure decreases, the obtained quenching product changes from thin to powder. Roll speed is 5m / s
When the injection pressure is ec or less and the injection pressure is 4 kg / cm 2 or more, the thickness of the flakes increases, the quenching degree decreases, and the flakes wind around the roll. Further, when the roll speed is 40 m / sec or more and the injection thickness is 0.1 kg / cm 2 or less, the powder becomes fine and the recovery rate is deteriorated, which is not preferable.

発明の効果 以上詳述したように、熱電合金を溶融する工程と、こ
の溶融状態の熱電合金を不活性ガスと共に回転するロー
ルに噴出して急冷して上記熱電合金による薄膜物又は粉
末物を生成する工程と、この工程にて生成された熱電合
金による薄膜物又は粉末物を出発材料として冷間成形又
は焼結する工程にて熱電材料を製造ようにしたことを特
徴とするものである。
EFFECTS OF THE INVENTION As described in detail above, a step of melting a thermoelectric alloy, and the molten thermoelectric alloy are jetted together with an inert gas onto a rotating roll and rapidly cooled to form a thin film or powder of the thermoelectric alloy. And the step of cold forming or sintering using the thin film or powder of the thermoelectric alloy produced in this step as a starting material.

したがって、溶融状態の電熱合金を急冷することによ
りいたるところで結晶化してサブミクロンの結晶粒度を
もつ薄膜状物、粉末状物が生じこれらを冷間成形、焼結
することによりサブミクロンの結晶粒度をもつ熱電材料
を得ることができる。
Therefore, by rapidly cooling the electrothermal alloy in a molten state, it is crystallized everywhere to form a thin film-like material or a powdery material having a submicron crystal grain size. By cold forming and sintering these, a submicron crystal grain size is obtained. It is possible to obtain a thermoelectric material having

この結果、従来のプレスシンター法、ホットプレス
(HOT PRESS)法で作製される熱電材料より優れた性能
指数Zをもつ熱電材料が作製可能となる。
As a result, it becomes possible to manufacture a thermoelectric material having a figure of merit Z superior to the thermoelectric materials manufactured by the conventional press sinter method and hot press (HOT PRESS) method.

そして特に本発明によれば、急冷により生成された薄
膜物又は粉末物は、その後の工程にて直ちに冷間成形又
は焼結して熱電材料を製造するようにしたことにより、
機械的粉砕工程が不要となり、この粉砕工程における不
純物の混入を防止でき、サブミクロンの結晶粒度をもつ
熱電材料を得ることができる。
And in particular, according to the present invention, the thin film product or powder product produced by quenching is immediately cold-formed or sintered in a subsequent step to produce a thermoelectric material,
A mechanical crushing step is not required, impurities can be prevented from being mixed in this crushing step, and a thermoelectric material having a submicron grain size can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明方法に用いる熱電材料の製造方法の構成
説明図、第2図は熱電材料の薄膜を約30000倍で透過電
子顕微鏡で観察してなる金属組織を示す写真、第3図は
熱電材料の焼結体を1000倍で光学顕微鏡で観察してなる
金属組織を示す写真である。 1はロール、2は高周波コイル、3は熱電合金、4は溶
湯留。
FIG. 1 is a structural explanatory view of a method for producing a thermoelectric material used in the method of the present invention, FIG. 2 is a photograph showing a metal structure obtained by observing a thin film of the thermoelectric material with a transmission electron microscope at a magnification of about 30,000, and FIG. 1 is a photograph showing a metallographic structure obtained by observing a sintered body of a thermoelectric material at 1000 times with an optical microscope. 1 is a roll, 2 is a high frequency coil, 3 is a thermoelectric alloy, and 4 is a molten metal residue.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】熱電合金を溶融する工程と、この溶融状態
の熱電合金を不活性ガスと共に回転するロールに噴出し
て急冷して上記熱電合金による薄膜物又は粉末物を生成
する工程と、この工程にて生成された熱電合金による薄
膜物又は粉末物を出発材料として冷間成形又は焼結する
工程とからなる熱電材料の製造方法。
1. A step of melting a thermoelectric alloy, a step of ejecting the molten thermoelectric alloy together with an inert gas onto a rotating roll and quenching to produce a thin film or powder of the thermoelectric alloy, A method for producing a thermoelectric material, which comprises a step of cold forming or sintering using a thin film or powder of a thermoelectric alloy produced in the step as a starting material.
JP61177662A 1986-02-21 1986-07-30 Thermoelectric material manufacturing method Expired - Lifetime JP2556970B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP61177662A JP2556970B2 (en) 1986-07-30 1986-07-30 Thermoelectric material manufacturing method
US07/016,265 US4764212A (en) 1986-02-21 1987-02-19 Thermoelectric material for low temperature use and method of manufacturing the same
DE8787102425T DE3767892D1 (en) 1986-02-21 1987-02-20 THERMOELECTRIC MATERIAL, APPLICABLE TO LOW TEMPERATURES AND METHOD FOR THE PRODUCTION THEREOF.
EP87102425A EP0235702B1 (en) 1986-02-21 1987-02-20 Thermoelectric material for low temperature use and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61177662A JP2556970B2 (en) 1986-07-30 1986-07-30 Thermoelectric material manufacturing method

Publications (2)

Publication Number Publication Date
JPS6336583A JPS6336583A (en) 1988-02-17
JP2556970B2 true JP2556970B2 (en) 1996-11-27

Family

ID=16034909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61177662A Expired - Lifetime JP2556970B2 (en) 1986-02-21 1986-07-30 Thermoelectric material manufacturing method

Country Status (1)

Country Link
JP (1) JP2556970B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101455713B1 (en) * 2013-04-23 2014-11-04 한국과학기술연구원 Method of preparing high performance thermoelectric materials using cold working

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0583795A1 (en) * 1988-03-30 1994-02-23 Idemitsu Petrochemical Co. Ltd. Method for producing thermoelectric elements
JP2659309B2 (en) * 1992-05-28 1997-09-30 中部電力株式会社 Thermoelectric conversion element
JPH05343747A (en) * 1992-06-09 1993-12-24 Matsushita Electric Ind Co Ltd Thermoelectric material, manufacture thereof and sensor
US5981863A (en) * 1995-03-03 1999-11-09 Yamaha Corporation Process of manufacturing thermoelectric refrigerator alloy having large figure of merit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4868409A (en) * 1971-12-21 1973-09-18
JPS61507A (en) * 1984-06-12 1986-01-06 Ishikawajima Harima Heavy Ind Co Ltd Manufacture of metallic powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101455713B1 (en) * 2013-04-23 2014-11-04 한국과학기술연구원 Method of preparing high performance thermoelectric materials using cold working

Also Published As

Publication number Publication date
JPS6336583A (en) 1988-02-17

Similar Documents

Publication Publication Date Title
US5929351A (en) Co-Sb based thermoelectric material and a method of producing the same
US5108515A (en) Thermoelectric material and process for production thereof
US20060118161A1 (en) Thermoelectric material having crystal grains well oriented in certain direction and process for producing the same
US5246504A (en) Thermoelectric material
US5763293A (en) Process of fabricating a thermoelectric module formed of V-VI group compound semiconductor including the steps of rapid cooling and hot pressing
KR20160125132A (en) Method for Bi-Te-based thermoelectric materials using Resistance Heat
US4764212A (en) Thermoelectric material for low temperature use and method of manufacturing the same
JP2556970B2 (en) Thermoelectric material manufacturing method
KR20180060265A (en) METHOD FOR MANUFACTURING Bi-Te BASED THERMOELECTRIC MATERIAL CONTROLLED OXIDATION AND Bi-Te BASED THERMOELECTRIC MATERIAL MANUFACTURED THEREBY
JPH077186A (en) Production of thermoelectric conversion material
JP3572939B2 (en) Thermoelectric material and method for manufacturing the same
KR102033900B1 (en) Composite thermoelectric materials and manufacturing method of the same
JPH0341780A (en) Manufacture of thermoelectric material
JP2000036627A (en) Thermoelectric material and thermoelectric transfer element
JP3572791B2 (en) Manufacturing method of thermoelectric cooling material
JP2000114606A (en) Silicon/germanium based thermoelectric material and manufacture of the same
JP3572814B2 (en) Manufacturing method of thermoelectric cooling material
JP3603698B2 (en) Thermoelectric material and thermoelectric conversion element
KR102670992B1 (en) Themoelectric material and manufacturing method thereof
JPH06216415A (en) Manufacture of thermoelectric conversion material
JP2533356B2 (en) Thermoelectric element and manufacturing method thereof
JP2984307B2 (en) Aluminum oxide, molded product thereof, and method for producing aluminum oxide
JPH10112558A (en) Manufacture of thermoelectric material and thermoelectric conversion element
JPH07211944A (en) Manufacture of thermoelectric element
KR20230097588A (en) Thermoelectric material and preparation method thereof