KR20020010768A - Method of producing thermoelectric transform materials by using the twin rolling and the hot forming process - Google Patents

Method of producing thermoelectric transform materials by using the twin rolling and the hot forming process Download PDF

Info

Publication number
KR20020010768A
KR20020010768A KR1020000044222A KR20000044222A KR20020010768A KR 20020010768 A KR20020010768 A KR 20020010768A KR 1020000044222 A KR1020000044222 A KR 1020000044222A KR 20000044222 A KR20000044222 A KR 20000044222A KR 20020010768 A KR20020010768 A KR 20020010768A
Authority
KR
South Korea
Prior art keywords
thermoelectric
hot
type
cold
producing
Prior art date
Application number
KR1020000044222A
Other languages
Korean (ko)
Inventor
병 선 천
김택수
손현택
김태경
Original Assignee
병 선 천
김택수
이경호
주식회사 대광세마이컨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 병 선 천, 김택수, 이경호, 주식회사 대광세마이컨 filed Critical 병 선 천
Priority to KR1020000044222A priority Critical patent/KR20020010768A/en
Publication of KR20020010768A publication Critical patent/KR20020010768A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/041Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/02Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/10Inert gases
    • B22F2201/11Argon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/20Use of vacuum

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE: A method is provided to manufacture a thermoelectric semiconductor green compact having high strength and superior thermoelectric properties consecutively using hot forming such as hot forging, hot extrusion and sintering after manufacturing and pulverizing a flake shaped Bi2Te3 based thermoelectric material in which composition is uniform, and structure is fine using twin rolling. CONSTITUTION: The method for manufacturing a Bi2Te3 based thermoelectric material comprises the steps of fusing a Bi2Te3 based alloy to which n type compositions of Sb2Te3 and Bi2Se3 are added, and a Sb2Te3 based alloy to which p type composition of Bi2Te3 is added as basic materials in a furnace where a constant pressure of vacuum, or an argon or nitrogen atmosphere is maintained, and manufacturing the fused alloy into thermoelectric semiconductor flakes having homogeneous and fine structure using twin rolling, wherein CdCl2 and Sbi2 are added to the basic materials as a dopant in case of n type while Te is added to the basic materials as a dopant in case of p type; pulverizing the manufactured thermoelectric semiconductor flakes in a fine powder form; cold forming and degassing the pulverized thermoelectric semiconductor powder; and hot forming the cold green compact that is obtained from the cold forming and degassing step, wherein the cold green compact is charged into a hot forging equipment, a hot extruder or a sintering furnace so that it is preheated and press formed, extruded, or hot sintered, thereby obtaining a green compact having a high density and superior bending strength and thermoelectric performance.

Description

급속응고 쌍롤법과 열간 성형가공법을 이용한 Bi₂Te₃계 열전변환재료의 제조방법{Method of producing thermoelectric transform materials by using the twin rolling and the hot forming process}Method of producing thermoelectric transform materials by using the twin rolling and the hot forming process

본 발명은 급속응고법의 일환인 쌍롤법(twin rolling)을 이용하여 조성이 균일하고 조직이 미세하며 균질한 P형 및 N형 Bi2Te3계 열전재료를 구형의 분말형태로 제조하고 후속 가공공정으로서 열간 소성가공을 수행함으로써, 기존의 공정에 비해 기계적 강도가 우수하고 열전성능도 확보되는 대량생산용 P형 및 N형 Bi2Te3계 열전 성형체를 제조하는 방법에 관한 것이다.The present invention uses twin rolling, which is part of the rapid solidification method, to prepare P-type and N-type Bi 2 Te 3 -based thermoelectric materials with uniform composition, fine structure, and homogeneous powder in spherical powder form, and then process The present invention relates to a method for producing P-type and N-type Bi 2 Te 3 -based thermoelectric molded products for mass production, which have excellent mechanical strength and also secure thermoelectric performance, by performing hot plastic working as a method.

열전반도체 재료는, 재료양단에 온도차가 존재하는 경우 전자나 정공이 저온쪽으로 확산하여 기전력이 발생하게되는 제벡(Seebeck)효과, 이종재료를 연결한 회로에 직류를 흘렸을 때 양 접합부에 각각 발열 및 흡열현상이 발생하고 전류의 방향을 반대로 하면 이 관계가 서로 바뀌는 현상을 이용한 펠티에(Peltier) 효과, 일정한 길이를 가진 균일한 조성의 재료 양단의 온도가 다르고 길이방향으로 직류가흐르면 온도분포를 일정하게 유지하기 위해 물질내부에 흡열 또는 발열현상이 발생한다는 톰슨 (Thomson) 효과를 이용하여 열에너지를 전기 에너지로, 또는 전기 에너지를 열에너지로 직접 변환시키는 기능을 갖는 재료이다.The thermoelectric semiconductor material has a Seebeck effect in which electrons or holes are diffused to a lower temperature when there is a temperature difference across the material, and heat is generated and endothermic to both junctions when a direct current is applied to a circuit connecting dissimilar materials. When the phenomenon occurs and the direction of the current is reversed, the Peltier effect using the phenomenon that the relationship is changed with each other, and the temperature distribution is kept constant when the temperature of both ends of the material of uniform composition with a certain length is different and the DC flows in the longitudinal direction In order to achieve the endothermic or exothermic phenomena in the material, the Thomson effect is used to convert thermal energy into electrical energy or directly into thermal energy.

이 원리를 이용하여 열전반도체 재료는 미래형 에너지분야인 열전발전 (thermoelectric power generation)이나 열전냉각(thermoelectric cooling) 분야에 이용될 수 있어서 적외선 센서, 레이저 다이오우드 및 CCD 소자의 focal plate 냉각 등 각종 전자기기나 IC 제품의 국부냉각용으로 응용되고 있으며, 이 외에 의료용이나 과학용 항온장치 및 열전냉각용 냉장고, 에어컨 및 열교환기 분야에도 적용되고 있다.By using this principle, thermoelectric semiconductor materials can be used in the fields of thermoelectric power generation and thermoelectric cooling, which are future energy fields, so that various electronic devices such as infrared sensors, laser diodes and focal plate cooling of CCD devices can be used. It is applied to local cooling of IC products, and is also applied to medical and scientific thermostats, thermoelectric cooling refrigerators, air conditioners and heat exchangers.

실온부근에서 성능지수가 높아 냉각용 열전재료로 각광 받고 있는 Bi2Te3계 열전재료는 기존의 단결정 제조법을 이용하여 제조할 경우, 단위정이 마름모 (Rhombohedral)로서 밑면(basal plane)이 벽계면이 되므로 전기적, 열전특성에 강한 이방성을 갖게 하며 가공시 벽계면을 따라 쉽게 쪼개지기 때문에 재료의 적지 않은 손실과 가공상의 어려움을 갖고 있다.Bi 2 Te 3 based thermoelectric materials, which are spotlighted as cooling thermoelectric materials due to their high performance index near room temperature, are manufactured by the conventional single crystal manufacturing method, and the unit crystals are rhombohedral. Therefore, it has strong anisotropy in electrical and thermoelectric properties, and because it breaks easily along the wall interface during processing, it has a considerable loss of materials and processing difficulties.

또한, 주조-분쇄법을 이용하여 분말야금의 형태로 제조하면, 주조제품 자체가 편석이 심한 불균질 조직을 형성하여 분쇄 후에도 편석의 존재, 분쇄매개체에 의한 분순물 혼입, 조직의 조대화 등에 기인한 열전특성 및 강도 저하의 원인이 되며 또한 생산성의 저하가 단점이 되고 있다.In addition, when the powder is manufactured in the form of powder metallurgy using the casting-grinding method, the cast product itself forms a highly heterogeneous structure, which is caused by the presence of segregation even after grinding, incorporation of impurities in the grinding media, and coarsening of the tissue. It is a cause of deterioration of thermoelectric properties and strength, and a decrease in productivity is a disadvantage.

본 발명은 상기와 같은 종래의 문제점을 해결하기 위해 안출된 것으로, 본 발명의 목적은 쌍롤법을 이용하여 조성이 균일하고 조직이 미세한 플레이크 형태의 Bi2Te3계 열전재료를 제조하고 분쇄한후, 계속해서 열간단조, 열간압출, 소결 등의 열간 소성가공법을 이용하여 고강도와 우수한 열전특성을 보유한 열전반도체 성형체를 제조하는 방법을 제공하는데 있다.The present invention has been made to solve the conventional problems as described above, the object of the present invention by using a twin roll method to produce and pulverize Bi 2 Te 3 type thermoelectric material of uniform flake shape and fine structure Then, the present invention provides a method of manufacturing a thermoelectric semiconductor molded body having high strength and excellent thermoelectric properties by using a hot plastic working method such as hot forging, hot extrusion and sintering.

도 1은 본 발명에 따른 급속응고 쌍롤법을 이용하여 n형 및 p형 열전반도체 합금분말을 제조하기에 적합한 급속응고 쌍롤장치의 구성을 개략적으로 나타낸 도면,1 is a view schematically showing the configuration of a rapid solidification twin roll apparatus suitable for producing n-type and p-type thermoelectric semiconductor alloy powder using the rapid solidification twin roll method according to the present invention;

도 2는 도 1의 급속응고 쌍롤장치에서 제조된 열전반도체 합금플레이크를 미세한 분말의 형태로 분쇄하기위한 분쇄장치의 구성을 개략적으로 나타낸 도면,FIG. 2 is a view schematically showing the configuration of a pulverizing apparatus for pulverizing the thermoelectric alloy flakes prepared in the rapid solidification twin roll apparatus of FIG. 1 in the form of fine powder;

도 3은 도 2의 분쇄장치에서 생성물로 얻어진 열전반도체 합금분말을 소성가공하기 위한 열간단조장치의 구성을 개략적으로 나타낸 도면,3 is a view schematically showing the configuration of a hot forging apparatus for plastic processing a thermoelectric semiconductor alloy powder obtained as a product in the grinding apparatus of FIG.

도 4는 도 2의 분쇄장치에서 생성물로 얻어진 열전반도체 합금분말을 소성가공하기 위한 열간압출장치의 구성을 개략적으로 나타낸 도면, 그리고4 is a view schematically showing the configuration of a hot extrusion device for plastic processing a thermoelectric semiconductor alloy powder obtained as a product in the grinding device of FIG.

도 5는 도 2의 분쇄장치에서 생성물로 얻어진 열전반도체 합금분말을 소성가공하기 위한 소결로의 구성을 개략적으로 나타낸 도면이다.FIG. 5 is a view schematically showing a configuration of a sintering furnace for plastic working thermoelectric semiconductor alloy powder obtained as a product in the crushing apparatus of FIG. 2.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

10 : 급속응고 쌍롤장치 11 : 합금용융장치10: rapid solidification double roll device 11: alloy melting device

13,23 : 도가니 15 : 고주파 유도로13,23: crucible 15: high frequency induction furnace

17,24 : 열전대 20 : 보온장치17,24: thermocouple 20: thermostat

21 : 오리피스 22 : 저항열선21: Orifice 22: Resistance heating wire

30 : 급속응고장치 32 : 쌍롤30: rapid solidification device 32: twin roll

34 : 전동 이송장치 35 : 플레이크 수집용기34: electric feed device 35: flake collection container

70 : 열간단조장치 80 : 열간압출장치70: hot forging device 80: hot extrusion device

90 : 소결로90: sintering furnace

상기와 같은 목적을 달성하기 위해서, 본 발명은,In order to achieve the above object, the present invention,

n형 조성인 Sb2Te3와 Bi2Se3첨가 Bi2Te3계 합금, 그리고 p형 조성인 Bi2Te3첨가 Sb2Te3계 합금을 기본 재료로서 일정압력의 진공 또는 아르곤이나 질소 분위기가 유지되는 로내에서 용융하고 용융된 합금을 쌍롤법을 이용하여 조직이 균일하고 미세한 열전반도체 플레이크를 제조하는 단계(S1);n-type composition of Sb 2 Te 3 and Bi 2 Se 3 adding Bi 2 Te 3 based alloys, and the p-type composition of Bi 2 Te 3 is added Sb 2 Te 3 based alloys a vacuum or an argon or a nitrogen atmosphere at a predetermined pressure as the base material Melting and melting the molten alloy in the furnace in which the molten alloy is prepared by using a twin roll method to produce a uniform and fine thermal semiconductor flake (S1);

제조된 열전반도체 플레이크를 미세한 분말의 형태로 분쇄하는 단계(S2);Grinding the prepared thermoconductor flakes in the form of fine powder (S2);

분쇄된 열전반도체 분말을 냉간성형하고 탈가스시키는 단계(S3); 그리고Cold forming and degassing the ground thermoelectric semiconductor powder (S3); And

상기 단계(S3)로부터 얻어진 냉간성형체를 열간성형하는 단계(S4)를 포함하는 것을 특징으로 하는 Bi2Te3계 열전변환재료의 제조방법을 제공한다.It provides a method for producing a Bi 2 Te 3 system thermoelectric conversion material comprising the step (S4) of hot forming the cold-formed body obtained from the step (S3).

상기 단계(S1)에서는, 상기 기본 재료에 도판트로서 n형의 경우 CdCl2및 Sbi2를 첨가하고 p형의 경우 Te을 첨가한다.In the step (S1), in the case of a n-type dopant in the base material is added to CdCl 2 and Sbi 2 was added to the case of p-Te.

또한, 상기 단계(S4)에서는, 상기 냉간성형체를 열간단조장치, 열간압출장치또는 소결로 내에 장입한후 예열하고 가압성형, 압출성형 또는 열간소결하여 밀도가 높고 굽힘강도와 열전성능이 우수한 성형체를 얻는다.Further, in the step (S4), the cold molded body is charged into a hot forging device, a hot extrusion device or a sintering furnace, and then preheated, press-molded, extruded or hot sintered to obtain a molded product having high density, excellent bending strength and thermoelectric performance. Get

이상에서 언급한 바와 같이, 본 발명에 따르면, Bi2Te3계 열전반도체합금을 제조하는데 있어 급속응고법의 일환인 쌍롤법(twin rolling)을 이용하여 조직이 미세하고 화학적으로 균질한 급속응고 n형 및 p형 Bi2Te3계 합금플레이크를 제조함으로써, 조성이 균일하고 편석이 거의 없는 균질한 단일 고용체의 미세조직을 얻는다. 또한, 이렇게 얻어진 합금플레이크를 분쇄 및 탈가스 처리한 후, 열간단조, 열간압출 및 열간소결공정 등의 열간성형법을 이용하여 굽힘강도가 높고 열전성능도 비교적 우수한 n형 및 p형 Bi2Te3계 합금 성형체를 제조한다.As mentioned above, according to the present invention, in the preparation of the Bi 2 Te 3 type thermoconductor alloy, the rapid solidification n-type of fine and chemically homogeneous tissues using twin rolling, which is part of the rapid solidification method And p-type Bi 2 Te 3 -based alloy flakes to obtain a homogeneous single solid microstructure having a uniform composition and little segregation. In addition, the alloy flakes thus obtained are pulverized and degassed, and then n-type and p-type Bi 2 Te 3 based on high bending strength and relatively high thermoelectric performance by using hot forming methods such as hot forging, hot extrusion and hot sintering. An alloy molding is produced.

이하, 첨부된 도면들을 참조로하여 본 발명에 따른 Bi2Te3계 열전변환재료의 제조방법을 상세히 설명하면 다음과 같다.Hereinafter, a method of manufacturing a Bi 2 Te 3 based thermoelectric conversion material according to the present invention will be described in detail with reference to the accompanying drawings.

도 1에 도시된 바와 같이, 본 발명에 따른 Bi2Te3계 열전반도체 플레이크를 제조하는데 사용하기에 적합한 급속응고 쌍롤장치(10)는 주로 합금용융장치(11)와 그 아래 차례로 배치된 보온장치(20) 및 급속응고장치(30)를 구비한다.As shown in FIG. 1, the rapid solidification twin roll device 10 suitable for use in manufacturing Bi 2 Te 3 based thermoconductor flakes according to the present invention is mainly an alloy melting device 11 and a thermostat disposed below it. 20 and the rapid solidification apparatus 30 are provided.

먼저, 합금용융장치(11)는 Bi2Te3계 열전반도체용 합금을 담기 위한 도가니(13), 도가니(13)를 가열하여 합금을 용융하기 위해 도가니(13) 주위를 에워싸고 있는 고주파 유도로(15), 용탕의 온도를 측정하기 위해 도가니(13) 내에 설치되는 열전대(17)를 구비한다.First, the alloy melting apparatus 11 is a high frequency induction furnace that surrounds the crucible 13 to heat the crucible 13 and the crucible 13 to contain an alloy for the Bi 2 Te 3 type thermoelectric semiconductor. (15), the thermocouple 17 provided in the crucible 13 for measuring the temperature of a molten metal is provided.

도가니(13)의 하부에 배치된 보온장치(20)는 합금용융장치(11)의 도가니(13)에서 용융된 합금을 일정한 온도로 유지시킬 수 있도록 저항 열선(22)에 의해 가열되는 도가니(23)와 온도측정용 열전대(24), 개방시에 용탕이 외부로 자유낙하할 수 있도록 도가니(23)의 하부에 설치된 오리피스(21)를 구비한다.The thermostat 20 disposed below the crucible 13 is a crucible 23 heated by a resistance heating wire 22 to maintain the molten alloy at a constant temperature in the crucible 13 of the alloy melting apparatus 11. ) And a thermocouple 24 for temperature measurement, and an orifice 21 installed below the crucible 23 so that the molten metal can freely fall to the outside when opened.

고주파유도로(15)에 의해서 가열되는 도가니(13) 내에서 진공 또는 가스 분위기하에 용융된 Bi2Te3계 열전반도체 합금 용탕은 보온장치(20)의 도가니(23)에 설치된 오리피스(21)를 통해, 그 아래에 배치된 급속응고장치(30)의 쌍롤(32)속으로 자유낙하하게 된다.In the crucible 13 heated by the high-frequency induction path 15, the Bi 2 Te 3 -based thermoconductor alloy molten metal melted in a vacuum or gas atmosphere is used to orifice 21 installed in the crucible 23 of the thermostat 20. Through this, free fall into the pair roll 32 of the rapid solidification device 30 disposed thereunder.

급속응고장치(30)는 쌍롤(32)을 고속 회전시키기 위한 전동모터(참조부호 생략), 보온장치(20)를 왕복이송시키기 위한 전동 이송장치(34) 및 급속응고된 합금 플레이크를 수집하도록 쌍롤(32) 아래쪽에 배치된 플레이크 수집용기(35)를 구비한다.Rapid solidification device 30 is an electric motor (not shown) for rotating the pair of rolls 32 at high speed, an electric feeder 34 for reciprocating the thermostat 20, and a pair of rolls to collect the solidified alloy flakes. (32) It is provided with a flake collection container 35 disposed below.

이와같이 구성된 급속응고 쌍롤장치(10)를 이용하여 조직이 미세하고 균일한 Bi2Te3계 열전반도체 합금분말을 제조하는 과정을 간략하게 설명한다.Using the rapid solidification twin roll device 10 configured as described above will be briefly described a process for producing a fine and uniform Bi 2 Te 3 system thermoelectric alloy powder.

n형 조성인 Sb2Te3와 Bi2Se3첨가 Bi2Te3계 합금, 그리고 p형 조성인 Bi2Te3첨가 Sb2Te3계 합금을 기본 재료로 취하고 필요에 따라 도판트로서 n형의 경우 CdCl2및 Sbi2를 첨가하고 p형의 경우 Te을 첨가한 합금을 10-2∼10-5torr의 진공 또는 아르곤이나 질소 분위기가 유지되는 고주파유도로(15)에서 약 600∼800℃의 온도로용융하여 이것을 보온로(20)의 도가니(23)에 붓는다. 이때, 용탕의 자체 교반반응과 안정화를 위해 녹은후 약 30분간 유지한다.n-type composition of Sb 2 Te 3 and Bi 2 Se 3 adding Bi 2 Te 3 based alloys, and the p-type composition of Bi 2 Te 3 is added n-type as the dopant if necessary to take the Sb 2 Te 3 based alloys as the base material In the case of p-type, the alloy to which CdCl 2 and Sbi 2 are added and Te is added is about 600 to 800 ° C. in a vacuum of 10 −2 to 10 −5 torr or a high frequency induction furnace 15 in which an argon or nitrogen atmosphere is maintained. It melts at the temperature of and pours it into the crucible 23 of the heating furnace 20. At this time, the molten metal is maintained for about 30 minutes after melting to stabilize and stabilize the reaction.

보온로(20)의 도가니(23)에 용탕이 부어지면, 직경 2∼6mm의 오리피스(21)를 통해 용탕이 쌍롤(32)방향으로 흐르게 되고 이때 100∼1,000rpm으로 회전하고 있는 쌍롤(32) 사이에서 분쇄되어 플레이크 형태를 띠면서 급속한 응고가 일어나게 된다. 이때, 플레이크의 크기와 급속응고효과는 회전하는 쌍롤(32)의 간격(0∼5mm)과 오리피스(21)의 직경에 따라 변화한다.When the molten metal is poured into the crucible 23 of the heating furnace 20, the molten metal flows in the direction of the twin roll 32 through an orifice 21 having a diameter of 2 to 6 mm, and at this time, the twin roll 32 rotating at 100 to 1,000 rpm. Crushing between them takes the form of flakes, causing rapid solidification. At this time, the size and rapid solidification effect of the flakes change depending on the spacing (0 to 5 mm) of the rotating twin roll 32 and the diameter of the orifice 21.

응고가 완료된 합금 플레이크는 플레이크 수집용기(35)에서 포집된다.The solidified alloy flake is collected in the flake collecting container (35).

도 2는 도 1의 급속응고 쌍롤장치에서 제조된 열전반도체 합금플레이크를 미세한 분말의 형태로 분쇄하기위한 분쇄장치의 구성을 개략적으로 나타낸 도면이다.FIG. 2 is a view schematically illustrating a configuration of a pulverizing apparatus for pulverizing the thermoelectric alloy flakes manufactured in the rapid solidification twin roll apparatus of FIG. 1 in the form of fine powder.

도 2를 참조하면, 분쇄장치(40)는 알루미나 용기(41)를 구비하며, 용기(41) 내부에는 급속응고 열전반도체 플레이크를 미세하게 분쇄시킬 수 있는 알루미나 볼(42)이 플레이크(43)와 함께 장입되어 있다. 알루미나 용기(41)는 회전모터(44)에 의해 회전하는 회전대(45) 상에서 회전될 수 있도록 고안되어 있으며, 진공 또는 분위기 가스 공급용 노즐(46)이 부착되어 있다.Referring to FIG. 2, the grinding device 40 includes an alumina container 41, and inside the container 41, an alumina ball 42 capable of finely grinding a quick solidified thermoelectric semiconductor flake is provided with a flake 43. It is charged together. The alumina container 41 is designed to be rotated on the rotating table 45 which is rotated by the rotary motor 44, and is equipped with a nozzle 46 for supplying a vacuum or atmosphere gas.

도 2에 도시된 분쇄장치(40)에서 생성물로 얻어진 Bi2Te3계 열전반도체 합금분말은 취급이 용이하도록 공지된 냉간성형프레스(도시되지 않음)를 이용하여 약 100톤의 압력을 가하여 냉간성형체로 만든다.The Bi 2 Te 3 -based thermoconductor alloy powder obtained as a product in the crusher 40 shown in FIG. 2 is cold molded by applying a pressure of about 100 tons using a known cold forming press (not shown) for easy handling. Make it.

냉간성형장치에서 빌렛으로 성형된 냉간성형체는 열간단조장치(70), 열간압출장치(80) 또는 소결로(90)를 이용하여 소성가공한다.The cold formed body formed into a billet in the cold forming apparatus is plastically processed using the hot forging apparatus 70, the hot extrusion apparatus 80, or the sintering furnace 90.

도 3은 도 2의 분쇄장치에서 생성물로 얻어진 열전반도체 합금분말을 소성가공하기 위한 열간단조장치의 구성을 개략적으로 나타낸 도면이다.3 is a view schematically showing the configuration of a hot forging apparatus for plastic processing a thermoelectric semiconductor alloy powder obtained as a product in the crushing apparatus of FIG.

도 3을 참조하면, 열간단조장치(70)는 성형다이(71), 다이가열장치(72), 가압장치(73), 주 몸체(74), 상부펀치(75), 지지봉(76), 빌렛 예열장치(77), 컨트롤러(78)를 구비한다.Referring to FIG. 3, the hot forging device 70 includes a molding die 71, a die heating device 72, a pressurizing device 73, a main body 74, an upper punch 75, a support rod 76, and a billet. The preheater 77 and the controller 78 are provided.

냉간성형체는 탈가스 처리후 열간단조장치(70)의 성형다이(71)에 장입된후 성형다이(71)와 함께 약 350∼500℃의 온도범위 내에서 예열된 후 상부펀치(75)를 하강시켜 그 온도범위 내에서 가압성형하여 밀도가 99%이상인 고강도 성형체를 제조한다. 이렇게 얻어진 성형체의 굽힘강도는 50~80MPa을 나타내며, 열전성능 Z = 2.7∼3.0 ×10-3/K로서 비교적 우수하다.The cold formed body is charged into the forming die 71 of the hot forging device 70 after degassing, and then preheated together with the forming die 71 within a temperature range of about 350 to 500 ° C., and then the upper punch 75 is lowered. Press molding within the temperature range to produce a high-strength molded body having a density of 99% or more. The bending strength of the molded article thus obtained is 50 to 80 MPa, and is relatively excellent as thermoelectric performance Z = 2.7 to 3.0 x 10 -3 / K.

도 4는 도 2의 분쇄장치에서 생성물로 얻어진 열전반도체 합금분말을 소성가공하기 위한 열간압출장치의 구성을 개략적으로 나타낸 도면이다.FIG. 4 is a view schematically showing the configuration of a hot extrusion apparatus for plastic processing a thermoelectric semiconductor alloy powder obtained as a product in the crushing apparatus of FIG. 2.

도 4에 도시된 바와 같이, 열간압출장치(80)는 가압장치(81), 컨테이너(82) 및 컨테이너 가열장치(83), 다이(84), 램(85), 실린더(86), 주 지지대(87) 및 빌렛 예열로(88) 등을 구비한다.As shown in FIG. 4, the hot extrusion device 80 includes a pressurization device 81, a container 82, and a container heating device 83, a die 84, a ram 85, a cylinder 86, and a main support. 87, a billet preheating furnace 88, and the like.

탈가스 처리된 냉간성형체는 열간압출장치(80)를 이용하여 약 350∼500℃의 온도범위 내에서 동일 온도로 예열된 다이(84)와 컨테이너(82)에서 이론밀도 99%이상으로 성형된다. 이렇게 얻어진 성형체는 주사전자현미경으로 관찰한 미세조직과X선 분석을 검토하여 볼 때, 조직이 균일하고 미세한 단일 고용체를 형성한다. 성형체의 굽힘강도는 60~90MPa를 나타내며, 열전성능 Z = 2.7∼3.0 ×10-3/K로서 비교적 우수하다.The degassed cold formed body is molded to a theoretical density of 99% or more in the die 84 and the container 82 preheated to the same temperature within a temperature range of about 350 to 500 ° C. using the hot extrusion device 80. The thus obtained molded product forms a uniform and fine single solid solution when the microstructure observed by the scanning electron microscope and the X-ray analysis are examined. The bending strength of the molded body is 60 to 90 MPa, and is relatively excellent as the thermoelectric performance Z = 2.7 to 3.0 x 10 -3 / K.

도 5는 도 2의 분쇄장치에서 생성물로 얻어진 열전반도체 합금분말을 소성가공하기 위한 소결로의 구성을 개략적으로 나타낸 도면이다.FIG. 5 is a view schematically showing a configuration of a sintering furnace for plastic working thermoelectric semiconductor alloy powder obtained as a product in the crushing apparatus of FIG. 2.

도 5에 도시된 바와 같이, 소결로(90)는 온도와 분위기를 일정하게 유지할 수 있는 컨트롤러(91), 진공펌프(92), 분위기 가스공급장치(92), 금형(93), 라이너(94), 상부 및 하부램으로 구성된 가압장치(95), 가열장치(96) 및 절연부(97)를 구비한다.As shown in FIG. 5, the sintering furnace 90 includes a controller 91, a vacuum pump 92, an atmosphere gas supply device 92, a mold 93, and a liner 94 capable of maintaining a constant temperature and atmosphere. ), A pressurizing device (95) consisting of an upper and a lower ram, a heating device (96), and an insulating portion (97).

탈가스 처리된 냉간성형체는 소결로(90)에서 진공 혹은 질소가스 분위기에서 약 400∼550℃의 온도로 열간소결된다. 이렇게 얻어진 소결체의 굽힘강도는 30∼35MPa를 나타내며 열전성능 Z = 2.5∼3.5 ×10-3/K로서 비교적 우수하다.The degassed cold formed body is hot sintered in a sintering furnace 90 at a temperature of about 400 to 550 ° C. in a vacuum or nitrogen gas atmosphere. The bending strength of the thus obtained sintered compact exhibits 30 to 35 MPa and is relatively excellent in thermoelectric performance Z = 2.5 to 3.5 × 10 −3 / K.

이상에서 언급한 바와 같이, 본 발명에 따르면, Bi2Te3계 열전반도체합금을 제조하는데 있어 급속응고법의 일환인 쌍롤법(twin rolling) 및 적정한 분쇄장치를 이용하여 조직이 미세하고 화학적으로 균질한 급속응고 n형 및 p형 Bi2Te3계 합금분말을 제조함으로써, 조성이 균일하고 편석이 거의 없는 균질한 단일 고용체의 미세조직을 확보할 수 있었다.As mentioned above, according to the present invention, in the preparation of the Bi 2 Te 3 based thermoconductor alloy, the structure is fine and chemically homogeneous by using twin rolling and a suitable grinding device which are part of the rapid solidification method. By preparing fast solidified n-type and p-type Bi 2 Te 3 alloy powders, it was possible to secure a homogeneous single solid solution with uniform composition and almost no segregation.

또한, 이렇게 얻어진 합금분말을 탈가스 처리한 후, 열간단조, 열간압출 및 열간소결공정 등의 열간성형법을 이용하여 굽힘강도가 높고 열전성능도 비교적 우수한 n형 및 p형 Bi2Te3계 합금 성형체를 제조할 수 있었다, 게다가, 생산성도 기존의 방법에 비해 약 2배이상 향상되는 결과를 얻었다.Also, after degassing the alloy powder thus obtained, n-type and p-type Bi 2 Te 3 based alloy moldings having high bending strength and comparatively excellent thermoelectric performance by using hot forming methods such as hot forging, hot extrusion and hot sintering processes. In addition, the productivity was also improved by about 2 times or more compared with the conventional method.

상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당기술 분야의 숙련된 당업자는 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the above has been described with reference to a preferred embodiment of the present invention, those skilled in the art will be able to variously modify and change the present invention without departing from the spirit and scope of the invention as set forth in the claims below. It will be appreciated.

Claims (5)

n형 조성인 Sb2Te3와 Bi2Se3첨가 Bi2Te3계 합금, 그리고 p형 조성인 Bi2Te3첨가 Sb2Te3계 합금을 기본 재료로서 일정압력의 진공 또는 아르곤이나 질소 분위기가 유지되는 로내에서 용융하고 용융된 합금을 쌍롤법을 이용하여 조직이 균일하고 미세한 열전반도체 플레이크를 제조하는 단계(S1);n-type composition of Sb 2 Te 3 and Bi 2 Se 3 adding Bi 2 Te 3 based alloys, and the p-type composition of Bi 2 Te 3 is added Sb 2 Te 3 based alloys a vacuum or an argon or a nitrogen atmosphere at a predetermined pressure as the base material Melting and melting the molten alloy in the furnace in which the molten alloy is prepared by using a twin roll method to produce a uniform and fine thermal semiconductor flake (S1); 제조된 열전반도체 플레이크를 미세한 분말의 형태로 분쇄하는 단계(S2);Grinding the prepared thermoconductor flakes in the form of fine powder (S2); 분쇄된 열전반도체 분말을 냉간성형하고 탈가스시키는 단계(S3); 그리고Cold forming and degassing the ground thermoelectric semiconductor powder (S3); And 상기 단계(S3)로부터 얻어진 냉간성형체를 열간성형하는 단계(S4)를 포함하는 것을 특징으로 하는 Bi2Te3계 열전변환재료의 제조방법을 제공한다.It provides a method for producing a Bi 2 Te 3 system thermoelectric conversion material comprising the step (S4) of hot forming the cold-formed body obtained from the step (S3). 제 1 항에 있어서, 상기 단계(S1)에서는, 상기 기본 재료에 도판트로서 n형의 경우 CdCl2및 Sbi2를 첨가하고 p형의 경우 Te을 첨가하는 것을 특징으로 하는 Bi2Te3계 열전변환재료의 제조방법.The method of claim 1, wherein said step (S1) in the base case of the n-type as a dopant to the material CdCl 2 and Sbi 2 was added and Bi 2 Te 3 based thermoelectric further comprising a step of adding the case of a p-type Te a Method of manufacturing the conversion material. 제 1 항에 있어서, 상기 단계(S4)에서는, 상기 냉간성형체를 열간단조장치의 성형다이에 장입한후 예열하고 가압성형하여 99%이상의 밀도와 50~80MPa의 굽힘강도 그리고 Z = 2.7∼3.0 ×10-3/K의 열전성능을 나타내는 고강도 성형체를 제조하는것을 특징으로 하는 Bi2Te3계 열전변환재료의 제조방법.The method of claim 1, wherein in the step (S4), the cold molded body is charged into a molding die of a hot forging apparatus, and then preheated and pressed to form a density of 99% or more, a bending strength of 50 to 80 MPa, and Z = 2.7 to 3.0 × A method for producing a Bi 2 Te 3 based thermoelectric conversion material, characterized in that a high strength molded body having a thermoelectric performance of 10 −3 / K is produced. 제 1 항에 있어서, 상기 단계(S4)에서는, 상기 냉간성형체를 열간압출장치에 장입한후 예열하고 압출성형하여 99%이상의 밀도와 60~90MPa의 굽힘강도 그리고 Z = 2.7∼3.0 ×10-3/K의 열전성능을 나타내는 단일 고용체를 제조하는 것을 특징으로 하는 Bi2Te3계 열전변환재료의 제조방법.The method of claim 1, wherein in the step (S4), the cold molded product is charged into a hot extrusion apparatus, preheated and extruded to obtain a density of 99% or more, a bending strength of 60 to 90 MPa, and Z = 2.7 to 3.0 × 10 -3. A method for producing a Bi 2 Te 3 -based thermoelectric material, comprising producing a single solid solution having a thermoelectric performance of / K. 제 1 항에 있어서, 상기 단계(S4)에서는, 상기 냉간성형체를 소결로 내에 장입한후 열간소결하여 30~35MPa의 굽힘강도와 Z = 2.5∼3.5 ×10-3/K의 열전성능을 나타내는 소결체를 제조하는 것을 특징으로 하는 Bi2Te3계 열전변환재료의 제조방법.The sintered compact according to claim 1, wherein in the step S4, the cold molded body is charged into a sintering furnace and hot-sintered to exhibit a bending strength of 30 to 35 MPa and a thermoelectric performance of Z = 2.5 to 3.5 x 10 -3 / K. Method for producing a Bi 2 Te 3 system thermoelectric conversion material, characterized in that for producing.
KR1020000044222A 2000-07-31 2000-07-31 Method of producing thermoelectric transform materials by using the twin rolling and the hot forming process KR20020010768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000044222A KR20020010768A (en) 2000-07-31 2000-07-31 Method of producing thermoelectric transform materials by using the twin rolling and the hot forming process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000044222A KR20020010768A (en) 2000-07-31 2000-07-31 Method of producing thermoelectric transform materials by using the twin rolling and the hot forming process

Publications (1)

Publication Number Publication Date
KR20020010768A true KR20020010768A (en) 2002-02-06

Family

ID=19680934

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000044222A KR20020010768A (en) 2000-07-31 2000-07-31 Method of producing thermoelectric transform materials by using the twin rolling and the hot forming process

Country Status (1)

Country Link
KR (1) KR20020010768A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020096491A (en) * 2001-06-20 2002-12-31 병 선 천 METHOD OF PRODUCING THERMOELECTIRCALLY TRANSFORMED MATERIALS Bi2Te3 SERIES USING RAPID COOLING AND HOT FORGING PROCESS
KR100382599B1 (en) * 2000-12-15 2003-05-09 한국전기연구원 Manufacturing method of thermoelectric nanopowder
KR100727391B1 (en) * 2005-12-20 2007-06-12 한국생산기술연구원 Method for manufacturing bi-te based thermoelectric materials
CN101502865B (en) * 2009-02-23 2011-07-20 浙江大学 Hot forging processing method for optimizing performance of polycrystal bismuth telluride-based thermoelectric alloy material
KR101455713B1 (en) * 2013-04-23 2014-11-04 한국과학기술연구원 Method of preparing high performance thermoelectric materials using cold working

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01106478A (en) * 1987-10-19 1989-04-24 Mitsui Mining & Smelting Co Ltd Manufacture of thermoelectric material
JPH08306970A (en) * 1995-03-03 1996-11-22 Yamaha Corp Manufacture of thermoelectric cooling material
KR100228464B1 (en) * 1996-09-06 1999-11-01 천병선 Process for producing bi2te3-sb2te3 thermoelectric material powder by rapid solidification method
KR100228463B1 (en) * 1996-11-28 1999-11-01 김정근 Process for producing bi2te3 thermoelectric material sintered body by rapid solidification

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01106478A (en) * 1987-10-19 1989-04-24 Mitsui Mining & Smelting Co Ltd Manufacture of thermoelectric material
JPH08306970A (en) * 1995-03-03 1996-11-22 Yamaha Corp Manufacture of thermoelectric cooling material
KR100228464B1 (en) * 1996-09-06 1999-11-01 천병선 Process for producing bi2te3-sb2te3 thermoelectric material powder by rapid solidification method
KR100228463B1 (en) * 1996-11-28 1999-11-01 김정근 Process for producing bi2te3 thermoelectric material sintered body by rapid solidification

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100382599B1 (en) * 2000-12-15 2003-05-09 한국전기연구원 Manufacturing method of thermoelectric nanopowder
KR20020096491A (en) * 2001-06-20 2002-12-31 병 선 천 METHOD OF PRODUCING THERMOELECTIRCALLY TRANSFORMED MATERIALS Bi2Te3 SERIES USING RAPID COOLING AND HOT FORGING PROCESS
KR100727391B1 (en) * 2005-12-20 2007-06-12 한국생산기술연구원 Method for manufacturing bi-te based thermoelectric materials
CN101502865B (en) * 2009-02-23 2011-07-20 浙江大学 Hot forging processing method for optimizing performance of polycrystal bismuth telluride-based thermoelectric alloy material
KR101455713B1 (en) * 2013-04-23 2014-11-04 한국과학기술연구원 Method of preparing high performance thermoelectric materials using cold working

Similar Documents

Publication Publication Date Title
JP3011904B2 (en) Method and apparatus for producing metallic glass
US5318743A (en) Processes for producing a thermoelectric material and a thermoelectric element
CN1333093C (en) Preparation method of bismuth-tollurium base thromoelectric alloy
US6596226B1 (en) Process for producing thermoelectric material and thermoelectric material thereof
KR20160125132A (en) Method for Bi-Te-based thermoelectric materials using Resistance Heat
KR20090116137A (en) Method for manufacturing bi-te based thermoelectric materials by equal channel angular pressing(ecap) process
JP4479628B2 (en) Thermoelectric material, manufacturing method thereof, and thermoelectric module
KR20020010768A (en) Method of producing thermoelectric transform materials by using the twin rolling and the hot forming process
KR20180060265A (en) METHOD FOR MANUFACTURING Bi-Te BASED THERMOELECTRIC MATERIAL CONTROLLED OXIDATION AND Bi-Te BASED THERMOELECTRIC MATERIAL MANUFACTURED THEREBY
JP2009054968A (en) Method of manufacturing thermoelectric material, and thermoelectric material
JP2013102002A (en) Heusler type iron-based thermoelectric material, and method of manufacturing the same
US11411155B2 (en) Thermoelectric conversion material, thermoelectric conversion module using same, and method of manufacturing thermoelectric conversion material
JP3200935B2 (en) Manufacturing method of aluminum alloy
KR20160077628A (en) Method for manufacturing a thermoelectric material having a uniform thermal conductive properties
RU2470414C1 (en) METHOD OF PRODUCING p-TYPE THERMOELECTRIC MATERIAL BASED ON SOLID SOLUTIONS OF Bi2Te3-Sb2Te3
KR20020006338A (en) Method of producing thermoelectric transform materials by using the gas atomixation and the hot forming process
KR101468991B1 (en) Thermoelectric material, method of manufacturing the same, thermoelectric device having the same
KR100228463B1 (en) Process for producing bi2te3 thermoelectric material sintered body by rapid solidification
JPH1056210A (en) Thermoelectric semiconductor sintered element and production thereof
CN104759601A (en) Copper alloy rheoforming method
KR20020049792A (en) Method of producing thermoelectric transform materials by using the centrifugal atomization and the hot forming process
JP2003012308A (en) Production method of thermoelectric semiconductor material by rapid solidification processing and/or hot compression processing and production apparatus for the same
JP4207289B2 (en) Thermoelectric semiconductor manufacturing method
KR20020049793A (en) Method of producing thermoelectrically transformed materials by the melt spinning and the hot forming process
JP3523600B2 (en) Thermoelectric element manufacturing method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application